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We investigate the qualitative new features of charged dilatonic black holes which emerge when both
the Yang-Mills and Gauss-Bonnet curvature corrections are included in the effective action. We consid-
er these perturbative effects by an expansion up to second order in the inverse string tension on the four-
dimensional Schwarzschild background and determine the back reaction. We calculate the thermo-
dynamical functions and show that they can behave like those of the Garfinkle-Horowitz-Strominger
solution or in a more conventional way, depending on the value of the magnetic charge g. Moreover, we
find that for magnetic charge above a critical value, the temperature of the black hole has a maximum
and goes to zero for a finite value of the mass. This indicates that the conventional Hawking evaporation

law is modified by string theory at a classical level.

PACS number(s): 97.60.Lf, 04.60.+n, 11.17.+y

I. INTRODUCTION

It has been recently established [1-3] that the classical
black hole solutions of Einstein gravity in four dimen-
sions are endowed with new features when the theory is
modified by the introduction of the low-energy string
corrections to the action. A key property of these
modified actions is the nonminimal coupling of the dila-
ton and axion fields with gravity and other fields. This
fact allows one to circumvent a class of well-known “no-
hair” theorems, which essentially state the triviality of
nonminimally coupled scalar fields [4].

In particular, if one neglects the Gauss-Bonnet correc-
tions, exact charged, spherically symmetric solutions
with nontrivial scalar hair are obtained in Refs. [1,5].
These have also been extended to the case of both dyonic
and axion charge in the spherically [3] and axially [6]
symmetric case. As is well known, if the mass of the
black hole is large compared to the Planck mass, then all
vacuum solutions of Einstein gravity are approximate
solutions of low-energy string gravity. The fact that the
dilaton field couples to the Yang-Mills field strength
means that the charged black hole solutions in string
theory differ fundamentally from the classical Reissner-
Nordstrom form. Furthermore, the thermodynamical
properties are quite unconventional: the extremal dilaton
black holes appear to have zero entropy but nonzero,
finite temperature [7]. This behavior has been interpreted
as due to a repulsive potential barrier created by the sca-
lar field, which prevents thermic contact with the exterior
regions. It is then argued that these black holes behave
much like elementary particles [8]; important conse-
quences ensue for black hole evaporation [8,9].

Garfinkle, Horowitz, and Strominger (GHS) [1] ob-
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tained the exact classical solution for a four-dimensional
charged black hole. They kept terms of order one in the
inverse string tension a’ in the Yang-Mills field, but not
in the curvature. For large mass holes (M >>Mp,) one
may truncate at this order and neglect the same-order
curvature contributions outside the event horizon. With
an exact solution comes the advantage of making state-
ments about the global properties of the solution. How-
ever, from the string theory point of view the low-energy
effective action consists of an infinite perturbative expan-
sion in a’. Of course near the singularity the curvature
becomes so large that all terms in the o-model expansion
would be important. But in order to examine the struc-
ture of the event horizon, one may consider only regions
of finite curvature exterior to that region. Accordingly,
in this work we shall consider the perturbative effects up
to second order in o’ of both the Yang-Mills and curva-
ture squared terms on the conventional Schwarzschild
background solution. From this point of view, we are
considering the O(a’) string theoretic perturbations of
Einstein gravity in vacuo. In so doing, we shall determine
the back reaction induced by these terms and the dilaton
on the geometry and the modified thermodynamics of the
model.

We shall adopt units such that i=c=G=k=1. So if
the black hole is large enough that o’ <<M?, then the
curvature terms can be considered as perturbations about
the background solution. In particular we shall see that
the Gauss-Bonnet terms contribute to the field equations
for the metric only as second-order corrections whereas
the electric or magnetic terms are O(a’) corrections to
the vacuum Schwarzschild background. Thus one can
justify the neglect of the Gauss-Bonnet term as a first ap-
proximation far from the singularity as in [1].

Before proceeding with our analysis there are some re-
marks to be made concerning the form of the effective
low energy string theory which we consider.

(i) The extra internal dimensions of heterotic string
theory may be assumed to decouple from the physical
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four-dimensional spacetime by considering the topology
(four-dimensional spacetime) X (internal compact space)
and by imposing appropriate boundary conditions on the
internal coordinates. Alternatively, as in the case of
Calabi-Yau compactifications, one can “decouple” the
internal space by truncating all fields to their zero modes
on the internal manifold. Thus we shall focus our atten-
tion on the four-dimensional string theory. Moreover, we
shall not consider dilaton potentials which could be pro-
duced by the effect of dimensional reduction.

(ii) The antisymmetric two-form B,,,, which arises in
the ground state of the string spectrum, appears in the
action as the three-form axion field strength H,,,, cou-
pled to the dilaton, where

Hmnp = a[mB

np mnp mnp/ »

]_’_%(Q(Y) __Q(L) )

Q%Y and QY are the Lorentz and Yang-Mills Chern-
Simons three-forms, respectively. Notwithstanding the
Chern-Simons terms, the nonminimal dilaton coupling to
the axion field strength does not alter the stationary
spherically symmetric vacuum solutions of Einstein grav-
ity (by a duality transformation H,,,, is equivalent to a
pseudoscalar and so the uniqueness theorem holds [10]).
The situation is changed however for axisymmetric
spacetimes where the Lorentz Chern-Simons term con-
tributes to the field equations and thus acts as a source
for nontrivial dilaton and axion hair [2,11]. Also in the
case of dyons with both electric and magnetic charge, the
Yang-Mills Chern-Simons form acts as a source for H,,,,
through the nonzero F A F term [12]. But for spherically
symmetric spacetimes, the Lorentz-Chern-Simons term
can be expressed as the exterior derivative of a two-form
and thus absorbed into the definition of B,,, [13]. In the
present case we shall “freeze in” the B,,, background and

R opn =29, @V, @ +2ae **F, F,, —1g,,F?)

+4ae **[4R,,V,V,®—2R,, V,V, g, R

pgp 4
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discard its role. Since we aim to study the effect of the
Gauss-Bonnet term on the charged solutions of Refs.
[1,5], we shall not be considering the dyonic case and
thus the Yang-Mills Chern-Simons term vanishes in our
case. For these reasons we shall drop the axion field
strength from the action, consistent with the field equa-
tions.

The paper is organized as follows: In Sec. II we intro-
duce the action and the field equation and discuss the
limits of validity of our approximation. In Sec. III we
discuss the case of zero charge, which presents some in-
terest by itself in the context of the ‘“no-hair”” theorems of
general relativity. In Sec. IV the perturbative expansion
of the GHS solution is studied in a gauge inspired by the
exact solution and compared with the exact result. Sec-
tion V deals with the full first-order effective action in-
cluding both the Maxwell and Gauss-Bonnet terms: the
approximated solutions are obtained in the same gauge
and their thermodynamical properties are discussed. Fi-
nally, in the Appendix we rederive the same results in a
more conventional gauge.

II. THE FIELD EQUATIONS

The bosonic sector of the effective action for the
heterotic string is given to leading order in o’ as:

_ 1 b T [ — 2 —20 o __ 2
Ser 167dex g [R—2(Vd)P+ae 2(&—F?)],

(1)

where a=a'/8 and $=R2, ,—4R%, +R? is the Gauss-
Bonnet term. For the reasons given above, the terms
containing the axion have been omitted. From variation
of the action (1) we obtain the following equations of
motion:

V,V,8—RV, V,0+1¢g,, RV, V,0—2R,,,.V,V,®]

—8ae **[4R,(,,V, PV, ®—2R,,,V, PV, ®—g,, R, V, PV, P— RV, PV, d+1g, RV, OV,

—2R 4y V, PV, P,

V2<D=%e"2¢(é°—F2) , (2b)

V,(e **F, )=0. (20)

In order to find approximate solutions to (2) we shall
expand the fields around the background constituted by
the Schwarzschild metric with vanishing dilaton, which is
of course a solution of the field equations. Our expansion
will be in the parameter a or, more correctly, in a/m 2 m
being the mass of the Schwarzschild solution. Since a is
believed to be of order unity in Planck units, the expan-
sion is valid for large m, in the regions where a8 <<%#,
i.e., for r>>>am. For macroscopic black holes (m >>1)
this condition is always satisfied, except in a neighbor-

(2a)

f

hood of the singularity, well inside the horizon (region of
strong curvature). Near the physical singularity, howev-
er, the higher order corrections to the effective string La-
grangian become important and so the perturbation
theory is no longer reliable. For charged holes one must
also require that aF?<<%. This condition holds for
r >>aq?/m; again, if the charge is not too large, this con-
dition is satisfied by macroscopic black holes far from the
singularity.

Alternatively, one might study the effect of the Gauss-
Bonnet term by perturbing the exact charged GHS solu-
tion. The perturbation would be in the parameter g2/m,
and would be valid for F2>>§, i.e., r >>m. The range of
validity of this alternative expansion is therefore smaller.
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Moreover, the physical interpretation as expansion in the
string parameter a’ would be lost. For these reasons we
will not adopt this point of view.

III. THE g =0 CASE

In this section we study the pure graviton-dilaton sys-
tem, by making the ansatz F=0, consistent with the
equations of motion. Besides its interest in connection
with string theory, this special case is interesting because
it offers an example of nontrivial scalar hair in a purely
scalar-gravity theory. The relevance of the Gauss-Bonnet
term for gravity is due to the fact that it is the only quad-
ratic Lagrangian which gives rise to second-order field
equations for the metric [14]. Moreover it does not intro-
duce new propagating degrees of freedom into the ghost-
free theory [15]. For constant ® however, this term does
not contribute to the field equations, since it is a total
derivative in four dimensions. Only its coupling with the
dilaton can therefore give rise to nontrivial solutions in
four dimensions.

Similar models have been studied in Refs. [16-19].
References [16] and [17], however, consider the higher-
dimensional case but do not treat in detail the four-
dimensional limit, where the first-order corrections due
to the Gauss-Bonnet term vanish. In Ref. [17] it is shown
that, in dimensions higher than four, at first order in a’,
the temperature has a maximum and then goes to zero
for a finite value of the mass of the hole.! This would
mean that a stable configuration could be reached during
the evaporation of the black hole. However, as we shall
see, this is not the case in four dimensions, because then
the correction to the temperature has the opposite sign.

The four-dimensional case has been discussed in Refs.
[18,19] in connection with Kaluza-Klein theories; there
the relevance of the model for the no-hair theorems was
pointed out. However, an essential difference from our
treatment is the fact that Poisson [19] does not perform
the conformal rescaling which puts the Lagrangian in its
canonical form. This canonical form should be used for
reasons of stability [20] and because it gives an unambi-
guous definition of the physical mass [17].

We shall look for the spherical symmetric solutions of
the field equations (2) by perturbing around the back-
ground given by the Schwarzschild solution with vanish-
ing scalar field (¢,=0). For vanishing F the scalar field
equation reduces to:

V2<I>=%e 20 3)

where the Gauss-Bonnet term $=48m?2/r® for the
Schwarzschild background. Expanding ® as

D(r)=a¢,(r)+a’p,(r)+ - -

1Actually, in Ref. [17] the Gauss-Bonnet term is replaced by
the square of the Riemann tensor. At first order of an expan-
sion around the Schwarzschild background the results are how-
ever the same, since &,,, =% =0 for the Schwarzschild solu-
tion.
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one has at first order

2
[r(r—2m)g ) =24m" @
r

where the prime denotes the derivative with respect to .

The only solution of (4) regular at the horizon r =2m,
is given by (apart from an arbitrary constant which we fix
to zero, by requiring ¢,—0 at infinity):

2
i+ﬂ2+4m3
ror 3r

(151:_i

m

(5)

This solution has a dilatonic charge a/m, corresponding
to a long-range repulsive potential. As is usual in models
of this type, this charge is not a new independent parame-
ter [1].

One can now calculate the back reaction on the metric
which is induced by the scalar field, by substituting (5)
into the gravitational equations (2a). It is easy to see
that, contrary to the higher dimensional case [17] the first
contribution to the right-hand side arises only at order
a®. In fact, in four dimensions, at order o, the right-
hand side of (2a) reduces to

2Vm¢lvn¢1_87{—bmnavavb¢l ’ (6)

where R ;,,,, is the value of the Riemann tensor in the
Schwarzschild background.

The static, spherically symmetric metric can now be
written as

ds?=—e?"dt + e dr2+r2d Q% , (7)
and the metric functions can be expanded as
vir)=wvy(r)+a’r(r) , pr)=por)+a’o(r), (®)

with e 0=e *o=1—2m/ r, corresponding to the
Schwarzschild solution; we have taken into account that
there are no corrections to the metric functions at order
a. Substituting for the metric functions u(r) and v(r) in
Eq. (2a), one finds two independent field equations:

o'+ =r¢— Sr—';‘¢;' , (9a)

20
r—2m

16m(r—3m)¢,1 ’ (9b)

o' —r'+ =_Bm gy
r

rir—2m)

and upon combining the two,

((r—2m)o]'=2Lr(r—2m)¢?

r—2m ,,

r—3m ,,
+8m 3 o1 — 3 1
r r

(10)

We notice from Eq. (9a) that in the presence of a scalar
field the metric functions u and —v are not equal.
Substituting (5) in (10) and integrating, one obtains for
o:
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1

2m

49m |, 29m?
+ +
40r  20r?

19m3  203m*
1073 1574

4

_436m°> _ 184m°
1573 3r®

’ (11)

where the integration constant has been chosen such that
o is regular at the horizon r =2m. The expression for 7
can now be immediately obtained from (9a):

g1 |49m  49m?  13Tm®  Tm*
2m* | 40r 2072 30r3 15-4
5 6
. 52m5 _ 40”2 ’ (12)
15r 3r

with the same boundary conditions as for o.
The gravitational and inertial mass mg; and m; are
defined respectively as

2m 2m
—gp~l-—C o |t |, gum~1+T 10| L
r r
(13)
The two values coincide and are given by
M=ms=m;=m |1+ 490 (14)
¢ 80m *

The mass of the black hole is therefore increased with
respect to that of the Schwarzschild solution, or better,
the horizon is shrunk to r,=2M(1—49a>/80M*).

It is now easy to calculate the temperature T of the
hole, by requiring the regularity of the Euclidean section
of the metric at the horizon [21]. The result is

a2

240m*

=8rm[l+a*o—T)] =8mm |1+

r=2m

B=

1
T
(15)

Using (14) and (15) the temperature can be written in
terms of the physical mass M:

73a?
120M*

_ 1
8mM

T , (16)

which is higher than that of the Schwarzschild hole of
equal mass.

Contrary to what happens in higher dimensions [17],
the temperature is a monotonically decreasing function of
the mass, and therefore no mechanism to prevent the
complete evaporation of the black hole seems to be avail-
able in this case. As we shall see, the situation may
change however for charged black holes.

The entropy is easily obtained from its definition in
terms of the Euclidean action (see Sec. IV), and is given
by:

a 73a?

S=47M?
M?  120M*

1+

(17)
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As is usual in higher-derivative theories [22], it does not
coincide with the area of the event horizon. It is, howev-
er, a positive definite function of M.

1IV. THE PURELY MAGNETIC CASE
IN THE GHS GAUGE

In order to study the effect of the Maxwell field it can
be useful to write the metric in a different form. The
reason is that an exact solution of the Einstein-Maxwell-
dilation system is known in the absence of the Gauss-
Bonnet term [1,5], which has a very simple expression in
a different “gauge” (i.e., coordinate system). For a mag-
netically charged hole it can be written as [1]:

ds?=—A%dt*+ 1" 2dr2+R2%dQ? , (18)
where
2
MR=1-2"  Ri=, |, 29" | (192)
r m
and

2
F=gqsin6dONdg , e 20=1-99_ ,
mr

(19b)

where g is the magnetic charge (g is related to the physi-
cal charge Q by Q=V'a/4mq). We start by discussing
the expansion for the case in which the Maxwell term is
present in the Lagrangian, while the Gauss-Bonnet term
is absent. In this way we shall compare the perturbative
solution with the exact one and acquire some confidence
with the GHS gauge.

We therefore write the metric in the form (19) and ex-
pand the metric functions around a Schwarzschild back-
ground as:

A=Ao(1+ay,+a’P,+ - --),
R=r+ap,+a’p,+ - ,
d=a¢,+a’p,+ -,

(20a)
(20b)

where Ay=(1—2m /r)"/? and 9, p;, and ¢, are functions
of r.
The equation (2c) is solved by the ansatz

-9
F,-j— Rze,-j .

(21)
The equation for the dilaton becomes at first order in a:
2

[r(r—2m)¢i)=—4;

, (22a)
r2 a

which, up to an integration constant yields ¢,=g>/2mr.
The other equations are given at order a by

pi=0, (22b)

[(r—2m )W) =—"2p— . (22¢)
r

We impose the boundary conditions that p;—const,
1¥;—0 at infinity. We are still free to choose the bound-
ary conditions at »=2m. Changing the boundary condi-
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tions at r=2m yields a reparametrization of the solu-
tions, but no change in their physical properties: in par-
ticular, the relations between the physical quantities, like
mass, temperature and entropy, are independent of the
parametrization. The simplest choice for the following
calculations is to choose for p;, which must be constant
in view of (22b) and the boundary conditions at infinity,
the value p;=—q?/2m, so that the right-hand side of
(22¢) vanishes. This choice permits us to have ¢, =0.

We can now evaluate the second-order corrections.
For vanishing 1, the equations are given by:

' r— 2p;
[r(r—2m)¢,]' =2 P1¢1 =5 |$:1t
4
—_q" |1 _4m
—ﬁ r? o’ (232)
4
Py =—rét=— I, (23b)
m
—2m ,, r—m m
[(r—2m)¢,] b 2 P27 "53P2
r
2m q* 2P1 _
+—p +—2 ¢+ ; =0. (23c¢)

The solutions satisfying the boundary conditions stated
above are easily seen to be:
4 4

—_9 ___9q
%2 am?r?’ P2 8mir’

$,=0 . (24)

It is now straightforward to compare the expansion
with the exact result (19): it turns out that it coincides
with the expansion of the exact solution in powers of a:

2 2
d=—1In|1—L |~ 2L 4 29 25
2 mr 2mr  4m?r? (252)
5 172
A=Ay= 1—7’" ) (25b)
172
2 2 2 4
R=|r r—ﬂ- ~r—%— @9q . (25¢)
m 2m  8m?r

The physical properties of this solution are discussed in
[1,8] and we shall not report them here. It may be worth
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noticing, however, that the values of the temperature and
entropy of the hole in this approximation, obtained up to
second order in a with the methods described in the next
section, turn out to coincide with the exact result [8]:

1

=— = 2__
T PRy S=47 (M

aq2

> (26)

where M =m is the physical mass, as is evident from
(25b).

V. SOLUTIONS OF THE FULL
ORDER o’ EFFECTIVE ACTION

We now consider the more interesting case where both
the Maxwell and Gauss-Bonnet terms are present. As we
shall see, whereas the Maxwell term contributes already
at first order to the metric functions, the Gauss-Bonnet
terms contribute only at second order. This fact gives
some justification to the interpretation of the GHS solu-
tion as a first order approximation for the metric. How-
ever, this is not true for the scalar field, to which the
Gauss-Bonnet terms contribute already at first order.
With the ansatz (21) for F, in the notation of the previous
section, the field equations (2) become at order a:

2 2
[r(r—2m)g ) =— 9 4 24m° (27a)
r ¥
pi=0, 27b)
2
[(r—2m )xpl]':—%pl—zir; . 27¢)

Again, we impose boundary conditions such that the
metric is asymptotically flat and exploit the remaining
freedom to fix ¥, =0. Integration of (27) yields:

1 |2—q? 4m?
=—— + 2 4
¢l m 2 r2 37‘3 ’ (283)
q?
=——", =0 28
P1 m ¥ (28b)

The dilatonic charge is now given at first order by
[(2—¢?)/2m ]a. The long-range potential driven by the
scalar field can therefore be attractive or repulsive de-
pending on the value of ¢2.

We go now to second order in a. The field equations
become

J
2
[r(r—2m)g3 =272 p g1+ 2 g, 42 BL | 450 {wfi
— 2 3
B o e 2
r r
2__ 42 _ 2 _ 2,2 2
=—r¢'12+8—r;1¢’l’:— 5 223) +22 ‘{1_‘_47 iq +642‘n+144;’1 ]’ (29%)
r 4m-r mr r r r
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, r—2m , r—m _, m 2m 2 2p, r—2m ,,, r—3m ,,
[(r=2m )y} = — T py = = ph = g+ Spit L gy = | Hdm | T g 2 g
r r r r r r r
9,2 _ 5,2 g2 3
! 2% U 45q +8mL 255‘1 +544T . (29¢)
3mr r 157 S5r

It is no longer possible to have a vanishing ,.

We therefore choose the boundary conditions such that

A2=~1—2m /r+0(1/r?) at infinity, so that m is by definition the physical mass M of the hole. The solutions of (29) are:

45,2 18,2 15,4 2 2
by=— 73 4§q + 73—15¢q . 215q 4 73 —+ 73+54q 4 112r:1 4 8m6 ’ (30a)
60m °r 60m “r 45mr 30r 757 or
(g>—2)* | 2—q® | 7—3¢%> | 16m | 24m?
=_ + + + + , (30b)
P2 8m?r 3mr? 3r3 5r4 5r3
= (r—2m = — 1—2¢> _ 11=5¢>  (2=50g*)m  272m’ (30c)
> g 3mr? 3r3 1574 15r¢
The metric functions are therefore:
R*=r?+2arp,+a*2rp,+p?})
2 — 2 2 7,2 2
=200, 2| 129 527,77 3g7 | 3am | ABm” | (31a)
m m? 3mr 3r2 5r3 5p#
p=1-2m ¥
r r
— 9,2 5,2 ) 3
:1_2_m_2a2 1 2q3 11 iq + (2 SOq5 )m 272n; . (31b)
r 3mr 3r 157 157
They are sketched in Fig. 1, for different values of g. For ) ¥,(2m) -,
q =0 one obtains of course the solution discussed in Sec. B=8mm |1—a —2¢,(2m)
II, but in different coordinates. In particular, in the
present coordinates the horizon is at —8mm |1—a? 73 —4532 (33)
120m
ro =2m[1—a,(2m)]=2m |1— 1+242a2 ] It is interesting to notice that the temperature of the
12m* black hole, which is given by

We notice that the coordinaté » should not be identified
with the physical radial coordinate, which is rather given
by R. Actually, » must vary in the range r =r_, where
r_ zaqz/m is the greatest zero of R 2 which corre-
sponds to a singular surface. When r_ becomes greater
than 7, [for 2m*<a(g®— )], one has a naked singular-
ity. This situation is, however, beyond the range of valid-
ity of our approximation.

It is now easy to calculate the temperature of the hole.
The inverse temperature is defined as the periodicity of
the time coordinate which renders the Euclidean section
of the solution regular and is given by [21]:

—1

— | d
B=41V'g0g 11 2, 800 (32)

r=2m

In our coordinates Eq. (32) becomes at order a*:

, 73—45q2

=1
120M*

- 87M

) (34)

has no order-a corrections (we recall that the physical
mass M =m in these coordinates). The behavior of T as a
function of M is displayed in Fig. 2(a) for several values
of g.

It is a remarkable fact that the temperature is no
longer independent of the charge, as in the GHS solution,
but has a very different behavior depending on the values
of ¢g. In particular, if g>>73/45, the temperature van-
ishes for M 4=a2(%q2—%). The hole may therefore
reach during its evaporation a stable ground state with
nonvanishing values of mass and charge.? Unfortunately,

2The implications for cosmology of a model with similar
behavior of T have been recently discussed in [23] and, in their

notation, mf,, < (3¢>/8— 2 )m#,.
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however, for such values of ¢ and M our approximation
breaks down and therefore it is not possible to discuss the
causal structure of the solution. In particular, we are not
able to establish if the states with vanishing temperature
correspond to regular horizons or naked singularities.

The entropy of the hole can be calculated by evaluating
the Euclidean action [24]:

—__1 _ 2 20 o p2
==~ [ [R—2V0P +ae %S~ F)av
- L1 («k-k,+@uas, (35)
8 Jam

where the boundary integral includes a term @ coming
from the Gauss-Bonnet part of the action. This term,
which is proportional to the Chern-Simons form on the
boundary [25], gives vanishing contribution in four di-
mensions.

By using the equations of motion (2) and neglecting
O(a’) terms, I g can therefore be reduced to the form:

== [ e S—F)—- [ (K=K
:—8—£T— MVZ(I)_#IBM(K—KO)
T (R
=47m? [1—a Zz;qzz —a? 734—0-:154q2 (36)

The mass M of the hole can be defined as M =3I /8[J’|q,
where

q?=2
-0.02 |

q?=16

-0.04 |

q2=36

3 dm d 1 73—45¢% | d
— | === l—g? =1 | =
B |, Bom sz | & tom* |om G7
One has therefore, by (36),
_ 2 _ 2
MZ% l_aZM _i I_QZM m
40m* om 40m*
(38)
M 6

FIG. 2. (a) The temperature as a function of
the mass for several values of ¢ (¢=1). The
behavior changes drastically for g%>73/45.
(b) The entropy as a function of the mass for
several values of ¢ (a=1). Also in this case
the behavior is very different depending on g2
being greater, equal, or less than 73 /45.
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as expected. The entropy is then given by

2 _ 2
1+a2=9 o2 73"4%
2M 120M

I 2
=B —I=4rm
S=B35 M

(39)

Its behavior as a function of M is displayed in Fig. 2(b).
We note that the entropy has a zero for

a 101a?
4M?  240M*

aq®=2M* |1+

For the exact GHS solution the zero of the entropy corre-
sponds to the case of extremal black holes [8]. By com-
paring (34) and (39) it is easy to see that, for positive a, if
g%>2 the zero of the entropy occurs for values of M
greater than those for which T'=0, while for g2 <2 one
has the opposite situation. It seems therefore that when
the Gauss-Bonnet terms are taken into account, for small
or zero charge the situation is more similar in this respect
to the usual black hole thermodynamics, while for greater
charge one has physical properties more similar to those
of the GHS solution [8]. It may be useful to remark that
this critical value of g2 is precisely that for which the
long range scalar potential changes from attractive to
repulsive at first order in a [see Eq. (28a)].

Of course, we are considering only the lower-order
corrections to 7 and S. When higher terms of the expan-
sion are taken into account the situation may change. In
particular, for small values of M our approximation is not
reliable. Our results should be essentially unchanged,
however, for large values of mass and charge.

VI. FINAL REMARKS

We have studied the effect of the inclusion of the
Gauss-Bonnet corrections induced by string theory on
the spherically symmetric solutions representing the
charged dilatonic black holes obtained in [1,5]. The
physical properties of the solution resemble those of the
GHS solution for large charge. For small or vanishing
charge the situation looks similar to the more conven-
tional theories.

In particular, the Gauss-Bonnet term induces O(a?)
charge-dependent corrections to the temperature. More-
over, for ¢>> %, our stringy black hole has vanishing
temperature for a finite positive value of M. Our analysis
thus illustrates the importance of the higher-order curva-
ture correction for the thermodynamics of an evaporating
classical black hole.

We have considered the string effective action up to or-
der a’. The results obtained are not essentially affected if
one takes into account the order a'? corrections to the
effective action, as given in [26]. The new terms, in fact,
give contributions of order a’® to the dilaton and the
metric fields. The formulas (34) and (39) for the tempera-
ture and the entropy, in particular, are corrected only by
third-order terms.

Our results may be extended to the case of electric
charge. Unfortunately, due to the presence of the
Gauss-Bonnet term, the electromagnetic duality which
allows one to obtain immediately the electrically charged
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solution from the magnetic one [3] is no longer a symme-
try of the field equations. The calculation should there-
fore be started ab initio. Analogous considerations hold
for the dyonic case, with the further complication that
the axion field should also be taken into account in this
case [13]. These problems are currently under investiga-
tion.

Other interesting perspectives are given by the study of
massive dilatons. The dilaton potential generated by the
compactification = mechanism may induce some
modifications in the properties of the black holes. Some
results have been obtained in Ref. [27], in the absence of
the Gauss-Bonnet term.
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APPENDIX

In this appendix we rederive the results of Sec. V in a
more conventional gauge. We adopt the metric form (7)
and expand the metric functions as

, u=potac,+a’o,+ -,

(A1)
where v, and p, are the values of u and v in the
Schwarzschild background of mass m. Due to the pres-
ence of the Maxwell field, order-a corrections to the
metric functions must also be taken into account. The
parameter m and the radial coordinate r used in this ap-
pendix do not coincide of course with those of Sec. V.
The relations between the physical quantities (mass, tem-
perature, entropy,. . .) are nevertheless the same in the
two gauges.

With the ansatz (21) for F, the field equation (27a) for
¢, is unchanged in this gauge, and the solution is still
given by (28a).

The gravitational equations become at first order

v=v0+arl+a272+ s

T1+o1=0, (A2a)

2

(r—2m )(0'1—7"1)+201=—q7 .
r

(A2b)
By requiring asymptotic flatness and regularity at the
horizon, the solutions of (A2) are given uniquely by

_q*

o =—T= .
! U amr

(A3)

Using (A3) the field equation for the second-order correc-
tions to the scalar field can be written as

sy (r=2m)q® ., q*
r(r—2m)¢y]' = +
[ ¢2] 2mr2 ¢] 2mr2¢1
2 | , 48m?
+_~ —_
r4 r? ¢
2
12070, dm | (A4)
r r

which has solution
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1
360m*

b= — (438—360q2+45q4)%—

2
2\ M
+(438-270¢%) 7
m?

+(548 —240q2 )——+(876 660q)

+—— +320—

5376 m° m®
10 43 »6 ] (A3)

where as usual we require regularity at the horizon and
|
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asymptotic flatness.
second order

The gravitational equations are at

oy =re— T g (A6a)
r
20, 8m 16m(r—3m)
o_l_ 1+ [l ,,+“,
27 T r—2om 2 &1 P(r—2m) 1
2g° - (r—4m)g*
rir—2m) ! 8mi3d(r—2m)

(A6b)

With the usual boundary conditions their solutions are

1 m m?
T,=— (294—30g>—15¢*)— + (588 — 60g*)—5-
2 480m* i 7 r 7 r?
m3 m* m? m°
+(1096 —200¢°)—5 +(112+560¢ *)—, —832—-—3200— | , (A7a)
r r r r
1 m m?
0,=—— |(294—30g°—15¢*)— +(348+180g*—60g*)—-
2 480m* i 7% i 77
m3 m* mS m®
+(456+120q2 )-* —(3248—2000g> )y —6976—— —14 720— . (A7b)
r’ r
The physical mass M of the hole, defined as in (13), is given by
M=mg=m,=m |1+a g’ | ;22947307 _15‘1 (A8)
4m? 480m*
Inverting, one can write the parameter m as a function of the physical mass:
2 — 20,2 4
m=M |1—a-2 5 —a? 294—30¢ i—lSq (A9)
4M 480M
One can now deduce the temperature from (32): one has, up to second order,
B l= T=~L—[1+a(71—01)+a2(72—02)+2-2-(71—01)2]
8mm 2 r=2m
2 2_4s, 4
__ 1 1—a-g 2_(122—i-150q 445q (A10)
8mm 4m 480m
2 2 4
Using (A9) one recovers the result of Sec. V for the tem- Ip= B\, —q4=34a" _ »290—4509"+75¢
perature in terms of the physical mass: 2 4m 480m?
1 ,73—45¢2 _ ) 2—gq? _ 23— 45¢q*
T=—— — (A11) =47M°|1—a ) (A12)
grM | © 120M* " 2M? aom*

Analogously, following the procedure of Sec. V, one can
evaluate the entropy; the Euclidean action turns out to be

which is the result of Sec. V. The value of the entropy is
therefore given by (39).
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