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Dynamics of the electroweak phase transition
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We apply recent advances in equilibrium and nonequilibrium finite-temperature field theory to
the dynamics of the electroweak phase transition in the early Universe. The equation of state and
the parameters that enter the nucleation rate, including the preexponential factor, are calculated
in the one-loop plus ring-diagram approximation in the standard model. The velocity of bubble
growth is taken from a recent relativistic kinetic theory calculation. We compute the tempera-
ture, average bubble size, bubble density, and fraction of space which has been converted from the
high-temperature symmetric phase to the low-temperature asymmetric phase as functions of time.
Compared to the idealized adiabatic Maxwell construction of phase equilibrium, the start of the
phase transition is significantly delayed, but then completes in a much shorter time interval.

PACS number(s): 98.80.Cq, 12.15.Ji, 64.60.Qb

I. INTRODUCTION

It was predicted nearly twenty years ago that what is
now known as the standard model of the electroweak in-
teractions should undergo a phase transition at a temper-
ature of order 100 GeV [1]. Below this temperature the
SU(2) xU(1) gauge symmetry is spontaneously broken,
above it the symmetry is restored. Such high tempera-
tures are only imaginable in the early Universe. There
has been a Burry of activity in this area of electroweak
physics recently because of the possiblity that the present
baryon number of the Universe was generated by baryon
number changing processes [2] during the electroweak
phase transition [3]. The nature of the electroweak phase
transition and the dynamics of the expanding Universe
during the phase transition demand our close attention.

In this paper, it is our intention to provide a detailed
analysis of the dynamics of the electroweak phase transi-
tion in the early Universe. We shall assume the validity of
the standard model without extra Higgs fields, although
they may be necessary to generate the observed amount
of baryon number [4]. The following are the essential in-
gredients for the study. First, knowledge of the equation
of state of electroweak matter is required to solve Ein-
stein's equations and to determine the parameters in the
nucleation rate. We take the equation of state from the
recent analysis of Carrington [5] who has summed the
ring diagrams in addition to the usual one-loop contri-
butions. The phase transition is weakly first order; this
is fortunate because baryogenesis requires a first-order
transition. The second necessary ingredient is the nucle-
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ation rate. It is composed of two parts: the exponen-
tial factor and the preexponential factor. The origin and
form of the exponential factor are well known [6—9]; it is
the exponential of minus the free energy of a critical-size
bubble of the asymmetric phase Boating in the symmet-
ric phase. We determine this free energy on the basis
of the effective potential as computed by Carrington [5]
including finite bubble size effects [8—10]. An expression
for the preexponential factor in terms of physical quan-
tites, such as surface free energy, correlation length, la-
tent heat, and viscosity was recently obtained by Csernai
and Kapusta [ll]. Again, these parameters are inferred
from the effective potential of Carrington, except for the
viscosity, which is computed in this paper. Finally, we
need a rate equation for the time evolution of the phase
transition. We use the rate equation as given by Csernai
and Kapusta [12] which they applied to the @CD phase
transition in high etrergy nuclear collisions. A necessary
ingredient in this equation is the radial velocity of bub-
ble growth; we take this from a recent analysis of Liu,
McLerran, and Turok [10].

With this input we solve for the time evolution of the
Universe as it passes through the electroweak phase mix-
ture. In particular we compute, as functions of time,
the temperature, the fraction of space which has been
converted from the symmetric phase to the asymmetric
phase, the average bubble size, and the average bubble
separation. The time dependence of these quantities has
been discussed before [13]. In this paper we calculate
these quantities to the best accuracy available given our
present understanding of equilibrium and nonequilibrium
finite-temperature field theory.

This paper is organized as follows. In Sec. II we re-
view the dynamics of nucleation and the rate equation
which incorporates nucleation and growth of bubbles. In
Sec. III we extract the electroweak equation of state,
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the surface free energy, and the correlation length, all
of which are needed for the nucleation rate. We ana-
lyze critical bubbles whose radius is not very much larger
than the correlation length. In Sec. IV we obtain the ra-
dial growth velocity of bubbles from the recent analysis
of Liu, McLerran, and Turok and express it in terms of
our parameters. In Sec. V we compute the viscosity of
electroweak matter in the high-temperature symmetric
phase. Finally, we solve the coupled nonlinear integral
and differential equations for the time evolution of the
phase transition in the early Universe in Sec. VI. The
results are interesting in their own right and should be
useful for baryogenesis studies. We present conclusions
and suggestions for further research in Sec. VII.

II. REVIEW OF NUCLEATION THEORY

The rate for the nucleation of the low-temperature,
asymmetric phase "A" out of the high-temperature, sym-
metric phase "S" can be written as [11,14, 15]

where LF, is the change in the free energy of the sys-
tem with the formation of a critical-size A-phase bubble
and Io is the prefactor. In general, statistical fluctua-
tions at T ( T, will produce bubbles with radius r with
associated free energy

AF = [pg(T) —p~(T)]rs + 4vrr2o (2)

Here p is the pressure of the S or A phase at temperature
T, and o is the surface free energy of the 8-A interface.
Since ps —p~ ( 0 it follows as usual that there is a bubble
of critical radius

Smaller bubbles tend to shrink because the surface energy
is too great relative to volume energy, and larger bubbles
tend to grow. The free energy of the critical-size bubble
is therefore

AF„= ma r„. — (4)

This expression is valid if the radius of a critical bubble
is large compared to the correlation length. We will dis-
cuss the free energy of small critical bubbles in the next
section.

The prefactor has very recently been computed in a
coarse-grained effective field theory approximation to be

away from the bubble's surface, as indicated by the de-
pendence on the viscosity. At the critical temperature,
r, —+ oo, and the rate vanishes. The system must su-
percool at least a minute amount in order that the rate
attain a finite value.

Given the nucleation rate one would like to know the
(volume) fraction of space f(t) which has been converted
from the S phase to the A phase at the proper time t
as measured in the local comoving frame of an expand-
ing system. This requires kinetic equations which use
the nucleation rate I as an input. Langer and Schwartz
[18] have discussed such kinetic equations and compared
predictions of their theory to cloud-point data in near-
critical fluids. Guth and Weinberg [19] proposed a for-
mula for f(t) and applied it to cosmological First-order
phase transitions. One may find other kinetic equations
in the literature. It does not seem possible to derive such
kinetic equations from first principles. Here we use a rate
equation first proposed in [12]. The nucleation rate I is
the probability to form a bubble of critical size per unit
time per unit volume. If the system cools to T, at time
t, then at some later time t the fraction of space which
has been converted to the A phase is

f(t) = «'~(T(t')) [1 —f(t')]&(t' t)

V(t', t) is the volume of a bubble at time t which was
nucleated at the earlier time t', this takes into account
bubble growth. The factor 1 —f(t') takes into account
the fact that new bubbles can only be nucleated in the
fraction of space not already occupied by the A phase.
This conservative approach does not take into account
collisions and fusion of bubbles, which would tend to de-
crease somewhat the time needed to complete the tran-
sition [20].

Next we need a dynamical equation which couples the
time evolution of the temperature to the fraction of space
converted to hadronic gas. We use Einstein's equations
as applied to the early Universe, neglecting curvature.
The evolution of the energy density e is

where R is the scale factor at time t. This assumes kinetic
but not phase equilibrium, and is basically a statement
of energy conservation. We express the energy density as

e = fe~(T) + [1 —f]es(T),

~gsr*
3m 3T (4(Aw)2' (5)

where qs is the shear viscosity in the S phase, Q is a cor-
relation length in the 8 phase, and Lm is the difference
in the enthalpy densities of the two phases. This pre-
factor is very similar to that calculated by Kawasaki [16]
and by Turski and Langer [17] for nonrelativistic fluids
near their critical points. The nucleation rate is limited
by the ability of dissipative processes to carry latent heat

8~Ge
3 (9)

This expression can be used to rewrite the rate equation

where e~ and es are the energy densities in the two
phases at the temperature T. There is a similar equa-
tion for m. The time dependence of the scale factor is
determined by the equation of motion
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in the alternate form

dB'

R'ge(R')
I(T(R'))

x [1 —f(R')] V(A', A) . (10)

We have chosen the normalization R(t, ) = 1. Because
the Universe is expanding very slowly on the electroweak
time scale (t, = 10 sec) and the phase transition is
only weakly first order (Ae (( e), it is a very good ap-
proximation to neglect the variation of R'ge(B') in the
denominator of the integrand of the rate equation above.
Similarly, during the phase transition it is a very good
approximation to integrate the equation of motion of B
to get

P is the value of the scalar condensate field. It turns
out that with inclusion of the ring diagrams there is
no simple analytic expression for this potential, it must
be evaluated numerically. To a good approximation it
looks very much like a fourth-order polynomial in P with
temperature-dependent coefBcients. In the neighborhood
of T, it has two minima, one corresponding to the S phase
at Ps = 0 and the other corresponding to the A phase at
P~ ) 0. Above T, the global minimum is at the origin,
below T, the global minimum is at P~, and at T, the two
minima are degenerate.

The thermodynamic pressure is the negative of the ef-
fective potential at the minimum. Thus

ps(T) = -V.e(0, T)

t —t, = (R —1) .
3

8vrGe t,

V(t' t) =, l
*(T(t'))+ dt"v(T(t"))

l (12)

This expression can also be written in terms of A, B', B"
instead of t, t', t". As pointed out by Linde [6] one could
argue for the insertion of the dilution factor R(t')/R(t")
behind the integration symbol above. However, the Uni-
verse expands so terribly little during this very weak first-
order transition that this is a negligible effect.

This is useful in relating the time into the transition to
the amount of expansion of the Universe.

We also need to know how fast a bubble expands once
it is created. This is a subtle issue since by definition a
critical-size bubble is metastable and will not grow with-
out a perturbation. We shall only attempt a crude de-
scription of this growth process here. After applying a
perturbation, a critical-size bubble begins to grow. As
the radius increases, the surface curvature decreases, and
an asymptotic interfacial velocity is approached. The
asymptotic radial growth velocity will be referred to as
v(T). The expected qualitative behavior of v(T) is that
the closer T is to T, the slower the bubbles grow. At T,
there is no motivation for bubbles to grow at all since
one phase is as good as the other. Our simple illustrative
model for bubble growth is

p~(T) = V,rr(P—~(T), T) .

The effective potential is normalized so that the pressure
of the vacuum is zero. The pressure difference defined
as Lp = p~ —pg is equal to zero at T, and is positive
below T,. We use a vacuum Higgs mass of 60 GeV and
a top quark mass of 120 Gev, all other parameters are
standard. With these parameters T, = 97.27 GeV. For
supercooling of up to 2% (0.98T, ( T ( T, ) we have
found an accurate parametrization of the pressure differ-
ence to be

Ap = (5.977x+ 498.7x —762lx ) x 10 TeV/fm,

(14)

where x = 1 —T/T, .
It is not necessary to know the absolute value of the

pressure as accurately as the pressure difference. The
pressure difference determines the size and free energy of
critical-size bubbles as well as the bubble growth velocity.
The magnitude of the pressure influences the expansion
rate of the Universe, but since the Universe is expand-
ing so slowly at this epoch, a few percent change in the
absolute magnitude of the pressure has no real conse-
quences for the phase transition. Close inspection of the
expressions in [5] leads one to the approximate form of
the pressure in the high-temperature phase as

427 2 4 mH"'( ) =
360

III. EFFECTIVE POTENTIAL
AND EQUATION OF STATE

One of us has computed the effective potential in the
standard model by evaluating both the one-loop dia-
grarns and the sum of ring diagrams [5]. The ring di-
agrams are necessary in this context because it turns out
that the phase transition is very weakly first order and
several of the scalar and vector boson masses are very
small near the critical temperature. Infrared contribu-
tions to the effective potential become important as the
boson masses go to zero, and it is well known that these
contributions can be accurately taken into account by
summing the ring diagrams [21, 22].

Let us denote the effective potential by V,rr(g, T) where

s = dp/dT,
e= —@+Ts,
m=e+p,

(16)

assuming that all chemical potentials are negligibly small.
For the parameters chosen in this paper the ratio of the
latent heat to the energy density in the S phase at T, is
very small:

where m~ is the zero-temperature Higgs mass and G~ is
the Fermi constant. The pressure in the low-temperature
phase is p~ = ps + Ap.

The entropy, energy, and enthalpy densities in each
phase can be obtained via the canonical thermodynamic
relationships
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Ae/es = xiii/es = (5.98 x 10 TeVfm )/(4. 13 x 10 TeVfm ) = 1.45 x 10 = 0.145%.

This is a very weak first-order phase transition even
though in a terrestrial sense the latent heat is huge.

The static correlation length ( for the scalar field is
expressed in terms of the second derivative of the effective
potential at a minimum:

d V,gd2. (17)

Static, spatial inhomogeneities in the scalar field fall off
exponentially with this decay length, exp( —z/(). In gen-
eral the correlation lengths in the two phases are differ-
ent. For an effective potential that is quartic in the field
they are the same at T,. Even though the ring-improved
effective potential is not exactly of the quartic form, we
have found numerically that the curvatures at the min-
ima are equal at T, . The value is

(A = (s = 17.94/T, = 0.0364 fm. (18)

As the temperature decreases, the correlation length in-
creases in the S phase and decreases in the A phase. Since
we expect relatively little supercooling we shall neglect
this temperature variation. This approximation could be
relaxed if necessary.

The surface free energy at T, is given by the well-known
expression [23]

(dz)

where P(z) satisfies the classical equation of motion with
the potential V,g(P, T). Since the potential is well-
approximated by a fourth-order polynomial, we use the
solution

P(z) = [1 + tanh(z/2()].

The surface free energy then is

&~(T )
6

(20)

(21)

We find numerically that P~(T, ) = 0.5227 T, . Therefore
cr = 60 TeV/fm . It is problematical to rigorously define
a surface free energy at any temperature other than T,.

The free energy of critical-size bubbles is accurately de-
scribed by Eq. (4) only when the radius is much greater
than the correlation length, or equivalently stated, when
the temperature approaches T, . Deviations appear when
r, becomes less than about ten times the correlation
length. This is known both in molecular physics [24]
and in field theory [6, 8—10]. This finite-size effect needs
to be taken into account in rate calculations for the early
Universe, because it has been estimated that the argu-
ment of the exponential in Eq. (1) is on the order of —160
when the transition occurs [7], and a 10% change in the
free energy has a big effect when exponentiated.

In the following discussion we use the notation of [10].

The authors express the free energy in terms of a dimen-
sionless integral

drr —
~

—
~

+ —g —g + —g, (22)
1&dgl' (2 s 14
2 i,dr) 2 4

where g is a dimensionless field, r is a dimensionless coor-
dinate, and we shall not be concerned with the constant
of proportionality. The parameter ( is a function of the
temperature. It has the value 2 at T, and decreases to-
wards zero as the temperature decreases. The potential
has local minima at gs = 0 and at g~ = (3+g9 —4()/2.
The profile g(r) has been computed numerically for dif-
ferent values of ( and the integral evaluated to yield the
free energy; the results are presented graphically in Fig. 1
of [10]. The ratio AE(finite size)/AE(volume+surface)
can be read off of that figure. For g ) 1.45 an accurate
(better than 1%) parametrization of this ratio is

AE(finite size) = AE(volume+surface) x (g~/2)

(23)

Note that this correction factor extrapolates to unity at
( = 2.

The parameter ( still needs to be related to other phys-
ical quantities to be useful in our rate equations. This can
be done in one of two ways. One way is to take the scalar
condensate P as the independent field and to rescale it
and the radial coordinate to put 2(V'P)2 + Veer(P, T) in
the dimensionless form used in [10, thereby extracting (
(assuming the effective potential can be represented by a
fourth-order polynomial). The other way is to take the
local energy density e as the independent field, as done
in [11],and to rescale it and the radial coordinate to put
the effective coarse-grained free energy functional in the
dimensionless form. In [11] this free energy functional
was parametrized as zK(V'e)2 + f(e), where f(e) is a
fourth-order polynomial and K is a constant. The sec-
ond way is actually the more convenient one. After some
algebra, one can infer from the expressions given in [ll]
that

18'
(2+ X)2'

X=I+ —* —
I

—'
I

+1
44 ~4&)

where r, is given by the Young-Laplace equation (3).
We shall apply this correction factor to the free energy
[Eq. (4)] when computing the thermal nucleation rate.
We shall not be concerned with any modifications to the
preexponential factor due to finite-size effects.

IV. BUBBLE GROWTH VELOCITY

The asymptotic growth velocity of bubbles was consid-
ered in detail by Liu, McLerran, and Turok [10]. They
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used relativistic transport theory. Such a microscopic
calculation is necessary in order to compute the velocity
of the interface; energy and momentum conservation in
perfect fluid dynamics is not sufhcient.

We start from Eq. (111)of [10]. It is

9+ Q4' T ln(AT2/M2)

2

(dz

9~ y4

80NF (T,
~u= ap. (26)

Here A is an as yet undetermined constant, M is the
vector meson mass in the A phase, N~ ——48 is the num-
ber of left-handed fermion degrees of freedom, Ap is the
pressure difFerence between the two phases, P(z) gives
the variation in the Higgs field across the interface, and
u = pv = v/Ql —v2 with v the velocity. Since the con-
stant A is unknown we set the logarithm to one, as in
[10].

For temperatures below but very close to T, the Higgs
Beld follows the usual hyperbolic arctangent behavior as
given in Eq. (20). The integration is simple, and gives

where u is the local flow velocity. Therefore

+ +61SS (31)

For the purpose of illustration, consider a weakly in-
teracting system of massless scalar particles. Denote the
one-particle Wigner distribution by n„(x, t) Th. e inte-
gral

n(x, t) = G P
(2), P( ) (32)

gives the average number of particles at the location x at
time t. The flow velocity is given by the integral

1
u(x, t) =

n(x, t)
8 p van„(x, t),
27' 3

where v„= p/E„ is the single-particle velocity. The
space-space part of the energy-momentum tensor is given
by

The explicit form of the dissipative contribution is

q—(g;u~ +.B~u;) —(( —2/3rI)g . u6,~. , (30)

With the numerical values for P~, T„( as given in the
previous section we get

d'p
.p, v, n„(x, t) (34)

+=3.26 x 10
4

44@
C

(27)

Thus the growth velocity vanishes as the temperature
approaches T„as it should.

V'. V'ISCOSITY' OF
THE HIGH- TEMPERATURE PHASE

diss (0)
TPV —TPV (28)

where T„ is the energy-momentum tensor for the system(o) .
in local equilibrium,

pgpv + (p + e)v'plcv'(o)

In this section we intend to compute the shear viscosity
in the high-temperature S phase in the relaxation time
approximation. We shall only compute it to leading-log
order in the coupling constants. This is sufhcient for our
purposes, since a factor of 2 error in the shear viscosity
introduces a factor of 2 error in the exponential prefac-
tor in the nucleation rate, and this will have a negligible
influence on the numerical results which are dominated
by the exponential factor. In the S phase all particles
are massless to zeroth order. The bulk viscosity is very
small for a system of point particles with no internal ro-
tational degrees of freedom. The shear viscosity must,
on dimensional grounds, be of the form cT3, where c is a
number. The whole thrust of this section is to compute
c. The reader who only wants to know the answer can
turn to the last line of this section.

The shear viscosity (g) and bulk viscosity (() enter
the fluid equations through the dissipative part of the
energy-momentum tensor,

In the local rest frame, determined by u = 0, and in
local thermal equilibrium, the distribution function has
the form n~ = I/(e@~~+ +1) where the upper sign is for
ferrnions and the lower for bosons. For small departures
from equilibrium one can compute bn„= n„—n„&& n„(o) (o)

from the Boltzmann equation. In the relaxation time
approximation

Ot
—6'n„+ v„V'bn~ = bn„/r, — (35)

80
d (cos 0) (1 —cos e)

d cos8 (39)

where w is the collision time. Substituting the solution of
the Boltzmann equation into the expression for T,~ one
eventually derives [25]

d' 4

15 2vr 3 E2 (36)

Thus the calculation of viscosities has been reduced to
the calculation of collision times. We obtain the collision
times from the cross sections with the expression

d3pl
'(p) = n„v„io(p, p'), .

27r 3 (37)

where s = (p+ p')2 and v„~ = s/(2EE'). We assume
that the momentum dependence is weak so that we can
make the replacement r (p) = {~ (p)):—w . Finally,
we replace the averaged product by the product of the
averages, and use the fact that (v„~) = 1, to obtain

' = n(o(p, p')) (38)

In a calculation of viscosities the expression that should
be used for the cross section is actually the transport
cross section, given by
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This can be interpreted as follows. The factor (1 —cos 8)
gives a suppression of the contribution of forward scat-
tering to the coefBcient of viscosity. Physically this is a
result of the fact that, when calculating viscosity, the rel-
evant part of the dissipative energy-momentum tensor is
the part that gives the energy-momentum transferred in
a direction perpendicular to the forward scattering direc-
tion. The origin of this cutofF is the finite-temperature
screening of the long-ranged Coulomb force [26]. This is
especially important for the exchange of massless quanta.
In this case, the small angle limit of the two-particle scat-
tering cross section is dominated by the Coulomb diver-
gence

- »n- (0/2).
( do.

~ —4

d(cos 8) ) coniomb

This divergence is softened by the forward suppression
factor.

These equations are modified in a straightforward way
when the system contains internal degrees of freedom
and/or more than one particle species. The collision time
becomes

tl =) g, r, I, , (42)

where

1
Ii =—

15 (43)

Next we need to calculate the two-particle scattering
cross sections in the standard model. We consider the
electroweak sector first and introduce the following no-
tation. The SU(2) gauge fields are denoted A„where p
is the Lorentz index and the group index is denoted a.
The indices t, m, ... have values 1,2 and refer to the two
components of the complex Higgs doublet. The fields are
eigenstates of isospin and hypercharge (denoted Y). The
Lagrangian is invariant under SU(2) x U(l) i. transforma-
tions. It is given by

~ = ~gauge field + ~Higgs + ~fermions + ~Yukawa + ~gf

(44)

Each of these terms is described below.
The gauge field kinetic terms are given by

~gauge field = 4',v+a 4+@v+ (45)

The Higgs field part of the Lagrangian is

&,
' = ).g~n~(~*~)

2

where the indices i, j label the particle species and gz
is the number of internal degrees of freedom of the jth
species. Similarly, the expression for the viscosity gener-
alizes to

The covariant derivative is

D„=0„+ig—A +ig' —B„, (47)

where the matrices rn are the SU(2) Pauli matrices. The
complex Higgs doublet

(ps+ i441
v2 (4i+i4. ) (48)

+t/~l. ip„B„+i YB„—+ i A~to ~

—gl. .

(49)

There are three generations of fermions which are are
grouped into left-banded SU(2) doublets and right-
handed SU(2) singlets. For example,

1 1 1
4R = (1+'Y )e (1+& )& (1+ 5)d

2 2 2

1 v, l 1 (ul
41. = 2(

—Ws); I, 2(1 —Vs) I d I

S colors

The primed quark states are electroweak eigenstates
which are constructed as follows. We define a vec-
tor of the mass eigenstates of the charge —1/3 quarks:
x = (d, s, t). The electroweak eigenstates are denoted 2."

and are given by x' = Ux where U is the unitary 3@3
Kobayashi-Maskawa matrix (the specific form of U is not
needed for this problem).

We work in the renormalizable Rq gauge where the
gauge-fixing part of the Lagrangian is

1 („1
&,r = ——

I
&"A —-(cia

1 (——
I

~"B&—-(e'~X' I,2(( " 2 ) (50)

and where yo = P2, Ps, P4. We choose the Landau value
of the gauge-fixing parameter ( —+ 0. The cross terms
above combine with the cross terms from (D„P)i'(D"P)
to produce total divergences which integrate to zero.

When calculating the two-body scattering cross sec-
tions, we will work to lowest order in perturbation the-
ory, and calculate only the forward (t-channel) contri-
bution since it is this term that dominates the trans-
port cross section. We denote individual contributions
to these cross sections by al& . The subscript indicates
initial and final states, and the superscript indicates the
field that mediates the scattering process. We represent
the fermion fields by Q, the SU(2) gauge boson fields by

has an electromagnetically neutral lower component and
an upper component with electromagnetic charge +l.
These charge assignments give an eigenstate of hyper-
charge.

The fermion part of the Lagrangian is given by

. „( .g'
&rermions = @Rt'P

I Op, + i YBp,
~ gR



5310 MARGARET E. CARRINCxTON AND JOSEPH I. KAPUSTA 47

A, the U(1) gauge boson fields by B, and the Higgs fields

We need not explicitly compute all possible cross sec-
tions because many of them are not independent but can
be determined by syrnrnetries. The cross sections en-
closed by square brackets can be obtained from the pre-
ceding cross sections by symmetry:

A B A B A B

(A) (B) (A) (B) (A) (B) (A) {B)
4V 4'4 4'~4 4'~4' 4 ~Q

(A) (B) (A) {B) (A) (B)
44'

(A) (A)

C~~~l ——~(er') /4,

C~~ ——37ra /16,(A)

CP~
——Y Y' a(cr') /16,

C~~ ——3~n /8,(A)

C~,' = Y' (~')'/8,

(55)

We obtain the following expressions for the coefficients:

C~~ = 3~a'/4,

(A) (A)
QA gA

(A)
Ogg

{A)

d(cos 8) (1 —cos 8)
do @g

d cos8

Using standard techniques, the t-channel contribution is

(—u/2t )C&& where C&& is a constant equal to 3~n2/16
with o. = gz/4~. Using the Mandelstam variables s =
4Ez, u = —2E2(1+cos 8), t = —2E2(1 cos 8—), and using
the fact that the integral is dominated by the Coulomb
divergence at small 8, we have

(A)
{A) 2Cyq d(cos 8)

(1 —cos 8)
(52)

The angular integral still has a divergence at 6I = 0, al-
though it has been softened by the nature of the transport
cross section. A small angle cutofF is imposed on the in-
tegral: em;„= o. . The origin of this cutofI' is that the
long-ranged Coulomb force gets Debye-screened at finite
temperature. This screening physics has been discussed
in the field theory context in [25]. Finally, we use (1/s) =
(1/2) (1/E), (1/E) = 1/(2.2T), and n = 3Tz((3)/(4n2)
(where ( is the Riemann ( function) for fermions. This
gives

3T'q(3) ( 1 )'9~~',
4~' (2.2T y 16

Note that, at the very least, the absolute magnitude of
the argument of the logarithm cannot be precisely deter-
mined using this simple calculational approach.

In general the t-channel contribution to each cross sec-
tion has the same form,

{~)80 Ig (~) 5
d(cos 8) 242

(54)

(A)
AA'

Consider, for example, the cross section for quark-
quark scattering via the exchange of an SU(2) boson:

CPA = 27cA(A}

(A)
CgA 7l A

C~~ ——16+a /3,

where cr = g2/4vr, n' = g' /4vr, and g = 0.637, g' = 0.344.
Note that the cross sections that are mediated by the
U(1) gauge boson and have a fermion in the final state
depend on the square of the fermion hypercharge. For
notational convenience we make the definitions C&&

(B)

Y Y C~ and C~~
——Y C@@ .2 2 (B) (B) 2 (B)

Several comments about the numerical factors involved
in these expressions are in order. We work in the high-
temperature symmetric phase and in the limit of small
Higgs coupling. In this limit, all of the fields are mass-
less. In particular, the fermion fields are massless and
so there are only two independent Dirac spinors. There-
fore, we work with a Lagrangian that contains only left-
handed fermions and use the usual normalization factors
for massless spinors.

Note that when the scattering process involves iden-
tical particles the contribution from the u channel is
nonzero and equal to the t-channel contribution. In the
limit L9

—+ vr the u channel gives the backward scattering
peak in the two-particle cross section. When calculating
viscosity, the u channel contributes to the transport cross
section a term of the form

d(cos 8) (1 + cos 8)
80

d cos8
'

The factor (1 + cos8) gives a suppression of the con-
tribution of the backward scattering divergence to the
viscosity. As was discussed earlier, this factor is a re-
sult of the fact that viscosity involves the transfer of
energy-momentum perpendicular to the scattering direc-
tion. For identical particles, therefore, the t-channel re-
sult should be multiplied by a factor of 2. Also, the terms
which have antiparticles on external lines (indicated in
the square brackets earlier) can be included by multiply-
ing the above expressions by the appropriate numerical
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factors.
Finally, we note that there should be an extra factor

of 2 in the expressions for der/d(cos8) when the scatter-
ing involves identical particles because scattering through
angles of 8 and ~ —8 is indistinguishable. Similarly, how-
ever, in the expression for the collision time there should
be a factor of 1/2 when the cross section involves identi-
cal particles, to avoid double counting. These two factors
cancel each other and we omit them both in our inter-
mediate results for notational simplicity.

These results for the cross sections allow us to obtain
expressions for the collision times. We use the following
results. For fermions, the number density is given by

n = nF = 3T ((3)/(4'), and (1/E) = 1/(2.2T); for
bosons, n —= nB = Ts((3)/vr and (1/E) = 1/(1.5T). The
number of internal degrees of freedom are obtained as
follows. For each generation, there is one lepton doublet
and one quark doublet which carries three colors, and
each fermion has two spin states. This gives gy = (2+
3 x 2) x 3 x 2 = 48 for three generations. There are
(N2 —1) SU(N) gauge bosons, each of which has two
spin states, which gives g~ = 2 x 3 = 6. The two isospin
states of the Higgs doublet give g4, = 2. Finally, we use

Y'2 = 8/3.
The expressions for the inverse collision times take the

forms

31n( /ct) B (A) nB (A) nF
1 5T 1 5T ~& 4'& 1 5T (57)

3 ln(1/~) &B
3 C(A) &B C(A) &F

2 C(A)
15T 15T ~~ 15T @ 22T

+ 3g~C&& + 2 x 2 x 8/3C&&
3 ln(l/a. ') nB (B) nF

22T ' (58)

3 ln(1/n) nB
2 (A) nB (A) nF (w)
2gyCyy + gACAy + (2' + 2Nc)Cqq

2.2T 1.5T ~ 4'~ 2.2T ~ 3
(59)

In the last expression, N, is the number of colors if
the fermion is a quark and one if the fermion is a lep-
ton. It is straightforward to include the contributions
of the strong interactions. Using the notation defined in
Eq. (54) where q and g indicate quark and gluon degrees
of freedom, respectively, the coeKcients for the t-channel
contributions to the quark and gluon scattering matrix
elements are [27]

Cqq
——9vr o.2/2,

~,
' = ~~

' and ~q
' ——q.

~
' + (qq )

The viscosities are obtained from Eqs. (42) and (43).
Defining

~4 &» 74
dx 1+e* ( 1+e*) 30 '

we have
C- = Cqq = Cqq =8&~'./9 (60)

2C = C- = 2vrcx, .

We consider N~ ——6 Havors and thus the number- of quark
degrees of freedom is gq = 2(spin) x 3(color) x 6(flavor)
= 36. The number of gluon degrees of freedom is gg= 2(spin) x (N2 —1) = 16, with N, = 3. The inverse
collision times for gluons, and for quarks due to gluon
interactions, are given by

3 ln(1/n, ) nB nF
15T Og&gg+

2 2T2gq&qg2 C (61)

( ( ) ~ 3 ln(1/n, ) ( nB
2.2T ~q 1.5T '

+ 6(2NF + 1)Cqq ~.~~ (62)

We define inverse collision times for leptons and quarks,

+(2gy 7 y + gA 7 A + gg 'rg )IB (63)

We use the standard values for the electroweak couplings,
n and n'. For the strong coupling we estimate [28]

6'
(llN, —2NF) ln(10.6T/Tc)~D)

' (64)

where T@CD ——150 MeV, and evaluate at T = 97.27 GeV.
This gives o., = 0.102. The final result is g = 82.5T .

VI. EVOLUTION OF THE UNIVERSE

In this section we study the evolution of the Universe as
it passes through the electroweak phase transition. This
must be done numerically because the evolution is de-
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scribed by coupled integral and differential equations.
To get a erst impression as to how much the Universe

must supercool before nucleation begins, we plot the nu-
cleation time in Fig. 1 as a function of temperature. Nu-
cleation time is defined by

4vrr3
&nucleation 3

* I . (65)
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This is the characteristic time scale to make the transi-
tion in the absence of bubble growth; that is, the tran-
sition would complete only because every point in space
had been nucleated. The solid curve represents our best
estimate of the nucleation rate, as discussed in previ-
ous sections. The dashed curve shows what happens
when the finite-size correction to the critical bubbles is
neglected; see Eq. (23). Although this curve is labeled
sharp surface, this is not an entirely correct designation.
The reason is that it does make use of the surface tension
o.

, and this quantity is computed with a smooth surface
of Bnite thickness, albeit planar. The dot-dashed curve
shows what happens when the preexponential factor in
the rate is taken to be T, rather than the expression
given by Eq. (5). Both approximations differ from the
best estimate of the nucleation time by many orders of
magnitude. On the other hand, one may say that use
of the more sophisticated estimates for the bubble free
energy and the preexponential factor simply results in a

delay of the onset of the phase transition.
To relate the expansion scale of the Universe to the

local time we recall Eq. (11). Defining At = t —t, and
AR = R—1, and using the equation of state from Sec. III,
we obtain

At = 4.97 x 10 AR sec.

Comparison with Fig. 1 suggests that we will see super-
cooling of about 0.25% in the temperature.

Figure 2 shows the temperature as a function of the
scale factor. The solid curve represents the Maxwell con-
struction for phase coexistence at T, and generates no
entropy. The dashed curve is a result of solving numeri-
cally the coupled equations discussed earlier in the paper.
The difFerence between these two curves is remarkable.
Nucleation does not even begin until long after an ideal-
ized adiabatic Maxwell phase transition would have com-
pleted. However, once nucleation begins, the transition
proceeds and completes in a much shorter time interval.
For practical purposes, nucleation begins at the bottom
of the cooling line. Thereafter, nucleation and growth of
bubbles release latent heat, which causes the temperature
to rise. Once the transition is completed, the Universe
again cools. A very small amount of entropy is generated
during the transition because the Universe is out of equi-
librium. The amount generated can be inferred by com-
paring T3 for the dashed curve to T for the solid curve.
An earlier treatment of the electroweak phase transition
gave a trajectory of temperature vs time very similar in
shape to this one; see Fig. 10(a) of Ref. [13j.

Figure 3 shows the fraction of space which has been
converted from the high-temperature symmetric S phase
to the low-temperature asymmetric A phase as a function
of scale factor. The solid curve is the Maxwell idealiza-

0.9970 0.9975 0.9980 0.9985 0.9990

C

FIG. 1. The nucleation time, as defined in the text, as a
function of temperature. The solid curve represents our best
estimate. The dashed curve approximates the bubble free
energy as a sum of volume plus surface terms, and neglects
the finite-size correction. The dot-dashed curve approximates
the preexponential factor in the rate by T, .

0.999 1 1.001
scale factor R

1.002

FIG. 2. Temperature vs scale factor. The solid curve rep-
resents the adiabatic Maxwell construction for phase coexis-
tence at T, . The dashed curve represents the results of nu-

merically integrating the dynamical equations of motion.
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tion and the dashed curve is the result of our dynamical
equations. It is another way of showing that the finite
transition rate delays the onset of the transition, but once
it begins it completes in a very short time.

Figure 4 shows the average bubble density

as a function of time. Bubble nucleation is not noticeable
until about 6.5 x 10 sec after the Universe has cooled

O

FIG. 3. The A-phase fraction f vs scale factor. The solid
curve represents the adiabatic Maxwell construction for phase
coexistence at T, . The dashed curve represents the results of
numerically integrating the dynamical equations of motion.

to T,. At about 6.87 x 10 sec, bubble nucleation has
already turned off because of reheating to higher tem-
peratures. The transition is not completed until about
7.05 x 10 sec, as indicated by the termination point
on the curve.

Figure 5 shows the fraction of space f(t) which has
made the conversion to the A phase. One could say, from
the point of view of this quantity, that the transition re-
quires only about 3 x 10 is sec from start to completion.
This is much shorter than the characteristic expansion
time scale of the Universe, which is dt/dR = 5 x 10
sec.

Figure 6 shows the average bubble radius, defined by

n (68)

as a function of the A-phase fraction f. When nucle-
ation first turns on, the radius of a critical-size bubble
is very small. As the transition proceeds, the average
radius increases. At first it is because reheating brings
the Universe closer to the critical temperature; as the
temperature goes up, so does the size of newly nucleated
bubbles. Eventually nucleation turns oK, and bubbles
increase in size only because of growth.

Figure 7 shows the average bubble radius as a function
of time. There is a linear relation between the average ra-
dius and time, indicating constant radial growth velocity,
aRer about 6.87 x 10 sec. This is the time when nucle-
ation has just turned off. At this time only about 10'%%uo of
the Universe has been converted to the new phase. The
remaining 90%%uo is converted because of bubble growth.
From the figure it may be seen that this growth velocity
is about 0.82 times the speed of light.

A useful quantity for baryogenesis is the value of the
Higgs condensate inside the bubble. For the actual range
of temperatures seen here during the transition, we know
that P~/T, —0.54 —0.58. At zero temperature the con-
densate has the known value P~ = 246 GeV = 2.53 T, .
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FIG. 4. The density of A-phase bubbles as a function of
time.

FIG. 5. The fraction of space which has been converted
to the A phase as a function of time.



S314 MARGARET E. CARRINGTON AND JOSEPH I. KAPUSTA

M
CO

~ ~

bg) ~
(D

Q

0.00j. 0.01 O.i
A—phase fraction

FIG. 6. The average bubble radius as a function of the
A-phase fraction.
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FIG. 7. The average bubble radius as a function of time.

A larger value than that seen during the transition would
have been more favorable for baryogenesis. However, this
is intimately tied to the very small latent heat in the stan-
dard model. Extended models of the electroweak inter-
actions could have larger latent heats and larger values
of the Higgs condensate inside the bubbles.

We must add a cautionary note. When the fraction of
space occupied by bubbles exceeds about 50%%uo, interac-
tions among the bubbles probably cannot be neglected.
It is unlikely, though, that further improvements in the

dynamics would qualitatively change the current picture
of the transition. Indeed, crude estimates of the efFects
of bubble fusion on the dynamics of the @CD transition
indicate that the transition completes only a little faster,
and that the average bubble size is greater [20j. Purther
developments on this topic would be welcome.

VII. CONCLU SIGNS

We have analyzed in detail the dynamics of the elec-
troweak phase transition during the early Universe. We
used the ring-improved effective potential for the stan-
dard model. Prom this potential we extracted the equa-
tion of state, the surface free energy, and the correla-
tion lengths. We calculated the viscosity in the high-
temperature S phase, which is an important factor in the
nucleation rate, and which may be useful in other con-
texts as well. We used a recently computed expression
for the preexponential factor in the nucleation rate, and
took into account the finite-size eKect for critical bub-
bles. We used a recent expression for the growth velocity
of bubbles. All of these ingredients were joined together
with a rate equation which allows for completion of the
phase transition. Coupling this rate equation with Ein-
stein's equations allowed us to solve for the dynamical
evolution of the Universe through the electroweak phase
transition.

We computed the temperature, fraction of space con-
verted, bubble density, and average bubble radius as
functions of time. The temporal evolution of the Uni-
verse does not resemble an adiabatic Maxwell construc-
tion of coexisting phases. This is remarkable because
the characteristic expansion time scale of the Universe is
10 ~~ sec, very short compared to the characteristic time
scale 10 6 sec of electroweak theory. The explanation is
that the electroweak phase transition, at least as studied
here, is first order but very weak. The pressure difFerence
between the two phases near T, is very small. This leads
to times and structures which are mesoscopic during the
phase transition.

The Universe is out of equilibrium during the phase
transition. This is one of the necessary ingredients for
baryogenesis. Baryon number changing processes are ex-
pected to take place in the bubble surface; therefore, our
results should be useful for such studies. They can also
be easily repeated for extensions of the standard model.

Improvements to many aspects of our study may be
considered, especially for the late stage of the phase tran-
sition when bubbles begin to overlap. However, it is
becoming clear that a quantitative analysis of the elec-
troweak phase transition during the early Universe can be
put on firm footing, and this will help us to contemplate
our origins via baryogenesis.
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