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Average rate of separation of trajectories near the singularity in mixmaster models
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The system of equations for a mixmaster cosmological model is reduced to a geodesic How on a
pseudo-Riemannian manifold. This geodesic flow is, on the average, locally unstable in the first and
second Belinskij-Khalatnikov-Lifshitz (BKL) approximations. In the geometrized model of dynamics we

define an average rate of separation of nearby trajectories with the help of a geodesic deviation equation
in a Fermi basis. It turns out that the standard indicator for detecting chaotic behavior, a principal
Lyapunov exponent, can be obtained from a normal separation vector. We also show that the principal
Lyapunov exponents are always positive in the first and second BKL approximations. If the period of
oscillations in the long phase {the second BKL approximation) is infinite, the principal Lyapunov ex-

ponent tends to zero.

PACS number(s): 98.80.Hw

I. INTRODUCTION

It is well known that the chaotic regime appears near
the initial singularity in mixmaster cosmological models
[1]. The evolution of these models can be approximated
by a series of Kasner epochs, the duration of which turns
out to be stochastic as one moves backwards in time to-
ward the initial singularity. During a given Kasner
epoch two of the scale factors oscillate, while the third
one decreases monotonically. In minisuperspace models
of dynamics the epochs correspond to bounces outward
along a corner of the potential, while a new era begins
with a change of a corner. In our picture, trajectories
can concentrate around three "attractors" (there are
three chaotic centers which form the stochastic domains
in the neighborhood of unstable Taub solutions [2]).
Rugh and Jones [2] have numerically found the qualita-
tive correctness of the Belinskij-Khalatnikov-Lifshitz
(BKL) approximation near the singularity if the mixmas-
ter model satisfies the Einstein equations.

Transitions between subsequent Kasner epochs provide
a return map with the positive Lyapunov exponent
k=m /6(l 2)n[3], whereas the Lyapunov exponents ex-
tracted from continuous dynamics, in accordance with
Einstein equations, are zero [2,4] in r time [r= J dt /abc,
t is the cosmological time, and a, b, c are the scale factors
for Bianchi type-IX (BIX) models].

Barrow used this map to compute the probability that
an era has r epochs. The mixmaster cycles are most like-
ly to be very short; over 41%%uo of them will involve a single
oscillation. Burd, Buric, and Ellis attribute the vanishing
of the "Lyapu. nov exponents, " computed from the nu-
merical trajectories, to the exponentially increasing
"time" interval between the successive eras (as suggested
by Francisco and Matsas). Both the r (Hobil, Berstein,
Welge, and Simkins and Berger) and a (Burd, Buric, and
Tavakol) intervals between eras increase greatly as the

trajectories approach the singularity [4].
Lyapunov exponents have never been defined in an in-

variant manner (with respect to time coordinate transfor-
mations), and there is the problem of constructing a
gauge-invariant measure of separation of nearby trajec-
tories in time [5]. The problem of a gauge-invariant
description of an indicator of chaos is also important in
classical dynamics. Since topological properties of the at-
tractor manifold in phase space (particularly, generalized
dimensions) do not depend on the choice of parametriza-
tion of trajectories, they remain intact under reparametri-
zation of the time coordinate. Thus, the choice of the
time parameter in a dynamical equation is rather arbi-
trary and, generally speaking, a curve in phase space can
be parametrized in the most convenient manner by
dynamical equations depending on the particular prob-
lem. In order to avoid confusion it is worth stressing that
the evolution in time, and hence the Lyapunov exponents
and generalized entropies, will change under such a
transformation, and only the geometric characteristics in
phase space will remain invariant. In this paper we show
that the "Lyapunov exponents" are positive in the first
and second BKL approximations. If the period of oscil-
lations tends to infinity in the second BKL approxima-
tion, the Lyapunov exponents go to zero.

Chitre [6] showed that a mixmaster model in super-
space could asymptotically be represented by a geodesic
Row on a negative curved space, and consequently, that
the model was chaotic.

Chitre-Misner variables for the dynamics are one of
many possible variables which allow for the reduction to
the geodesic problem (see Pullin's discussion concerning
the superiority of the Chitre gauge choice over other
gauge variables [7]). These variables should not be dis-
tinguished in any way since the chaos characteristics
have to be defined so as not to depend on this particular
choice [8].
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II. THE LOCAL INSTABILITY OF THE GEODESIC
FLOW FOR BIX COSMOLOGICAL MODELS

Vacuum Einstein equations for the Bianchi IX model
are equivalent to the Hamiltonian equations with the
Hamiltonian [9]

H=T+ V,
where

D6 ~ 2R= —grad„V(n) = — n,
ds

where R is the Ricci scalar of a pseudo-Riemannian space
with the Jacobi metric and N is a dimension of the
configuration space.

If we introduce a Fermi basis {E,a
= 1, . . . , N —1,E& =u ] along the randomly chosen geo-
desic, formula (4) yields

2
q1q~ d2wQ

ds

2R
N(N 1)— (5)

1V= —2 g q;q,
—gq;

i =1(j i =1

2
q3qz

and the Ricci scalar R for the space with metric (2) has
the form [5]

R= ——IV 4W Q q;+gq;q, —gq;4 i =1 i('. j i=1

D n
V„V„n = = —grad„V„(n),

S

where

(3)

T, V, are the kinetic and potential energy, respectively,
and q,

= A, , i =1,2, 3) ( 2; are scale factors for the aniso-
tropic BIX evolution).

The total energy is conserved and the constraint equa-
tion is H=O. By virtue of the Maupertuis variational
principle, the Hamiltonian system generates a geodesic
flow on a space with the Jacobi metric [5,10]

ds'=
I Vlg;, dq'dq' .

Therefore, while investigating the sensitivity of the sys-
tem with respect to initial conditions, it is suitable to
start with the geodesic deviation equation. This equation
determines a deviation vector n normal to a velocity vec-
tor u along the geodesic. The normal vector n describes a
separation of neighboring geodesics. The Jacobi devia-
tion equation has, by analogy with the Newtonian equa-
tion of motion, the form

According to the idea originally developed by Belin-
skij, Khalatnikov, and Lifshitz [1], the evolution of the
Bianchi IX model can be approximated by a series of
Kasner epochs q; ~ r ' (the first BKL approximation)
with p, (O dominating in the potential. Taking into ac-
count the well-known Kasner constraints, one can suit-
ably parametrize the Kasner exponents [1,9]

p;(u)=, p~(u) =—u 1+u
1+u+u 1+u+u

u (1+u)
p3 1+u+u

The rules governing transitions between the subsequent
Kasner eras are u ~u —1 for u ~ 2 and u ~1/(u —1) for
1 ~ u + 2. The state of the system is determined by pairs
(u, o. ), where

1 2 3 1 2 3

k

(grad„)'=g'~i

Bn~

and the potential

V„(n)= —
—,'(n, R (u, n)u ) =

—,'R (n, u, n, u)

=
—,'K„.„g (n, n)g (u, u),

R (n, u, n, u)=E„„[g(n,n)g(u, u) —. g(n, u)g(u, n)],
ds =2IVdr, 8 =

i Vi,
R (u, n) is a Riemannian tensor, r is a time coordinate in
the Hamiltonian equation, and K„.„ is the curvature in
the two-direction determined by the vectors n and n.

Generally, the problem of solving deviation equation
(3) is complex, but there is a simple averaging procedure
[10] which gives the sign of the Ricci scalar of the Jacobi
metric and informs us about the local instability of the
geodesic fiow. An average potential V(n) can be created
by choosing the tangent vector u and the normal one n at
random (any direction u hn is equally probable). The
corresponding equation assumes the form

1 2 3

1 3 2

are the corresponding permutations. The mixmaster
transformation exchanging the order of Kasner ex-
ponents p, (p& (p& is (u, o )~(u —l, oo &&) for u 2, and
(u, o )~((u —1) ', era&zo~3) for 1(u (2.

In the second BKL approximation we have

q, =q ))qk, which corresponds to small oscillations of
two scale factors q, and q-, whereas qk is negligibly small
(corner oscillations in the Misner regime).

The Jacobi metric and the Ricci scalar have the forms

3
ds =

4q; ggbdq dq, R =

in the first BKL approximation,

6
ds =

—,'(q; —
q ) g,~dq'dq, R =—

in the second BKL approximation,
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where

0 q3 q2
1

&ab
= q3 0 q1

2q1q2q3
q2 q, 0

Deviation equation (5) in the original time coordinate r
(from the Hamiltonian equations) takes the form

4 2d'z 1 dz P; 4, (~p, —z)

dt~ t dt t~
(14)

which can be recognized as the Bessel equations. Hence,
at the limit t —+0, the solution reads

i8 —2Ip;I
z =z J — t0 0

1 dq8''dd 8R8
N (N 1)— (8)

Therefore, the solution of the deviation equation near the
singularity is

dtd~-
+qiqzqs

a== a
Bq;

where +=1, . . . , N —1, and 8' ( )=n 'J
3p;

Taking into account that
' 1/2

(15)

In any era dominated by p; one has Jo(z) = 1
cos z ——+ sin z ——

4 8z 4
3 2 ] PiW= —,'q; = ,'t '=

—,
' exp—(4p,r),

we arrive at the formula

where t is the cosmological time.
By the substitution & = 8" z the dissipative term in

(8) can be eliminated, and in this case we obtain

a 2p.
n0 2p; t 2p.8' (t)= t ' exp(at ')+ exp(at ')

&2ma Sa

d z = [4p, +—', p exp(4p;r ) ]z (9)

2n0 2p.
t 'exp(at ' ),

21ra
(16)

where a=1,2, /3 =const (R = —P /W, P=i/3/2, and
p=&6 in the first and second BKL approximation, re-
spectively).

In deriving Eq. (9) the first term has been neglected at
the limit r~ —~. Equation (9) can be reduced to the
form

2 cx dz
16p, g +16p, ——P z =0,

dg 3

where /=exp( —4pr) and r= —r. The solution of this
equation is

z (g)=C, cosh
12P 1

where a=/3/&3~p;~)0. One can see that for t~0 the
local instability arises and is the superposition of the
power law and the exponential instability. This corre-
sponds to a hyperexponential instability in time ~.

The principal Lyapunov exponent can be defined in the
following way (let us note that the natural parameter s is
measured along the geodesics):

lim ln
IIn(0)II 0

n (s)
n (0)

(17)

In the first BKL approximation near the singularity
(r~ —~ ) we have

= 1
s(~) = exp(4p, r) and s (~~ —~ ) = —~, p; (0,

8p;

thus,

+ C2 sinh
12p;

' 1/2
n (s)=no+Sp;s exp — Sp;s

3 pi

and

(18)

8 =6 o exp(2'p;r)e'xp — exp(4p, r)
3 p;

(12)
ln//n s [[ SP

s~ —co s 2v 3

In the second BKL approximation we obtain

(19)

Equation (8), for z rewritten in the cosmological time
t [dt = (q, qzq3 )' dr], assumes the form

'2
dz ding dz 1 din~ 1 d ln

dt dt 4 dt 2

W(g)= —(q, —qz) =42 ao csin (g —go),=1 2=
0

where
2

q, =ao 1+ —sin(g —
go)

ko

(20)

dW dlnV 4 W
dt dt 3

For the Kasner era dominated by p, the above formula
takes the form

qz =ao 1 — —sin(g —go)
o

(o=2vrm, m EN .

2
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g is now a new time parameter such that

2a02
g= gp exp — —(r —rp)

p

s=2apA, sE[0,2apA ]
0

The conformal factor 8' expressed in terms of s has the
form

W(s) =2aps sin s & W(s)=2aps
2a 0A

(21)

and the deviation equation in this case takes the form

d 6'

c6
(22)

The long-phase approximation is valid if g~ 1 (s ~ 2 ),
and if /=1 it can be destroyed The. exact solution of de-
viation equation (22) can be obtained by Kelli solutions,
but we can restrict our attention to

exp
l

2a40W 2

1/2

8' (s) ~ expwg
0

4p

2040' 2

1/2

S (23)

Now we can define the Lyapunov exponent as
1/2 1/2

1

,
2a0A

m

»00~Lap (24)

The constant gp measures the period of oscillations m
during the long phase, e.g. , m =gp/2'. If the period of
oscillations hs is infinite Lyapunov exponent (24) goes to
zero. The relaxation time should be defined as

+relax ' Lap

i 1/2
»&0

(25)

From the above formula we can see that, if the period of
oscillations is finite, the relaxation time is also finite and
it goes to infinity as the period of oscillations grows dur-
ing the long phase (or ap~ ~ ). The presence of the ex-
ponential rate of separation of neighboring trajectories
during the long phase guarantees that the effective "loss
of memory" of initial conditions will take place after the
relaxation time ~„1„.

III. CONCLUSION

In our approach the problem of determining the aver-
age separation rate of nearby geodesics has been reduced
to determining the normal vector n of the geodesic devia-

rE[rp, —oo ) and g'2 [('p, 0] .

ap gp rp A are constants (for terminology see Belinskij,
Khalatnikov, and Lifshitz in [1]).

During the long phase gp becomes large, and the natu-
ral parameter s measured along geodesics is connected
with g by the relation

tion. The natural parameter s, ds =28'd~, is measured
along the geodesics. The deviation vector n measures the
actual distance between the nearby geodesics of the
congruence (but not between points on them).

In connection with the gauge-invariant character of
the Lyapunov exponents one should make the following
comments. One often distinguishes the Lyapunov ex-
ponents "per time" A,(t) and the Lyapunov exponents
defined in the standard way as lim sup, „A,(t). It is evi-
dent from the definition that the Lyapunov exponents
"per time" are not invariant with respect to time
reparametrization along phase trajectories. The
Lyapunov exponents understood in the standard manner
are in principle invariant with respect to time
reparametrization.

They are defined for linear systems x
= A (t)x, x ED" (D" is compact). Their invariance fol-
lows from the fact that the time reparametrization is
equivalent to the multiplication of vector field X on a
compact space by a positive function p(t), p(t)dt=dr,
where ~ is a new time parameter, and t is the original
time such that dx/dt =x.

The Lyapunov transformation y =L (t)x of the equa-
tion of the field variation does not change the Lyapunov
exponents of the corresponding solutions [a continuous
differentiable functional matrix L defined on [s, + oo ) is
called the Lyapunov matrix if matrices L and DI are
bounded on [s, + ~ ), and ~detl. (t)

~

~ m )0, Vt ~ s], i e.,
co(y)=lim sup, (I/t)l ~ny(t)~=co(x). It can be easily
seen that the above property follows from the bounded-
ness of the matrices L and I. '. In general, if the in-
tegral of the logarithm of the derivative of the scaling
function is finite, the characteristic Lyapunov exponents
do not change. If the manifold D" is not compact (e.g. , in
the mixmaster models), the characteristic exponents will
change with the time reparametrization. The compact-
ness guarantees that all smooth measures are finite. It is
essential to be able to use the Oseldec theorem, which al-
most everywhere assures the finite limit in the definition
of the Lyapunov exponent.

In our approach the Lyapunov exponents are defined
by the properties of the maximal geodesic. A similar
method was elaborated by Pesin and Klingenberg [11].
The group of gauge invariants of the Lyapunov ex-
ponents is a group of canonical transformations (the time
variable is one of the generalized variables). It means
that any change of the form of the Hamiltonian does not
modify the characteristic Lyapunov exponents. Unfor-
tunately, in our case the gauge group is not a gauge
group for general relativity.

%'hen Lyapunov exponents are investigated numerical-
ly, the field X is determined on a noncompact constant
energy level H=O, and different time variables are inter-
connected by the exponential function (for details see
[11]). Consequently, the integral of the logarithm of the
derivative of the scaling function is not finite. This evi-
dently explains the various numerical controversies con-
cerning Lyapunov exponents, which in this case are not
invariant with respect to time reparametrization.

In the first and second BKL approximations, the po-
tential in the Misner parametrization is positive, and
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hence the tangent vector to the geodesic is timelike,
which implies that the normal vector is spacelike. The
local instability appears if K„.„g (n, n)g (u, u) & 0, [or
equivalently R (u, n, u, n ) & 0]. One can show that in the
first and second BKL approximation, the Riemannian
curvature in the two-direction containing the vectors u

and n is always nonpositive at any point and any two-
direction, whereas for the Taub solution it vanishes. This
fact means that in such a case, in the neighborhood of the
singularity, the system has no noncontinuous additional
first integrals.

With the help of the deviation vector one determines
the principal Lyapunov exponent and demonstrates that
it is positive in the first and second BKI. approximation
[if the period of oscillations hs is finite]. In the second
approximation the Lyapunov exponent tends to zero if
the number of oscillations tends to infinity. It can be
shown that, in the corner approximation with the
Arnowitt-Deser-Misner (ADM) potential V(a, P+,P )

4a ~~+ 2=48e e +13 (~P ~
&&1,P+~+ oo ), the Ricci scalar is

positive and goes to zero as P ~0, i.e., the solution of
the deviation equation oscillates, whereas in the second
BKL approximation it is negative. Based on this fact,
one can interpret the effect of vanishing of the Lyapunov
exponents near the singularity, observed numerically [4],
as an effect of the trajectory staying long near the bound-
ary V=O. This layer is formed around the symmetry
axes of the triaxial potential where the axes represent the
Taub solution (see Fig. 1).

The chaotic behavior is a qualitative property, and
after being averaged it can be destroyed. However, chaos
cannot be created by an averaging procedure. A negative
value of the Ricci scalar is a sufficient (but not necessary)
condition of the local instability of the geodesic Aow; evi-
dently the Ricci scalar is a gauge-invariant detector of
chaos. In the space with the Jacobi metric (2), s is a natu-
ral parameter measured along a geodesic. Since the vec-
tor u tangent to the geodesic is normed to unity,
~~u ~~

=sgn(E —V) (in the sense of the Jacobi metric), s is
an invariant quantity (with respect to the canonical and
coordinate transformations in the configuration space).
Instead of investigating the system in the BKL variables,
we can use the Misner variables (a,13+,/3 ) [6], and in
such a case the time variable is one of the generalized
coordinates. We know that the mixmaster models are
very special solutions of general relativity, and one could
speak about the fully invariant description only if one
would be able to formulate the space-time dynamics in a
covariant way. Moreover, in our approach the group of
canonical transformations is a gauge group, whereas in

(-,+)

(-,+)

(-,+)

haotic domain

FIG. 1. Signs of the Ricci scalar R ( IV) [presented as a pair
(sgnR, sgn V)] for the BIX model in Misner's parametrization.
In the first and second approximations V(a, P+,P ) and the
tangent vectors are timelike, whereas the normal deviation vec-
tor is spacelike.

general relativity this role is played by the group of all
diffeomorphisms.

The Chitre-Misner variables for the dynamics should
not be distinguished in any way since the chaos charac-
teristics have to be defined so as not to depend on any
particular choice of variables. In our approach the
Chitre-Misner variables are one of many possible vari-
ables which allow for the reduction to the geodesic prob-
lem. In such a case the potential is constant in the Jacobi
metric at the cost of the shape of the kinetic energy form.
In our approach the local instability (in the average) de-

pends only on the Ricci scalar for the space, with any
metric which is equivalent to the Jacobi metric (compare
[7]). The negative character of the potential energy or
the sign of the sectional curvature is the precise criterion
of the local instability [12].

As we can see, the problem of chaos in the BIX model
is very subtle. But we must stress that there is chaos in
that system if the BKL approximation is valid. And all
controversies concerning the numerical calculation of the
chaos are connected with the lack of accepted tools for
detecting the chaos in the context of general relativity.
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