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Stochastic analysis of the initial condition constraints on chaotic inflation
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We use stochastic dynamics to examine the probability of successful inflation from various initial con-
ditions at the Planck. epoch. This approach allows us to approximate the effect of strong quantum Auc-

tuations at the earliest epoch of inflation, including fluctuations in the local expansion rate. The well-
known classical attractors along the slow-roll trajectory exist even when large quantum fluctuations in
the early Planck epoch are included. However, our results suggest that a significant fraction of the ini-
tial condition phase space which leads to a successful inAationary stage in the classical analysis actually
fails to inAate.

PACS number(s): 98.80.Cq, 98.80.Hw

I. INTRODUCTION

The chaotic inflation model [1] (with various models of
scalar-field potentials) is one of the simplest models that
successfully solves the well-known cosmological problems
[2]. Although this model may be realized in various
theories of physics of the early universe [3], only certain
initial conditions lead to inflation [4]. The issue of
whether initial conditions, which lead to inAation, are
likely, i.e., whether they occupy a reasonably large
volume in phase space, is an important challenge to
efforts to construct a self-consistent inAation model. The
new inAation model fails to provide a self-consistent solu-
tion to the cosmological problems [1,5]. In addition, the
phase-space constraint on initial conditions in this model
has been shown to be so severe that inflation has a van-
ishingly small probability [6]. It is naturally of great in-
terest to examine similar constraints on the chaotic
inflation model.

Previous studies on the initial condition problem have
been carried out almost entirely in the classical limit [6],
i.e., without considering quantum fluctuations. These
effects will be especially important close to the Planck
epoch when the energy density is —mg. (Throughout
this paper we use units such that G =mt, , c =A'=1). In
these studies, the initial kinetic term, P /2, associated
with the inflation-driving scalar field (hereafter the
inflaton field) P has been shown to have a negligible eff'ect
on the probability of successful inAation for a wide range
of initial conditions. However, initial spatial inhomo-
geneities may affect the probability of successful inAation
[7]. In any case, a proper investigation of initial condi-
tion constraints must include quantum Auctuations, espe-
cially since they will initially dominate the inAaton field
dynamics. Here we reexamine the initial condition con-
straints on chaotic inAation including the effects of quan-
tum Auctuations.

For our purposes, we use stochastic dynamics as a

first-order, semiclassical approximation to the proper
quantum-mechanical scalar-field dynamics [8]. This
treatment of quantum Auctuations is only approximate,
but fruitful, especially since an exact quantum mechani-
cal solution technique for the Klein-Gordon equation is
not available. For simplicity, we do not consider the
eff'ects of spatial inhomogeneities [7]. Linde has suggest-
ed that it is reasonable to assume that the "tension" ener-
gy associated with spatial inhomogeneities will rapidly
redshift away as a space-time emerges from the pre-
Planckian stage and starts its expansion [3]. However,
we note that classical studies of the effects of an initial
spatial inhomogeneity show that there is a significant
chance that in any particular realization such inhomo-
geneities may prevent successful inAation. We will study
a set of homogeneous universes with varying cosmic ki-
netic energies, including the effects of quantum Auctua-
tions.

In stochastic dynamics, the scalar field is split into two
components [9], a long-wavelength (or coarse-grained)
one and a short-wavelength (or high-frequency) one, with
respect to the physical horizon —1/H, where H is the
Hubble expansion parameter. H is assumed to vary slow-
ly during inAation. By decomposing the scalar field in
this manner, quantum Auctuations appear in the short-
wavelength part [9]. Since we neglect spatial correlations
in the Auctuations, the equation of motion for the scalar
field becomes a classical stochastic differential equation
(in the sense that the random noise term is similar to that
encountered in the conventional stochastic theory [10]).
In this model, the scalar-field defined in a particular
comoving volume of the universe evolves independently.
Statistical correlations among different volumes appear
only through spatially correlated random (quantum)
noise. However, the evolution of the coarse-grained com-
ponent is not deterministic but stochastic due to the
inAuence of the stochastic noise. The conventional classi-
cal homogeneous background of the scalar field [5] is ob-
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tained only after taking the average over the ensemble of
independent universes. We can interpret the evolution of
the scalar field by taking the average and comparing it to
the results of classical deterministic evolution.

By considering the initial condition problem in terms
of stochastic dynamics, we aim at obtaining a better un-
derstanding of chaotic inAation with quantum Auctua-
tions taken into account. We will show that the stochas-
tic constraints differ substantially from the classical ones
and interpret this as a manifestation of quantum effects.
We also find that different scalar-field potentials may
show somewhat different behavior, suggesting that a
purely classical treatment of inAaton dynamics will miss
some important quantum-mechanical ingredients.

II. CHAOTIC INFLATION

Chaotic inflation [1,3] is an attempt to invent a simple
physical model of the early universe that is free from the
various inconsistencies encountered in the previous
inflationary models [1—3]. The basic idea of the model is
that the early evolution of the universe is driven by a sca-
lar field (the inflaton field), which emerges at the Planck
epoch with a strongly nonequilibrium distribution, i.e.,
with an amplitude much greater than mz. Once a patch
of spacetime foam emerges with an inAaton potential en-
ergy density comparable to the kinetic energy P /2 and
the tension (VP), it is assumed that the universe evolves
until the potential of the field becomes dominant and the
universe begins to inAate. In this stage the field evolves
very slowly, while the acceleration of the field becomes
small [11]. Although various physical models have been
proposed as bases for chaotic inflation [2,3], the model is
poorly constrained by fundamental physical considera-
tions [4].

In any case, getting to an inAationary stage in the
chaotic inAation model is not always possible. Cosmic
tension (spatial gradient terms in the energy density) can
prevent inflation [7]. (A similar problem can occur in the
new inflation model [12]). The eS'ect of kinetic energy

/2 is also nontrivial, although the region in the initial
condition phase space, which fails to inAate, is rather nar-
row [4]. In the new inflationary model, the e(feet of ki-
netic energy is very serious and only a small fraction of
initial conditions leads to inflation [6]. Since the chaotic
inAation model invokes "chaotic" initial conditions, i.e.,
the most general set possible, followed by inAation in
some fraction of the independent volumes [1], it is quite
important to study the probability of realization of suc-
cessful inflation from the earliest epoch of inflation (i.e. ,
near the Planck epoch) to make the model self consistent.
Originally, Linde [1,3] suggested, based on a crude
equipartition argument, that the universe emerges from
the preinAationary era with —

—,
' chance for the domina-

tion of the potential of the scalar field over kinetic and
tension energy. The purpose of the present paper is to in-
clude the effects of quantum Auctuations and compare
the results with those of the previous classical analyses
[4].

In our analysis, we consider a homogeneous and isotro-
pic universe, which is described by the Robertson-Walker

line element [13]

ds = d—t +a ( t) dx =g„dx "dx (2.1)

The Lagrangian density associated with the inAaton field

P is

L = —,'a„ya~y —V(y)

and the stress-energy tensor is

T„= "d„P—B,P Lg„—, .

(2.2)

(2.3)

H = aa(t)
a (t) dt

1 BP 1 (V'P) k
3m~~ 2 dt 2 a(t)~ a(t)~

the Raychaudhuri equation

(2.4)

BH
at

8~
3mp

2
2

V(4, )
ay +(Vy)
dt a(t)~

(2.5)

and the Klein-Gordon equation

a'y(x, t) ay(x, t) av(y) V'y
Bt' ~)t ~)P a(t)'

We will assume a flat universe [k =0 in Eq. (2.4)] hereaf-
ter. Also, we will denote the time derivative by an over-
dot whenever convenient.

In the following, for simplicity, we will start the classi-
cal evolution of the scalar field P from the epoch at which
the space-time foam emerges with the probability for the
potential energy distributed evenly in the range,0( Vo (mp [14]:

40 V
m~

P( Vo) =0, otherwise .

(2.7a)

(2.7b)

This is meant only as a toy model for the initial condi-
tions of chaotic inAation. We also assume that the total
initial energy density is equal to the critical energy densi-
ty, m~. This is meant as a definition of the emergence of
a volume from pre-Planckian conditions. For the mas-
sive field case with the potential,

V(P)= —,'m P (2.8a)

the probability distribution for the initial value of the sca-
lar field becomes

m
'P(ko) =, 4o

mp4
(2.8b)

We will assume that any radiation energy has already
been redshifted away. By considering a homogeneous
scalar-field cosmology, we have restricted our analysis to
the region of phase space in which the tension is already
small. The resultant dynamics are described by the
Friedmann equation
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for the part of phase space where Po) 0 and Po) 0. For
the quartic potential,

tial, as long as it is continuous. The evolution of the
inflaton field is given by

V(P) =—,'A, P

1
t (4o)=—,4o4 m

(2.9a)

(2.9b)

Plp 2&3m.
P(t) =go+ —sgn(uo)ln 1+ (t to—) ~uo ~2&3 Alp

(3.8a)

in the same region of phase space.

III. CLASSICAL CONSTRAINTS
ON CHAOTIC INITIAL CONDITIONS

=V (3.1)

In the classical analysis (i.e., without allowing for
quantum fluctuations), the homogeneous mutually in-
dependent evolution equations in a fiat space-time (parti-
cle generation due to scalar field acceleration will be a
small effect and we neglect it here) become [Eqs. (2.4),
(2.5), and (2.6)]

or
mp

i'(t) =go+ sgn(vo)ln(uo/v )
2 3rr

(3.8b)

u(t)=v, exp
&24~V

t —ti
Alp

(3.9a)

mp
p(t)=p, + (u, —u),

&24~V
(3.9b)

Once the field reaches the part of phase space where the
potential dominates over the kinetic energy,
V(P) ))u /2, the solution is approximately

dv
V = —3HV—

d

( —'v +V)
3fPz p

(3.2)

(3.3)

where the subscript 1 denotes the point at which the po-
tential starts to dominate over the kinetic energy. We see
that in this limit the trajectory continues to approach the
slow-roll curve. Once the field reaches the slow-roll stage
its evolution is given by

1 d V(P)
3H dP

(3.4)

which are integrated numerically [4,6].
We can understand the classical behavior of the field

qualitatively using a simple analytic solution [6]. If the
inAaton field starts its evolution with an initial condition
in which the potential energy dominates, V(P)))v /2,
the field will evolve rapidly towards the slow-roll solution

u(t) =2=const,

P(t)=P, +u, (t t, ), —
(3.10a)

(3.10b)

where the subscript 2 denotes the point at which the
slow-roll condition [11]is first met. In order for inflation
to successfully solve the cosmological problems [2], we
require that the number of e foldings )60, which implies
that

(3.5)

and the evolution equation becomes

due to the large friction provided by cosmic expansion
[11]. Therefore, the initial conditions which need to be
examined are those where the kinetic-energy dominates.
In this case, V(go) «vo/2, the expansion factor is ap-
proximately

2&rr
&3m'

Vo tPl p

1+(2V3m /mz )( t —to ) ~ vo ~ +24~ V( pi )

where P, is large enough so that

N= f Hdt )60—

mp I

Po+ sgn( uo )ln 1+ (t i
—to )

~ vo ~

2 3' mp

(3.1 1)

(3.12)

dt mp

The solution is

(3.6)

Vo

1+(2&3m. /m p )(t —to )
~ uo ~

(3.7)

where uo=v(t=to). In this limit the magnitude of the
roll-down speed is rnonotonically decreasing from the
start. That is, the solution approaches v =0 asyrnptoti-
cally until V(if~) —uo/2, and it becomes invalid. This is
the well-known classical attractor solution in chaotic
inAation, which has been previously derived for the mas-
sive quadratic potential case [15]. We note that the ten-
dency of the field to evolve toward the attractor is in-
dependent of the specific form of the scalar-field poten-

and P, is the value of the inflaton field near the end of the
slow roll (or beginning of the oscillatory stage) [11].
Equation (3.11) is an initial condition constraint for suc-
cessful inflation. For the new infiation model with a
Coleman-Weinberg —type potential, the allowed initial
conditions lie in a very narrow range in phase space [6],
whereas the chaotic quadratic potential leads to success-
ful inflation from a wide range of initial conditions [4].
We expect a qualitatively similar conclusion for the
chaotic quartic potential, since the two chaotic potentials
have essentially the same solution topology in the phase
space (see below). The classical behavior described by
these asymptotic solutions will now be compared with
numerical results and later with the results of our sto-
chastic calculation. In the classical case this approximate
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solution turns out to be a reasonable guide to the time
evolution of the inAaton field.

Before proceeding to the stochastic calculation we will
present some numerical results to support our assertion
that the approximate analytic argument given above is a
reasonable guide to the exact classical evolution of the
field. First, we consider the quartic potential,
V(P) = A,P /4. We define the dimensionless variables

ygl /4

&Zmp
' (3.13a)

U

&2m'
'

7=mpt )

(3.13b)

(3.13c)

Ix & /4 (3.14a)

so that the evolution equations [Eqs. (3.1)—(3.3)] become FIG. 2. The classical deterministic trajectories for a realistic
self-coupling constant X=10 ' . In this case, the attractor
(slow roll) is apparently very close to the central horizontal line.

y = &24vr(y—2+x 4)1/2y 2P
d7-

(3.14b)

P= —&A, /6m. mph . (3.15)

I I
t

I I I I I I
)

I

Initial conditions are chosen from the curve,

yo =++1 —xo [Eq. (2.8)]. We show the results of nu-
merical integration in Figs. 1 and 2. In Fig. 1, we have
chosen a very large self-coupling constant for the purpose
of illustration, and in Fig. 2, a realistic (in the sense of
producing acceptably small density fluctuations when
quantum effects are included) self-coupling constant is
used. The classical trajectories (dotted lines) have an ob-
vious symmetry in the phase space. For almost all initial
conditions, the trajectories approach the slow-roll curve

We see that successful inflation is easily achieved [4]
starting with Po~ ) P, ~. In the quartic potential case

(3.16a)

and

P, =mp /&2', (3.16b)

as determined by the slow-roll self-consistency condition
[11],

9H
dP

(3.16c)

Although Fig. 2 is not as detailed as Fig. 1 (due to the
very small self-coupling constant), the topology of the
solution is clearly seen to be independent of the self-
coupling constant and the probability of successful
inflation is quite large [6].

For the quadratic potential, V(P)=m P /2, we have
the dimensionless evolution equations

8x
8T

=my,

y = —&24vr(y'+x')'"y — x,
C$7 Alp

(3.17a)

(3.17b)

where

Pl

&2m ' (3.17c)

FICx. 1. The classical deterministic trajectories (dotted lines)
from 12 diff'erent initial conditions for the quartic potential
model with an unrealistically large self-coupling constant, X=1
for the purpose of illustration. Two solid vertical lines corre-
spond to the slow-roll boundaries, ~x

~
(0.28K, '/ . The two solid

curves, y ~
=x, are boundaries defined by the equal potential-

kinetic energies, inside of which the potential energy dominates.
The initial conditions are taken on the curve yo+xo —1. The
slow-roll solution, y = —A,

' x/&6m. , is clearly shown as an at-
tractor in the phase space for all initial condition.

U

&2m''
(3.17d)

Initial conditions now correspond to points on the curve

yo —++1 xo (3.18)

The results of numerical integration are similar to those
for the quartic potential. We summarize the result in
Fig. 3. Figure 3 is for a large self-coupling constant (i.e.,
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quite different and that the stochastic solution of the
quartic potential is closer to its classical solution than the
quadratic potential (see below).

IV. STOCHASTIC INFLATION

-1 — 8 -.6 —.4 -.'7 0

FIG. 3. The classical deterministic trajectories (dotted lines}
from 12 different initial conditions for the quadratic potential
model with an unrealistically large mass, m =1.0t71p for the
purpose of illustration. Two solid vertical lines correspond to
the slow-roll boundaries, ~x ~

(0.43(m/m~). The solid lines

~y ~

=x divide the phase space into the potential-dominated and
the kinetic-energy-dominated regions. The initial conditions
have been taken from the curve yo+xo = 1. The slow-roll solu-
tion y = —sign(x }(m /m& }/&24~ acts as an attractor for all ini-
tial conditions. Some of the trajectories enter the oscillation re-
gime without the inAationary stage.

for illustrative purposes only). We see that the solutions
for the quadratic and quartic potentials are almost identi-
cal (i.e., show the same solution topology) in the classical
analysis. Therefore, any initial condition with

Idol & y, =u'(30/~)m, '+y', (3.19)

where P, =m /&12' (from the slow-roll condition,
9H &)d V(P)/dP [11]), will result in successful
inflation, in good agreement with the approximate result
given in Eq. (3.11).

We conclude that successful inflation is generally ex-
pected in chaotic models, and that the exact shape of the
potential has very little effect on the topology of the field
trajectories. It remains to be seen whether or not this re-
sult is still true when the effects of quantum fluctuations
are included. In the remainder of this paper we wi11 show
that the stochastic solutions for the two potentials are

In this section, we derive stochastic equations which
are generally valid, i.e., not only in the slow-roll limit [8]
but when P is important [16]. In most stochastic analy-
ses, the scalar field is considered only in the slow-roll lim-
it, which results in the Langevin equation and the corre-
sponding Fokker-Planck equation. An exact solution for
the quartic potential in this limit was derived by Yi et al.
[8]. The solution was applied to a very late stage of
chaotic inflation in order to analyze the effects of non-
linear stochasticity on generating non-Gaussian
inflationary fluctuations. However, in the situations con-
sidered here the initial conditions may not be adequately
described by the slow-roll equations [8]. In this case, we
will show that the equations of stochastic evolution be-
come similar to Kramers equation from classical stochas-
tic theory [10]. The evolution of the Kramers equation
can be very different from the Langevin equation, since
the former contains the effect of the acceleration of the
stochastic system [10]. The stochastic approach is a
semiclassical method used to understand the dynamics of
a scalar field described by the Klein-Gordon equation,
Eq. (2.6). The idea is to take into account the effects of
quantum fluctuations through a statistical interpretation
of the quantum system.

The derivation of stochastic equations for scalar field
dynamics is based on splitting the scalar field into long
(or coarse-grained) and short-wavelength parts [9],

P(x, t)—:P, (x, t)+P, (x, t),
P( tx) = v, ( tx)+ (utx),

(4.1)

(4.2)

where the subscripts c and s denote the coarse-grained
(long-wavelength) part and the short-wavelength part, re-
spectively. Eventually we will want to interpret P, and u,
as classical random variables under the influence of sto-
chastic noise (quantum fiuctuations represented by the
short-wavelength modes). We will consider the stochas-
tic average of the long-wavelength (coarse-grained) mode
as the classical homogeneous background [5]. We now
take a specific splitting criterion [9] and define the short
components by

P (x, t)= f B(k —ea(t)H)[ &a/ (kt)e px(ik x) +a&P. (kt)exp( —ik x)],d k
(2~)

v, (x, t)= f B(k ea(t)H)[akim„(t)exp—(ik x)+aqP„*(t)exp( —Ek.x)](2') ~

and the long components by

P, ( t)x= f B(ea(t)H —k)[akPk(t)exp(ik x)+akPf(t)exp( —ik x)],d k
(2~)'"

d k
u, (x, t)= f B(ea(t)H —k)[akim&(t)exp(ik x)+akPz(t)exp( —ik x)](2'�)

(4.3)

(4.4)

(4.5)

(4.6)
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where k = ~k~, az and ai, are the usual annihilation and the creation operators, respectively and e denotes the complex
conjugate of the mode function. The sharp cutoff (or window) function for the splitting is chosen for convenience and is
not expected to affect the final results [8,9]. However, it does lead to the Markov property of the noise function [8,10]
(see below), which is entirely dependent on the nature of the cutoff [14]. The cutoff function effectively splits the scalar
field into the sum of subhorizon modes [k )ea(t)H] and the superhorizon modes [k (ea(t)H] with respect to the ap-
parent comoving physical horizon —1/a(t)H. E is taken to be much smaller than unity in our analysis, which makes
calculations of the short modes quite simple [8].

The mode function, Pz(t), is defined in the conventional canonical quantization approach;

P(x, t)= 3&2 [akPk(t)exp(ik x)+akPk(t)exp( —ik x)]d k
(4.7)

with the mode function satisfying

kpk(t)+3HQ„(t)+, +( V"(p)) $„(t)=0,
a(t)

where a prime means d/dP and ( ) is the expectation value for a chosen vacuum state [8]. We note that this crude
treatment of the self-interaction term is not clearly understood [5,8]. The canonical quantization condition for the field
is [8]

[P(x, t ), P(x, t )*]=
a(t)

For modes well inside the cutoff scale, k )Fa(t)H, we assume

k 'eH'»( V"(P)) .
a(t)

(4.9)

(4.10)

In the slow-roll limit with H = 8m V(P)/3m~, this limit is easily satisfied. However, at the earliest epochs when we can
have P /2- V(P), this may not be obvious. Nevertheless, we approximate the short modes as those of a massless free
field, which has no self-interaction term and automatically satisfies Eq. (4.10). We do this because this assumption
makes subsequent calculations simpler [16].

The following definitions will be useful in our derivation:

d k
g(x, t ) =Ea(t)H f 5(k ea(t)H )[ak—Pi,(t)exp(ik x)+a i, Pk(t)*exp( —ik x)],

d k
g(x, t)=ra(t)H f 5(k ea(t)H)[a—j,gi(t)exp(ik x)+ai, Pk(t)*exp( —ik x)] .

(2') ~

Using these definitions we immediately find that

ay, (x, t) =u, (x, t )+g(x, t ),

(4.11)

(4.12)

(4.13)

where we have made use of the relation

8 0(ea(t)H k)=e [a(t)—H]5(k ea(t)H)=e—a(t)H 5(k —Ea(t)H) .
at dt

(4.14)

In the last relation, we assume that the space-time is in a quasi —de Sitter stage. From Eq. (4.2) and Eq. (2.6), we get

v, (x, t ) = — v, (x, t )
—3H [u, (x, t )+u, (x, t )]— +

2

a a V(y) V'y(x, t )

Bt ' '
Bt ' ' ' '

&P a(t)'
(4.15)

and using

d k
u, (x, t)=g(x, t)+ f 0(k ea(t)H)[akjbk(t)e—xp(ik. x)+akPk(t)exp( —ik x)]

Bt '
(2m. )

we can rewrite Eq. (4.15) as

a av( ) V'
Bt ' '

BP a(t)2
v, (x, t ) = —3Hu, (x, t )+g(x, t ) — + —3Hv, (x, t )

d k—f e(k ea(t)H)[ aditi
k(—tk)e px(i k )x+tajti (ti.)e x( p—ik x)] .

(4.16)

(4.17)
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Using Eq. (4.8), we can combine the last two terms in Eq. (4.17) and get

v—,(x, t)= —3Hv, ( xt)+g( xt) — P(x, t)+ 2
+( V"(P))P, (x, t) .av V'y(x, t)

B)t
' ' ' ' ' 8 ' a(t)' (4.18)

We will now drop the spatial inhomogeneity term. This
is partly for simplicity, although it is true that this term
will rapidly decrease as the universe expands. We can ex-
pand the gradient of the potential as

iH sinea(t)HIx —x'I
&(

ea(t)H
I
x —x

I

(4.26)

V'(P)= V'(P, )+ V"(P, )P, +O(P, ),
so that the equation of motion for v, (x, t ) becomes

(4.19)

BV(P, )
u, (x, t)= —3Hv, (x, t) +g( x, t) — . (4.20)

at '

Equations (4.5), (4.6), (4.11), (4.12), (4.13), and (4.20) are
the stochastic equations for the inAaton dynamics. We
note that the short-wavelength parts of P(x, t ) and u(x, t)
have been removed from the equations and replaced by
Eqs. (4.11) and (4.12). We see that P, and v, are not iden-
tical to their deterministic counterparts [Eqs. (3.4) and
(3.5)]. We have dropped spatial inhomogeneity from the
equations and the only spatial aspects of these equations
enter through g and g, which still retain their c-number
properties. We will eventually remove all spatial correla-
tions by considering the limit (@~0) in which the sto-
chastic effects occur only through instantaneous time
correlations [8].

In order to proceed we now consider the quantum
operators g and g and calculate their expectation values
by choosing a specific vacuum state, Ivac). First, we
have

where we have made use of the quantization relation, Eq.
(4.9). This commutation relation is also independent of
the vacuum state. Unless we take a suitable limit (which
we will do shortly), the analysis of the scalar field using
the stochastic dynamics becomes very complicated at this
point.

The stochastic nature of the operators requires evalua-
tion of their vacuum expectation values for a specific
choice of the vacuum state. For this purpose we take the
Bunch-Davies vacuum state (with positive frequencies)
[17],

1/2
1 l

i,(t) =
2k

Hs exp( iks )
—1—

ks
(4.27)

where s —= exp( Ht )/H a—nd the "constant" H is defined
only instantaneously. This is a special solution for the
massless free field in the perfect de Sitter space-time. A
general solution is in fact [16,18]

Pk(t)= Hs ~ H' '( —ks),~Fr
(4.28a)

where H' ' is the Hankel function of the second kind of
the order [19]

(vacIg(x, t)Ivac) =0,
(v ca/I( xt) vIca) =0,

(4.21)

(4.22)
=+(9/4) —(( V"(P))/H') . (4.28b)

which are independent of any specific choice of vacuum
state since (ai. vac) =0). To proceed further we make
some simplifying assumptions. We assume that for
modes with k ))ea(t)H, H is approximately constant so
that we can use the de Sitter result. This is reasonable,
since H will not vary over the short mode time scales.
The necessary mode functions are solutions of the equa-
tion [from Eq. (4.8)]

Using the mode function, Eq. (4.27), we obtain to lowest
order in s =1/aH,

1/2
~ . k

Pi,(t)=i — H s exp( iks)— (4.29)

or at k =@a(t)H=a/s

1/2

k
pi,(t)+3Hpi, (t)+ pk(t) =0 .

a(t)
(4.23)

p (t)=—

1/2

S

26'
Hs, (4.30)

Without specifying the vacuum state, we can calculate
the commutation relations. For g and g, we easily see
from Eqs. (4.11) and (4.12)

p„(t ) =i
2s

H s (4.31)

[g(x, t ),g(x', t') ]=0,
[g(x, t ),g(x', t') ]=0,

(4.24)

(4.25)

in the same limit.
We now present the correlation functions for g and g.

We begin with the g —g correlation function. Using the
definition of g, Eq. (4.11), we obtain

which almost implies a classical behavior for these quan-
tum operators. However, we get a nontrivial cross-
commutation relation [16]

( vacIg(x, t )g(x', t') Ivac)H, sinea(t)H Ix —x'I
, 5 t t'—

4~~ ea(t)H Ix —x'I
(4.32)
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where we have used Eqs. (4.30) and (4.31). The self-
correlation function for g is

( vac
l g(x, t )g(x', t')

l
vac )

4 H 5, sin@a(t)Hlx —x'l
5 t —t'

4~2 ea(t)H lx —x'l
(4.33)

which is not uniquely determined unless e is specified.
The cross correlation function has a nontrivial negative
sign~

( vac
l g(x, t )g(x', t')

l
vac )

5 t —t'2 H 5, sin@a(t)lx
47r2 ea(t)H lx x'l— (4.34)

or

( vacl g(x, t )g(x', t')+ g(x', t')g(x, t ) lvac )

2 H 5, sin@a(t)Hlx —x'l= —e 5t t'—
2~2 ea(t)H x —x'l (4.35)

which becomes

( vac
l g(x, t )g(x', t')

l
vac )

H 5, sinea(t)H lx —x'l
5 t t'—

4~' ea(t)H I
x —x'I

(4.37)

in the limit e((1 for v=3/2 (i.e., massless free), which is
in agreement with Eq. (4.32). We have made use of the
asymptotic limit of the Hankel function [19]

V

(4.38)

in the limit x «1. Other correlation functions for the
general mode function, Eq. (4.28a), can be similarly de-
rived with the above results for the massless free-field
corresponding to the special case of v=3/2 [20].

In @~0limit, the stochastic analysis becomes especial-
ly simple. In this limit the physical (comoving) splitting
scale is sufficiently far away from the potentially compli-
cated physical (comoving) horizon, which makes the
choice of the mode function, Eq. (4.27), a physically
meaningful approximation. If e gets close to unity, the
assumption, Eq. (4.10), becomes less justifiable and the
short modes cannot be adequately approximated by a
massless free scalar field. For a finite a (t)Hlx —x'l, the
limit @~0gives

sin Ea ( t )H
l
x—x'

l

ea(t)H Ix —x'I

In this limit the spatial dependence of the noise terms
specified by the vacuum expectation values (or correla-

If we use the general expression for the mode function,
Eq. (4.28a), we obtain for example [20]

( vac
l g(x, t )g(x', t' )

l
vac )

3 H
lH&2~( )l25(, )

sine'a(t)Hlx —x'l
8m. ' ea(t)Hlx —x'l

(4.36)

tion functions) disappears [Eqs. (4.32)—(4.35)]. We will
use this limit in our subsequent analysis. In the same lim-
it, we also see from Eqs. (4.32)—(4.35) that (g) and
(g') vanish, while the correlation function (g') is in-
dependent of e. As we mentioned earlier, [g, g] does not
vanish unless e«1. Due to the quantum nature of the
short modes it is almost impossible to analyze the inAaton
dynamics using a classical method unless the e—+0 limit
is applied to the system of quantum-mechanical equa-
tions. In short, by focusing on very large scales (com-
pared with the comoving apparent physical horizon) and
by taking the small e limit, we effectively remove the very
complicated quantum mechanical features and the spatial
correlations of the noise terms. Under these conditions,
we may consider the evolution of the scalar field defined
in each of the averaging comoving volumes independent
of each other with negligible spatial correlations. Finally,
we obtain the evolution equations

~3/2
P(t) =u(t)+ q(t),

8~

v(t) = —3Hu(t) —V'(P)

(4.40)

(4.41)

(q(t)q(t') ) =25(t t'), — (4.42)

where we drop the subscript c from the equations for con-
venience. All higher-order correlation functions are
negligible in the limit @~0, which makes the stochastic
noise Gaussian random [10]. We note that the noise
function's correlation now has the classical stochastic
meaning. That is, the statistical distribution of P and v

may be interpreted as the distribution over an ensemble
of averaging volumes in the universe. We also note that
in the small e limit, the assumption that H is instantane-
ously constant is a good approximation. However, for
the evolution of the long-wavelength modes, the Hubble
expansion parameter, H, is determined by the stochastic
variables P and v, which means that we take into account
the back reaction of the evolution of the scalar field with
minimal coupling between gravity and the scalar field [8].
The stochastic equations we have derived are similar to
the classical Kramers equation [10],

x(t) =u(t),
v(t) = —av(t) —f'(x)+ I (t),

(4.43)

(4.44)

where the noise is given by

(r(t)r(t')) =2D(t —t') . (4.45)

In the above equations, x is the position of the Brownian
particle (P) and v is its velocity (u in the scalar field equa-
tions). a is equivalent to 3H, f is to V, and D is to
H3~2/'t/8vr2. However, the classical Kramers equation is
different, since the noise term appears in the "velocity"
equation [Eq. (4.44)], whereas it appears in Eq. (4.40) for
"position" in our case. Nevertheless, in a broad sense,
our system of equations are equivalent to the classical
Kramers equation and its solutions may be derived using
the classical methods [10]. In the classical limit of the

with the correlation function for the newly defined sto-
chastic noise
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V. SOME COMMENTS ON INITIAL CONDITIONS

In the exact quantum-mechanical sense, the initial con-
ditions of the universe at the Planck epoch are not clear.
The naive classical distribution given in Eq. (2.7) has no
particular significance, especially if we consider the quan-
tum aspects of the inAaton field dynamics. There is no
exact solution to the problem of calculating the "initial"
probability distribution, but we can consider it using sto-
chastic methods.

If the universe emerges from the pre-Planckian epoch
with the inAaton field dominating the stress-energy con-
tent of the universe (and also in its slow-roll stage), the
equation of motion for the field will have the form of the
Langevin equation [8],

V'(P) + H($)' '
&8~'

(5.1)

stochastic dynamics, it is interesting to see that the slow-
roll (nonaccelerating) equation leads to the classical
Langevin equation and the non-slow-roll (accelerating)
equation of motion leads to the classical Kramers equa-
tion.

P(P; t )=,H(p)'/' H(p)'/' P(P; t )8~'

with a solution given by

(5.6)

The exponential term is the dominant factor in this distri-
bution and the form is reminiscent of the Hartle-
Hawking wave function [23]. This zero-current solution
says that the smallest potential is most probable. If this
probability distribution is applied in our case, then the
most probable initial condition would be dominated by
the kinetic term. However, the distribution is not self-
consistently normalized in the stochastic analysis, since
the equation is not valid at the boundaries (i.e., slow-roll
and Planck density) and since the boundary conditions
are not clear [24].

It is not clear if the slow-roll version of the stochastic
equation is valid in this case, but a self-consistent sto-
chastic solution for the initial condition is obtained if the
scalar-field dynamics is dominated by a large diffusion
effect caused by quantum fluctuations. We note, howev-
er, that this solution still lacks self-consistent boundary
conditions. The equation for the probability distribution
is, after neglecting the drift term,

with

H(P) =,V(P)
3mp

(5.2)

4
mp

P(P;t) ~exp
V(P)

(5.7)

and the noise term given by Eq. (4.42). The correspond-
ing Fokker-Planck equation is not uniquely given due to
the noise term s multiplicativity [10,21]. By taking the
parameter co for this uncertainty, the Fokker-Planck
equation becomes

where co =0 and co = 1 correspond to Ito's and
Stratonovich's rules, respectively [10,21]. The most gen-
eral stationary solution, aP(p; t ) /at =J=const, is [22]

3mp4

P(P)=C V(P) ' ' exp
8V($)

2 3/2
3mp—J(8' )

8m

4
3 /4

3m p

8 V(P)

3mp4

X I V(s) / exp — ds,
8 V(s)

(5.4)

where Co is a constant of integration, in principle, deter-
mined by the overall normalization but in practice uncer-
tain due to uncertain boundary conditions. The zero-
probability current (J=0) solution is

3mp
P(y) V(y) ' ' exp

8 V(P)
(5.5)

a, a v(y)
at '=ay 3H(y)

H ( y )
3 co/2 ~ ( y )

3( 2 —co ) /2P( y. t )8~' ap atI)

(5.3)

where A is a factor of order unity, and we have assumed
that the field diffuses from the initial value (()0 with V($0)
to the value P with V(P)(V($0) [24]. Although, the
diffusion equation itself is independent of the slow-roll
approximation its validity has not been rigorously prov-
en. However, we point out that this solution is in agree-
ment with the estimate of the probability of quantum
creation of an inflationary universe [24]. We may inter-
pret this probability as the probability for the quantum
creation of a miniuniverse filled with a field P from the
diffusive stage of the earliest epoch.

In either of these two stochastic solutions, the crude
classical estimate of the initial probabilities, Eq. (2.7), is
not recovered. In general, we do not expect each point in
the phase space to have the same accessibility [i.e.,
V(P)-mp will be very likely in the case of Eq. (5.7)].
However, since the exact probability is not known, we
will consider each possible initial condition in the phase
space with equal weight so that we can examine the least
favorable initial conditions for successful chaotic
inAation. Our main purpose is to consider the case for a
significant contribution of kinetic term (P /2) in the ini-
tial conditions to compare the stochastic results with the
classical results and assess the importance of the quan-
tum fluctuations.

VI. STOCHASTIC EVOLUTION
FROM PLANCK INITIAL CONDITIONS

We now solve the stochastic equations, Eqs. (4.40) and
(4.41), together with Eq. (3.3) with initial conditions set
near the Planck epoch. In order to gain some insight into
the stochastic behavior of the scalar fields, we first con-
sider an analytic example.
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A. A simple analytic example

We consider a model of stochastic evolution for the
scalar field in which the scalar potential is assumed to
have the form

a~ .U.
0 —1 .~. H3rz

(
).,

+
m 3H .u . Qg~z

(6.4)

or the generalized Fokker-Planck equation for the joint
probability distribution P(P; u; t )

V(P) = Vo+ —,'m P (6.1)

where Vo ))m P /2 remains valid throughout the evolu-
tion so that H=const becomes a good approximation.
The point of this model is to understand the behavior of
the scalar field in the exact de Sitter space-time. In this
case, the equations become

fv P(P;v;t)]

+ [(3Hu+m P)P(P;u,'t)] .

After defining the drift matrix

(6.5)

H 3/2
P=u+ zl(t),

8~
(6.2)

0 —1

m 3K

and the diffusion matrix

(6.6)

v= —3Hu —m P (6.3)

with K =const. We immediately see that these equations
correspond to the linear Ornstein-Uhlenbeck process
[10]. In the matrix form, we get

0 H /8m8=0 0

the standard method leads to the formal solution [10]

(6.7)

1 [o' (t)]pp(f (f)( )t)
P(P;u;t ~)Po;vo, t =0)= exp

2n v'det(o ) 2

[o '(t)]„(v—(u )(t))
Xexp —[o '(t)]&, (P —(P)(t))(u —(u )(t))— (6.g)

where

& 0 &(t) = [exp( —)'t )]ppdo+ I exp( —)'t ) lp. v

( v ) ( t) = [exp( ) t ) ] y4o—+ [exp( Y t ) ]„vo, —

the matrix elements are

A, ,exp( —A,zt ) —A, zexp( —
A, , t )

[exp( y t ) ]~~
=—

1 2

exp( —A.zt ) —exp( —
A, &t )

[exp( y t )]&„=—
1 2

exp( —A. , t ) —exp( —
A, zt )

[exp( y t ) ]„~=m—
1 2

A, &exp( —k&t ) —Azexp( —Azt )
[exp( —yt )]„,=

1 2

the eigenvalues are

3H+ +9H 4m—

(6.9)

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)

(6.15)

A2=
3H —+9H —4m

(6.16)

(satisfying A, , +A.z=3H and A, , i,z=m ) and the matrix elements of cr are given by

H 1

g~z (X —X )z

—(z.)+z.z)t

+
Xljk2 k)+A2

—2A,
1

—2A, f,2

(6.17)
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H 1
3

2E 2o~, =o,~=, , (e ' —e ')',
v'8~2 (k, —A2)

4X k

(6.18)

(6.19)

H 1Det(o ) =o ~to „—(o ~, ) =
8~ (A, ,

—
A,, )

k)+A2 4 1 1+ I exp[ —(1,, +A&)t ]—1 I
— exp( —2A, , t )

— exp( —2izt )
A.)+A, 2

4A, )k2
X A, , +Az+ I exp[ —(k, +A2)t ]

—1I —
A, ,exp( 2A—, t) —

, Xzexp( —
2A2t )

3
2

[exp( —Kit )
—

,exp( —
A, zt ) ]

8ir (A, ,
—

A,~)
(6.20)

This exact analytic solution says that the evolution of P and u results in Gaussian statistics. This is simply due to the
fact that this system of equations is linear [21].

Using the derived solution, we first consider the means of P and v, ( P ) and ( v ). From Eqs. (6.9)—(6.16), we obtain

A, ,exp( —
A, zt )

—
A.zexp( —

A, , t ) exp( —
A, 2t ) —exp( —X,t)

1 2 1 2

exp( —
A, &t )

—exp( —k~t ) A, &exp( —
A, &t )

—A2exp( —Azt )
(u)(t)=m Po+ uo .

1 2 1 2

(6.21)

(6.22)

In the limit H ))4m l9 (i.e., the effective mass of the
scalar field is negligible during inffation), the two eigen-
values become

fPl Pl
( v ) (t) = [uo —3Hpo]exp — t

A, ) =3H, (6.23a) Vl fg
Poexp — t

3H 3H
(6.27)

and the means are

(6.23b)
On the other hand, the classical solution in the slow-roll
limit (P= —m PI3H) is

Pl Pl
(P )(t)= exp — t — exp( —3Ht )

3H 3H

Pl
P(t) =Poexp — t (6.28)

1 m

3H 3H
exp — t —exp( —3Ht ) vo,

f71 P7Z
v ( t) =P( t) = — Poexp — t

3H
(6.29)

Pl
( u ) ( t ) = exp( —3Ht )

—exp
3H

exp( —3Ht )—m2

9H
exp

or after a time t ))1/H,

(P)(t)= Po
— exp — t

rn'
3H'

APE

3H

(6.24)

(6.25)

(6.26)

The deterministic solutions are in good agreement with
the means of the stochastic variables in the assumed limit
m «3H. That is, in this limit, the evolution of the field
is very close to the classical evolution regardless of the
choice of initial conditions ($0 and u) after a typical time
scale ))—3H/m . Although this example is just a toy
model, chosen to be analytically tractable, this suggests
that the classical attractor solutions (i.e., slow-roll solu-
tions) exist even when we include the effects of quantum
fluctuation. We will demonstrate numerically that this is
true in more realistic inflation models.

The averaged motion of the field does not reveal the
Auctuations of the scalar field and its associated canonical
momentum. In the exact analytic solutions, Eq. (6.8), we
get the dispersion of P and v,
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((y —(y&)'&(t)=[[~ '(t)]«] '

((u —(u))'&(t)=I[~ '(t)]„]
(6.30)

(6.31)

which are completely specified by Eqs. (6.17)—(6.20). The
qualitative behavior of the dispersion of U can be under-
stood through a direct integration of the stochastic Eq.
(4.20),

, H'"
u = —3Hu —e rl(t),&s~'

(6.32)

where the self-interaction term has been neglected at ear-
ly epochs during which Auctuations are dominant. How-
ever, this estimate is not rigorously correct, since the
cross correlation becomes important unless e is negligi-
ble. The solution for the linear stochastic equation, Eq.
(6.32), is [10,25]

field. This effect, combined with the large quantum Auc-
tuations in the early epoch of infl. ation, necessitates a nu-
merical treatment. Here we consider only the effects of
minimal coupling between gravity and the inAaton field
[7).

B. Numerical integration of the stochastic equations

We now integrate the coupled stochastic equations,
Eqs. (4.40) and (4.41). In integrating the P equation, we
take the form of the difference equation

H(n) i
P(n+ 1)=P(n)+ v(n)5t+ &2ot w(n), (6.38)&s~'
where n is the integration step number and w(n ) is the
discrete Wiener process [10] of unit variance and zero
mean, i.e.,

u(t) —uoexp( —3Ht )

2H 5/2
exp( 3Ht )f—exp(3Hs )g(s)ds (6.33)

svr 0

( w(n)w(n') ) =5„„

(w(n) ) =0 .

(6.39a)

(6.39b)

and we get

( u ) (t) =uoexp( —3Ht ),
([v(t)—voexp( —3Ht)] )

e4H' e4H'
[1—exp( 6Ht ) ]~— =const

24m 24'

(6.34)

(6.35)

for t ))1/H. Although we have neglected the cross
correlation (g'), this behavior is expected to be qualita-
tively correct in the classical limit. The dispersion of P
can be obtained in the same limit (i.e., assuming the fluc-
tuation dominant case) from Eq. (6.2)

H((p —(d ) )') =
4~

(6.36)

where we have made use of Eq. (4.42). We notice that the
fluctuations of P becomes dominant over the fluctuations
of Uas

(6v') e4H'

(&p')
(6.37)

and the mean of v rapidly becomes very small (within a
time scale —I/H). In short, this approximate solution
shows that the behavior of the scalar field quickly ap-
proaches the slow-roll solution (v —+0), while fluctuations
of P dominate the scalar-field dynamics.

H=const is a good approximation for the earliest
epoch in models such as the new inAation in which the
curvature of the potential may be negligible. In this limit
the arrival of the slow-roll phase in the course of evolu-
tion is expected, since the dynamics of the scalar field will
be dominated by the large friction provided by rapid ex-
pansion. The analytic solution and its asymptotic
behavior demonstrate this expected behavior. However,
in more realistic chaotic inflation models, numerical in-
tegration of the derived stochastic equations is necessary
in order to include the backreaction of fluctuations in H
(induced by field fluctuations) on the evolution of the

This interpretation of the stochastic term is that of the
Ito calculus [Eq. (5.3)], which satisfies the conventional
sense of causality. (We note that this is not necessarily
required for a 5-correlated noise process. ) We expect that
a different interpretation choice will have negligible
consequences [21]. Our equations have been obtained in
the small e limit in which the cross correlation and the
nonvanishing commutator become arbitrarily small. This
limit naturally guarantees our choice of simple mode
functions, Eq. (4.27). The discrete Wiener process is
simulated by random Gaussian deviates generated
through the Box-Muller method using uniform deviates
generated by a linear congruence generator [26]. The in-
trinsic skewness of the distribution of random variables is
reduced to —10 and is expected to have negligible
effects on the final results of integration.

As initial conditions of integrations, we take six points
in the half-phase space for each model potential. As we
have seen in the classical results, the evolutionary trajec-
tories are expected to be symmetric so we can consider
only the half-phase space. Of those six conditions, two
points correspond to the potential energy-dominated ini-
tial conditions (i.e., the two points most distant from the
origin, x=0 and y=0, on the x axis). The other four
points correspond to the "kinetic-energy" —dominated in-
itial conditions. The former initial conditions are not
particularly interesting, since they start in the slow-roll
regime. The initial conditions are essentially identical to
those of the classical evolution. Of course, if the universe
emerges from the pre-Planckian epoch with a large prob-
ability for potential energy domination [e.g. , Eq. (5.7)],
the kinetic-energy —dominated initial conditions could be
very unlikely. However, in the absence of any firm distri-
bution estimates it seems safer to consider rather extreme
initial conditions. The results of our integration of the
stochastic equations constitute an estimate of the effects
of the nonlinear back reaction as well as the effects of
large amplitude quantum Auctuations. As we mentioned
before, we have neglected the effects of pre-existing spa-
tial inhornogeneities. Some classical analyses suggest that
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they may prevent successful inflation [7].
The results of the integration for the quartic potential,
(P) =A,P /4 are shown in Figs. 4 and 5. In Fig. 4 th

dotted lines correspond to the deterministic trajectories,

—&o'
w ile t e dashed lines are a statistical average f

stochastically independent realizations starting
with six different initial conditions. Classically, all of the
six initial conditions lead to the slow-roll curve (running
near x =0 line), suggesting a large probability of success-
ful infiation. Different self-coupling constants do not
c ange this result. During the early stages of stochastic
infIation, the mean values of the scalar field do not in-
crease significantly, while the mean velocity of the field
decreases sharply, which is exactly what we have seen in
the classical calculations. That is, the mean trajectories
in the stochastic calculations behave like the classical tra-
jectories. We see that the classical attractor (slow-roll
curve) also exists in the stochastic calculations and most
of the mean trajectories arrive at the slow-roll curve, al-
though they spend more time to reach it. In Fig. 4, one
trajectory has an energy density, which briefI drie y excee s

e anc density. One significant difference from the
classical result is that one of the six mea t '

t'x mean rajectories
does not reach the slow-roll curve (i.e., failure of success-
ful inflation). Although we have not performed an ex-

austive search of initial conditions in phase space, this
suggests that the classical results are not entirely accu-
rate. In Fig. 5, we plot the evolution of the ratio of the
mean potential energy and the mean kinetic energy. The
evolutionary track for the noninAationary case ap-
proaches the horizontal line almost monotonically after a
brief initial epoch. In Fig. 5, the largest spikes are due to
the zero crossings or near zero crossings of the mean tra-
jectories, which start from initial conditions in th
half 1

' '
ns in e upper

a p ane in phase space. The evolutionary tracks show
that potential-energy domination is almost always real-
ized except at the earliest epochs. The asymptotic ap-
proach to the central horizontal line traces the evolution
of the field into the oscillatory stage at the end of
inflation [11]. In short, our stochastic calculations in the

30—
I I I

I
I I I I

I
I I I I

J

I I I I
f

I I f I

20—

A
X
V

R

V
O

O

10—

-20

3P ~ I I

0
I & t & i I

10 20 30 40
time (rn, )

50

FIG. 5. The time evolution of the mean kinetic-potential en-

ergy ratio for stochastic mean trajectories given in Fig. 4.

quartic potential model show that even if quantum Auc-
tuations are large near the Planck time, the classical
slow-roll attractor solution still exists. However, the sto-
chasticity of the scalar-field evolution prevents some ini-

~ ~

tial conditions, which classically inAate, from successfully
in Gating.

The stochastic behavior of the quadratic potential
model, V(P)=m P /2, is similar to that of the quartic
potential. The results are shown in Figs. 6 and 7.
Different masses do not affect the classical solutions (Sec.
III~. ItII &. is clear that the classical deterministic solutions
converge to the slow-roll attractor solutions from almost
any initial condition regardless of the choice of the chaot-
ic potential. In the quadratic potential model, we see
t at one of the six chosen initial conditions fails to enter
the inflationary slow-roll stage (Fig. 6), while the corre-
sponding classical trajectory does. We also note that two
of the initial conditions briefly exceed the Planck density)mz) before following the slow-roll trajectory. From
Figs. 4 and 6, we see that the stochastic mean trajectories
are more significantly affected by the initial sign of the

0

FIG. 4. TG. 4. The stochastic mean trajectories (dashed lines) and
the deterministic trajectories (dotted lines) for the same initial
conditions in the quartic potential case with X=10 . One of
the stochastic trajectories fails to enter the slow-roll stage

FIG. &G. 6. The stochastic mean trajectories (dashed lines) and
the deterministic trajectories (dotted lines) for the same initial
conditions in the quadratic potential case with m = 10 'Imp.
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e-i), may produce significant complications (through
nonvanishing cross-correlation functions and the spatial
correlations of fluctuations). Nevertheless, we have
demonstrated, both by the analytic solution for the sim-
ple model and by numerical integration, that the attrac-
tor also exists in a model, which allows for some of the
effects of quantum noise. Evidently, chaotic inflation is
still very likely in the sense that it follows from a wide
variety of initial conditions.
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scalar field velocity. That is, in the initial stages of evolu-
tion the mean value of the field shows a substantially
larger initial change in the stochastic case. This is the
reason the classically successful initial condition fails to
enter the inflationary stage. In this sense, the attractor is
weaker than in the classical case. Nevertheless, the at-
tractor does exist in the stochastic quadratic potential
model. As a related point, after the slow-roll is reached,
the evolution of the field in the quartic potential model
rapidly approaches the classical results with the field fluc-
tuations being sharply reduced. In the quadratic poten-
tial case, the fluctuations of the field always increase and
the classical deterministic solution is not prominent in
the distribution function. This phenomenon is explained
in terms of the nonlinear scaling behavior [27]. It sug-
gests that the transition from the early quantum fluctua-
tion dominated regime to the classical drift dominated
one is dependent on the nonlinearity of the self-
interaction. Although this might suggest a nontrivial
role played by the form of the self-interaction it may also
indicate that our approximate classical treatment of the
field self-interaction has never taken into account its
proper quantum mechanical meaning. In Fig. 7, it is
shown that the potential dominated regime (i.e., dotted
lines below the central horizontal line) is reached rapidly
from most of the initial conditions. We remind the
reader that these results depend to some extent on our
use of the limit e~O. Allowing for correlated noise (e.g. ,

FICx. 7. Similar to Fig. 5 but for the stochastic mean trajec-
tories in Fig. 6.

We have examined the initial condition problem in the
chaotic inflation model using stochastic techniques and
compared the results to the classical calculations. Our
stochastic treatment is strictly true only in the limit of
@~0 and when the variation of H is instantaneously
negligible. We show that inflation is possible for a wide
range of initial conditions in spite of the large quantum
fluctuations near the Planck epoch. However, the region
in the phase space of initial conditions, which will pro-
duce inflation is narrower than the classical analysis
would indicate. We conclude from this that inflation is
still likely when quantum fluctuations are included.
However, it seems clear that we need a deeper under-
standing of the quantum aspects of the inflaton field dy-
namics to construct a truly self-consistent inflation mod-
el. In addition, the fact that the quartic and quadratic
potential models exhibit different stochastic behaviors
shows that the probability of successful inflation will de-
pend on the details of the inflationary model.

In our analysis we have taken into account only the
effect of the kinetic term. However, a complete treat-
ment necessarily requires including spatial inhomo-
geneities and the possibility of non vanishing cross-
correlation functions. A nonminimal coupling between
gravity and the inflaton field may also play a significant
role in the dynamic evolution of the quantum field. Our
analysis is only a preliminary attempt to include the
effects of quantum fluctuation effects and judge their im-
portance for the initial condition constraints. A stochas-
tic study, which includes the effect of spatial inhomo-
geneity on scales far larger than the averaging scale will
be presented elsewhere [28].
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