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Gravitational form factors of the neutrino

K. L. Ng*
Department ofPhysics, National Taiwan Uniuersity, Taipei 106, Taiwan

(Received 11 June 1992; revised manuscript received 21 September 1992)

The gravitational properties of the neutrino are studied in the weak-field approximation. By imposing
the Hermiticity condition, CPT, and CP invariance on the energy-momentum tensor matrix element, we
show that the allowed gravitational form factors for Dirac and Majorana neutrinos are very different. In
a CPT- and CP-invariant theory, the energy-momentum tensor for a Dirac neutrino of the same species
is characterized by four gravitational form factors. As a result of CPT invariance, the energy-
momentum tensor for a Majorana neutrino of the same species has five form factors. In a CP-invariant
theory, if the initial and final Majorana neutrinos have the same (opposite) CP parity, then only tensor-
(pseudotensor-) type transitions are allowed.

PACS number(s): 14.60.Gh, 11.30.Er

I. INTRODUCTION

If a neutrino has mass, then the question of whether
the neutrino is a Dirac- or Majorana-type particle arises
naturally. This is because the neutrino may be its own
antiparticle (Majorana particle). The difference between
a Dirac and Majorana neutrino is clearly exhibited in the
neutral current interaction process [1], observation of
neutrinoless double P decay and in their electromagnetic
properties [2,3]. For example, a spin- —,

' Majorana neutri-
no can only have the anapole moment form factor if CPT
invariance holds. This result was generalized to an arbi-
trary half integral spin Majorana fermion in Ref. [4], and
an arbitrary spin Majorana fermion in Ref. [5].

However, there are relatively few discussions on the
gravitational properties of a spin- —, fermion [6,7]. In this
paper, we extend their work by performing a complete
study of the gravitational properties of the neutrino. In
Sec. II, we present a general analysis of the energy-
momentum tensor 8 p matrix element between two spin- —,

'

neutrinos. Using the Dirac equation, the symmetric
properties of 8 p and the energy-momentum conservation
condition, we arrive at the most general expression for
the gravitational form factors of the neutrino. By impos-
ing the Hermiticity condition, CPT, and CP invariance
on the 8 p matrix element, we obtained certain conditions
on the gravitational form factors for the neutrino. We
summarize the results in Sec. III.

II. GRAVITATIONAI. FORM FACTORS
OF THE NEUTRINO

In this section we study the allowed form of the cou-
plings for the energy-momentum tensor 6 p matrix ele-
ment between two neutrino states. We carry out the
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analysis in the weak field approximation,

g~p g~p+ KA ~p (2.1)

where g p is the Hat space-time metric, h p is the gravi-
ton Geld, and x=32m.G. In our paper we closely follow
the notation used in Ref. [3].

A. General analysis

Consider the invariant amplitude for the process
v;~vf+g, where v; and v are two Dirac neutrinos with
masses m; and mj (m; )mf ) and g is the graviton (virtual
or real). The transition amplitude for this process is
given by

(vf(pf )I~.ply;(p; ) & =u(pf )(I p)f'u(p') (2.2)

where ~v;) and (vf ~

are the initial and final neutrino
states respectively, and (I p)f; is the dressed vertex func-
tion that characterizes the above invariant amplitude.

Lorentz invariance implies that the vertex function in
general can have 24 types of coupling: 12 tensor types
and 12 pseudotensor types. The 12 possible tensor types
of coupling have the following forms:

&ap qaqp I qP) ap I qy ) ap PaPp

[Py ).p [o.,q "qp).p= l ~qq ).p
[oqP j p, [oqy) p, [trPP) p, IcrPq) p

and [oPy) p, where we have suppressed the Lorentz in-
dices, [ ) p denote symmetrization over the indices a and
P, q=pf —p;, P=pf+p;, and o=o „=il2[y,y„] The.
pseudotensor types of coupling are obtained by the addi-
tion of a y5 factor.

Using the Dirac equation, (y~"—m)u =0, one ob-
tains identities which relate the various types of coupling
(such as the Gordon decomposition relation), and hence
reduces the number of independent couplings. We collect
these relations in the Appendix. Thus, the energy-
momentum matrix element between two Dirac neutrino
states may be written as
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& vf(pf ) l8 plv;(p;) & =u(pf )(I p)f u(p;)

=u(pf)[T, f;g p+T2f;q qp+T3f P'Pp+Tqf, [qP( p+Tsf, [oqq'] p

+ T6fi [~qP ] p+Pl f ys 7 p+P2f ysq'. qp+P3f ys[qy ].p
+ 4f;ys[ y].p+ sf;ys[ qq] p+ ef ys[«] p] (p»

where T= T(q, m;, mf) and P =P(q, m;, mf) are the tensor- and pseudotensor-type form factors respectively.
Conservation of the energy-momentum tensor (q p8 p=0) implies the following relations among the form factors:

T) + T2q +5mf; T4 =0,
Qmf, . T3+q T4=0,

q T, +5mf; T6 =0,
P) +P2q —Mf P3 =0,
i (q Ps+5mf; P6) M fP4—=0,
q P3+25mf;P4=0,

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

where M;f =m; +mf, and 5mf; =mf —m; . Lorentz invariance and energy-momentum conservation imply that for
q WO, the general form for the energy-momentum matrix element between two neutrino states is given by

(vf(pf)l8 p v;(p;)&=u(pf) T,f; g p
— [qP] p+ P Pp

1 q

5mf, (5mf; )

+T~f; q qp
— [qP] p+ P Pp +T6f; [crqP] p

5mf; (5mf, )

5mf
[crqq] p

q

+P1f ys n.p+ [qy].p , —[Py].p+, [~qq].p
1 q l

M f 26mf2, M,.f 25mf2

+P f y, q qp+ [qy] p—,[Py] p+ [oqq] pM'f 2/m f 'M'f 26m f.

5mf,
+P6f, ys [oqP] p

— [oqq] p u(p, ) . (2.10)
q

For the same neutrino Aavor m;=mf, the solutions for Eqs. (2.4) —(2.9) are T4=Ts=O, T2= —T, /q, Ps=0,
P2 = —(P, /q ), and Ps = (2miP—4/q ) Thus t.he energy-momentum matrix element is reduced to

q qp q qp
(vf(pf )l8 plv, (p;)& =u(pf ) T1;; q p

— +Ts;;P Pp+T6, , [oqP]~p+P1, ys riap"
Tpq

"q
+P4 ys. y

—
q

P . +P6 ys[~qP] p u(p) .
q ap

(2.11)

This result agrees with Refs. [6,7], except the P4 term. In analogy with the electromagnetic form factors, T6 is called
the anomalous gravitational magnetic moment form factor, P4 the gravitational anapole moment form factor, and P6
the gravitational dipole moment form factor [6].

B. Gravitational form factors of a Dirac neutrino

The energy-momentum tensor 8 p is proportional to p~p [8], where p =(ipo, p), whereas the Hermiticity of the
energy-momentum tensor operator is given by 0 &=g g&0 &. The Hermiticity condition implies

(vf(pf )l8 plv;(p; ) & =ri rip& v;(p; )l8 plvf(pf ) & (2.12)

where g =( —1, 1, 1, 1). As a result of Hermiticity, we
have

I

tional form factors:

1& 2& 6& 1& 2&P6)fi

yo(I .p)f; yo= n.np(I .p);f . (2.13) = ( T, , T2, —T6 & P1, P2 & P6 )if— —(2.14)

This implies the following relations among the gravita- and
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(Tt, T3, T6,Pi, P4, P6)&'&

= ( T, , T3, —T6, P—„P4,P6 ),, (2.15)

among the form factors:

(T„T2,T6,P„P2,P6)f; =( —T„—T2, T6,P„P2, P—6)f&

For the off-diagonal case, vfAv;, Hermiticity does not
put any restriction on the form factors. For the diagonal
case, Hermiticity requires that all the form factor are real
except for T6 and P, .

CPT
Under the CPT transformation, 0 &

-. 0 & and

cPT & vf (pf )
I ~apl vi (pi ) & cpT & vi(p; ) I ~.iil vf (pf ) &

(2.16)

In terms of the Dirac spinor, the left-hand side of Eq.
(2.16) can be written as

cp7 & f(pf )l~ plv;(p;) &cp7.

=ucp7 ( p;)(r p)f; ucp7 ( pf ) (2.17)

and

(2.26)

For the diagonal case, it follows from CPT and CP invari-
ance that P„;=P6;; =0. That means in a CPT invariant
theory, a Dirac neutrino cannot have the form factors P

&

and P6 if the interaction respects CP symmetry.

C. Gravitational form factors of a Majorana neutrino

Under the CPT transformation a Majorana neutrino
v transforms as I9]

(T), T3, T6,P„P4,P6);; =( —T), —T3, T6,P„P4, P6—);;

(2.27)

and ucp7 (p) is the CPT conjugate of the spinor u (p), CPTIv (p, s)&=7I' lv (p, —s) &, (2.28)

ucpT( p) =yoVT '—[Cu '(p»)]' (2.18)

CV (I i7)f; V 'C '= —(I P),f . (2.19)

As a result of CPT invariance, we obtained the following
relations among the form factors:

( T„T2,T6,P, & P2&P6 )ft

=( —Ti, —T2, T6, P„P7&P6—);f —(2.20)

(T)&T3, T6,P„P4,P6),, =( —T„—T3& T6, P)&P4&P6)i, —

(2.21)

CI'
Under the CP transformation, 0 &

.-g g&0 &,

cp & vf(pf )I ~.plv;(p'; ) &cp Ti 7i73& vf(pf )If.731 v;(p; ) &

(2.22)

The left-hand side of Eq. (2.22) is given by

cP& f(pf )I& 73l;(p; ) & =u (
—p )(I"i3)f'u ( —pf )

(2.23)

where p' = —71~ =(ipo, —p), I ' denotes the dressed
vertex function with q and P replaced by q' and P', and

where VT is the time-reversal matrix, t denotes the tran-
spose operation, and I & is the vertex function describing
the process v; —+vf +g, where v denotes the antineutrino
state.

Using Eq. (2.17) and the transformation properties of
the y matrices under the operators C and VT in Eq.
(2.16), we obtain

where ggpT is a phase factor that depends on the spin of
the particle, with gcpT= ggpT. Assuming CPT invari-
ance for the energy-momentum tensor matrix element,
we have

Using the transformation properties of the y matrices un-
der the operator V7. in Eq. (2.31), then as a result of CPT
invariance, we obtain the following relations among the
form factors:

(T„T2,T6,P„P2&P6)f; =(T„T2,T6,P, &P2&P6) f (2.32)

(T), T3, T6, P„P4,P6), , =(T„T3,T6,P„P4,P6),, —

(2.33)

For the same neutrino species, CPT invariance implies
that P4=0; that is, a Majorana neutrino cannot have the
gravitational anapole moment form factor.

Under CP transformation, a Majorana neutrino trans-
forms as

CPIV (p, s) & =71* lv ( —p, s) &, (2.34)

cpT & vf (pf ) I
& i7I v; (p; ) & cpT —

& v; (p; ) I
& i7I vf (pf ) & .

(2.29)

For a Majorana neutrino, the left-hand side of Eq. (2.29)
can be written as

cpT& ~f(pf )l~ i7l~i(pi ) &cpT upT(pf )(rap) fi upT(pi )

(2.30)

where uP7(p)=yoV7 'u*(p). This implies that

(2.31)

ucp( —p') =yoCu '(p ) .

Inserting Eqs. (2.23) and (2.24) into (2.22), we obtain

(2.24)

(2.25)

where gz~ is the CP parity of the Majorana neutrino with

pe =+i. Assuming CP invariance we have

cp & vf (pf )I& i3lv; (p; ) &cp Ti Tii3& vf (pf )I& i7lv; (p; ) &

If CP invariance holds, we obtain the following relations (2.35)
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The left-hand side of Eq. (2.35) can be written as

cp&vf (Pf)l~ ply; (P;)&c.p=u (Pf')(I" p)f, u (Jr )

where up(p')=ycu(p). Using Eqs. (2.35) and (2.36), we
obtain
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9 ) yQ( ~P)fj 3 0 g~ lP( (yP)fj (2.37)
APPENDIX

where pc~ =ig. As a result of CP invariance, we obtain
the following relations among the form factors:

11 (T„T2,T6,Pl, Pl, Ps)fj

In this Appendix we present the identities among the
various types of coupling that were employed in our cal-
culation.

=(T„T2,Ts, P„—P2, —P6)f—j (2.38)

( Tl T3 T6,P1,P4, P6 ),, = ( T„T3,T6, Pl, —P4, Ps—);j—
(2.39)

We observe that the amplitude for the process~Wf +g depends on the relative CP parity of the ini-
tial and final neutrino states. For instance, if g'g =1, a
Majorana neutrino has a tensorial type of transition form
factors, while for g'gf= —1, a Majorana neutrino has a
pseudotensorial type of transition form factors.

III. SUMMARY

Tensor-type couplings

uf [0qq j u; = l uf [qP 'M,fqy—
j u I r

llf {0qP]ll' luf IPP MfPy—ju;

uf [crqy ju, =iuf( [qy j 25mf—;ri p)u, ,

llf [crPP j u; =iuf [qP 5mf, Py—j u, .

uf [0Pq ju; =iuf(qq —[5mf qy j )ui,r

u [crPy j =iuf( [Py j 2M f g p)u; —.

(A 1)

(A2)

(A3)

(A4)

(A5)

(A6)

It is shown that the invariant amplitude for the process
v, —+vf +g is characterized by six gravitational form fac-
tors (three tensor and three pseudotensor types). The
Hermiticity condition requires that four of the form fac-
tors are real. As a result of CPT and CP invariance, a
Dirac neutrino of the same species has four gravitational
form factors. A Majorana neutrino has five form factors
(no gravitational anapole moment form factor) as a result
of CPT invariance, which agrees with the result given in
Ref. [7]. In a CP invariant theory, if the initial and final
Majorana neutrinos have the same (opposite) CP parity,
then only tensor-(pseudotensor-)type transitions are al-
lowed. For the same neutrino species, the energy-
momentum matrix element for a Majorana neutrino is
characterized by tensor couplings only [7].

Pseudotensor-type couplings

llf ysI crqq j u; =iuf ys[Pq +5mf qy j u;

ufysIoqP ju, =iufys[PP+5mf;Pyju;

ufysIoqy ju;=iufys([qy ] +2Mfrf p)u;

uf ys [joPP j u, =iuf ys [qP +Mf Py j u i r

uf ys I o Pq j u =iuf y s(qq+ [M fqy j )u;

ufysfoPy j =iufys(IPy ]+25mf'ri p)u;

where 5mf; =mf —m; and M;f =m;+mf.

(A7)

(A8)

(A9)

(A 10)

(A 1 1)

(A12)
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