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Using the Weinberg-Soper formalism we construct the front-form (j,0) (0,j) spinors. Explicit expres-

sions for the generalized Melosh transformations up to spin two are obtained. The formalism, without

explicitly invoking any wave equations, reproduces the spin-
~

front-form results of Melosh, Lepage and

Brodsky, and Dziembowski.

PACS number(s): 11.30.Cp, 11.10.Qr, 11.80.Cr

I. INTRODUCTION pi'=A"g

Following the work of Weinberg [1] and Soper [2] we
extend our recent work [3] and explicitly construct the
front-form covariant spinors for arbitrary spin j without a
direct reference to any wave equation. We also obtain a
generalization of the Melosh transformation 0(j) to
(j,O)e(0,j) fields. Explicit examples for j=—,', 1,—'„2 are
given. For j=—,', the formalism reproduces the front-
form spinors of Lepage and Brodsky [4] and 0( —,') coin-
cides with the celebrated "Melosh transformation" [5,6].
This approach is in the spirit of Dirac's [7] original
motivation for the high-spin wave equations for "approx-
imate application to composite particles" and opens up
the possibility of constructing a QCD-based effective field
theory of hadronic resonances along the lines of the re-
cent work of Cahill [8].

Unless otherwise indicated we follow the notation of
Refs. [9,3(b)]. We use the notation x"=(x+,x', x2,x ).
In terms of the instant form variables x"=(x,x ',x,x ),
we have x =x +x . The evolution of a system is stud-
ied along the coordinate x+, and as such it plays the role
of "time."

II. FRONT-FORM HADRONIC SPINORS

We will work under the assumption that the center of
mass of a composite hadron is best described, in the phe-
nomenological sense, by the fields constructed from the
(j,O)e(O, j) spinors in the front form. Following the
Weinberg-Soper formalism [1,2], these spinors will be
constructed from the right-handed P (p") and left-
handed P (p") matter fields. We begin from the transfor-
mation which takes a particle from rest, P"=(m, 0,0, m ),
to a particle moving with an arbitrary four-momentum
p"=(p+,p', p,p ). [Note: for massive particles
p+) 0.]

In the instant form of field theory the transformation
which takes the rest momentum P"=(m, 0,0,0)~p"
=(p, p), is constructed out of the boost operator K and
is given by

with

A=exp(imp. K) .

In Eq. (2) the boost parameter y is defined as

p=p/~p~, cosh(qr)=E/m, sinh(y)= ~p~/m . (3)

Note that the stability group of the x =0 plane consists
of the six generators J and P. K, along with P, generate
an instant-form dynamics.

In the front form of field theory the transformation
which takes P"=(m, 0,0,0)~p"=(p, p) is defined [2,10]
by

pP =LB P

with the matrix L given by

L =exp(ivi (xi)exp(i.rlK3) .

(4)

P =Pp P3 P& P2 J3 K3 (7)

form the seven generators of the stability group of the
x =0 plane. (Note that P =P+.) The algebra associat-
ed with the stability group is summarized in Table I. The
generators D& =E, +J2, D2=K2 J& and P+ =Pp+P3
generate the front-form dynamics.

It is important to note that while the front-form trans-
formation L is specified entirely in terms of the genera-
tors of the x+ =0 plane stability group, the instant-form
transformation A involves dynamical generators associat-
ed with thex =Oplane.

Using the matrix expressions for J=(J„J2,J3) and
K (E i Kp K3 ) given in Eqs. (2.65)—(2.67) of Ref. [9] we
obtain an explicit expression for the boost L defined in
Eq. (5):

The parameters rl and vi=(v„, v ) specify a given boost.
The generators Czz are defined as

G, =K, —J, G2 =K~+J],
and together with
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cosh(ri)+ —,'viexp(t) )

u exp(il)

u exp(il)

sinh(tl )
—

—,
' viexp(il )

u„u sinh(il)+ —,'viexp(ri)

1 0 u„exp(ri)

0 1 u~ exp(il )

u„u cosh(q) —
—,'viexp(g)

Recalling that the components of the front-form momen-
tum p" are defined as p

+—=p +p this yields

A
where the unit vectors b and b are given by

b = ii '(au„, ia—u„,g), (14)
p+=m exp(t)),

pi =m exp(il )vi,

p =m exp( —ri)+m exp(il)vi .

(9)

The variables g and v~ are fixed by requiring p" generat-
ed by Eq. (1) to be identical to the p" produced by Eq. (4).

Given the transformation L, Eq. (5), we now wish to
construct the front-form (j,O)e(O, j) hadronic spinors.
To proceed in this direction we rewrite I. by expanding
the exponentials in Eq. (5) and using Table I to arrive at
[11]

A A A~ A~b*=il (aut, iaut, q) b b= 1 =b .b (15)

p (p")=+/ (p") . (16)

with v, =vs+ivy and vI =v~ —ivy.
We now make two observations. First, under the

operation of parity we have P (p")~P (p"). Second, for
the particle at rest (p=0,p"=P") the concept of handed-
ness loses its physical significance (c.f. Ref. [9] and more
detailed discussion in Ref. [12]), and this, in turn, yields
the relation

L =
exp [i (a vi Gi+ riK3 ) )

with

(10) We now introduce the spin- j hadronic spinor

Q= (11)
1 —exp( —g)

For the (j,O) matter fields, p~(p"), we have [1,9,3(g)]
K= i J F—or t. he (0,j) matter fields, p~(pi'), K =+iJ.
Using this observation, along with Eq. (10)
definitions (6), we obtain the transformation properties of
the front form (j,0) and (0,j) hadronic fields

P (p")=exp(+rib J)P (P") (12)

and observe that the plus (minus) sign in Eq. (16) yields
spinors with euen (odd) spinor parity We will de. note the
even spinor-parity spinors by Q(p"); and the odd spinor-
parity spinors by V(p").

The transformation property for these hadronic spi-
nors under the boost (5) is now readily obtained by using
Eqs. (12) and (13). The result is

and

p (p")=exp( —ilb*.J)p (p"),
tt (p")=M(L)g(P"),

(13) with the operator M(L) given by

M(L)=
~exP(ilb. J)+exP( —

tabb* J) exP(rib J)—exP( —ilb' J)
exp(ilb. J)—exp( —gb* J) exp(rib J)+exp( —rib* J) (19)

Pl P2 P

TABLE I. Algebra associated with the stability group of the
x+ =0 plane. The commutator [element in the first column, ele-
ment in the first row] = the element at the intersection of the
row and column.

In what follows we present the explicit construction of
the hadronic spinors VE(p") and V(p") for j=

—,', 1,—'„2.

III. CONSTRUCTION OF %'(p") and V(p")
AND THEIR PROPERTIES

Pl
P2
J3
K3
P
Gl
G2

0
0

LP2

0
0

—iP
0

0
0

—iPl
0
0
0

—iP

—iPz
iPl
0
0
0

—iG2
iGl

0
0
0
0

—iP
—iGl—iG2

0 iP 0
0 0 iP
0 iG~ —sG(

IP iG& iG2
0 0 0
0 0 0
0 0 0

Let us first note that the front-form helicity operator

1
83—J3+ (GiP2 G2Pi)—I' (20)

introduced by Soper [2] and discussed by Leutwyler and
Stern [10], commutes with all generators of the stability
group associated with the x+ =0 plane. The front-form
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helicity operator associated with the (j,O)e(0, j) spinors
constructed above is then readily defined to be

0

0 (21)

If choose a matrix representation of the J operators with
J3 diagonal (we follow the standard convention of Ref.
[13]) then the 2(2j+1) element basis spinors for a parti-
cle at rest have the general form

'M+, (P~) =

,(p")=
(j)
0 (22)

V, (P")=

The index h =j,j—1, .. . , —j on Mh(p") and Vh(p~) cor-
responds to the eigenvalues of the front-form helicity
operator O. The spin-dependent normalization constant
JV(j) is to be so chosen that for the massless particles all
'Mh(p") and Vh(p") vanish (there can be no massless par-
ticles at rest), and the only nonvanishing spinors are
'Mh +J (p") and Vh +~ (p" ). The simplest choice satisfy-
ing these requirements is

(23)

I 0
0 —I

0r'= I (24)

JV(j) =m' .
We now have all the details needed to construct Mh(p")
and Vh(p") for any hadronic field. In this paragraph we
summarize the algebraic construction used for
j=

—,', 1,—,', 2. Using Eqs. (A27), (A28), (A31), and (A32) of
Ref. [1]along with Eqs. (9), (14), and (15) above we obtain
the expansions for exp(71b.J ) and exp( —gb* J ) which ap-
pear in the light-front (j,O)e(O, j) spinor boost matrix
M(L), Eq. (19). These expansions are presented in Ap-
pendix A. Using the results of Appendix A, explicit ex-
pressions for M(L), Eq. (19), are then calculated as a sim-
ple, but somewhat lengthy algebraic exercise. These ex-
pressions for M(L) combined with Eqs. (18) and (22)
yield the hadronic spinors presented in Appendix B. The
generality of the procedure for any spin is now obvious,
and the procedure reduces to the well-defined algebraic
manipulations.

We now introduce the useful matrices

'Mh(p")Mh (p )=m ~5hh. ,

Vh(p" »h (P")= —m "fihh

'Mh (P")Vh (P")=0=Vh(P")™h(P")

(26)

(27)

(28)

For spin —,
' the result given by Eq. (Bl) corresponds to

that given by Lepage and Brodsky [4, Eq. (A3)].' A
noteworthy feature of the front-form spinors constructed
here in the (j,O)e(0,j) representation is the observation
that (i) for the massless case, m =0, the Mh(p") and
Vh (p") identically vanish unless the associated front-
form helicity h =+j, and (ii) for the massive case, mAO,
an examination of Eqs. (83), (84), and (85)—(87) yields
the result that in the "high-momentum" limit, p+ »m,
the leading asymptotic behavior of Mh(p"), and Vh(p")
is given by —(p+) "~. The correspondence between ob-
servations (i) and (ii) is to be perhaps fully realized when
various matrix elements, of appropriate front-form opera-
tors 6, fh. (p'")Ggh(p~), are studied for the massive case.
Since the high-momentum behavior of 'Mh(p") and
Vh(p") is -(p+)~"~, we can expect to generalize to arbi-
trary spin the results on helicity amplitudes presented by
Lepage and Brodsky [4] for j=

—,'. It is expected that the
dominant elastic-scattering amplitudes will correspond to
the helicity-nonchanging processes, while the helicity-
changing transitions will be suppressed by appropriate
powers of the factor (mlp+). The fact that the front-
form spinors M~h~ & (p") and V~h~& (p") for massive par-
ticles do not identically vanish in the high-momentum
limit is of profound physical significance. To see this
note that, as argued by Brodsky and Lepage [14], the
hadrons in e++e ~y*~&~+&s are produced at
large Q with opposite helicity h~+hs=O and ~h,. ~

&:
—,'.

As a consequence, to give an example [14, Table I], the
process e++e ~@+»2+6+3/2 is suppressed relative to
e++e ~p+»2+5+»2. Here, the physically dominant
degree of freedom is not 6+3&z but 6+»z—the degree of
freedom which for the massless case identically vanishes.

IV. GENERALIZED MELOSH TRANSFORMATION:
THE CONNECTION WITH THE INSTANT FORM

In a representation appropriate for comparison with
the front-form spinors Mh(p~) and Vh(p"), the instant
form hadronic spinors u (p") and U (p"),
o =j,j—1, . . . , —j, were recently constructed explicitly

Note, however, a slightly different normalization and conven-
tion chosen by Lepage and Brodsky for the odd spinor parity
spinors: u t =&2'Ml~2, u g =&2%,~2, Ug =&2V
U g

= +2Vlyg.

with I=(2j +1)X(2j+ I) identity matrix. In reference
to the spinors presented in Appendix B, we define

(25)

Using the explicit expressions for 'M(p") and V(p"), Eqs.
(81)—(87), we verify that
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u (p")u (p")=m '6

v (p")v (p")= —m ~5

u (p")v .(p")=0=v (p")u (p"),
where

u (p")=[u (p")] y, v (p")=[v (p")] y

(29)

(30)

(31)

(32)

with y having the form identical to I of Eq. (24).
In what follows we assume that p" and p" correspond

to the same physical momentum. The connection be-
tween the front-form and instant-form spinors is then es-
tablished by noting that on general algebraic grounds we
can express the instant-form hadronic spinors as a linear
combination of the front-form hadronic spinors. That is,

u (p")=O'" 'e (p")+O'" 'V (p")

v (p")=O' 'Vl (p")+O'" 'V (p")

(33)

(34)

where the sum on the repeated indices is implicit.
We now multiply Eq. (33) by Vlh. (p") from the left, and

using the orthonormality relations, Eqs. (26)—(28), we get

, [&h(p")u. (p")] .1

m J
(35)

Similarly by multiplying Eq. (34) from the left by Vz (p")
and again using the orthonormality relations, Eqs.
(26)—(28), we obtain

m J
(36)

Further it is readily verified, e.g. , by using the results
presented in Appendix B here and explicit expressions for
u (p~) and v (p") found in Refs. [3(a)-3(c),3(g)], that

Vz(p~)u (p")=0=%&(p")v (p"),
which yields

n'""'=0=n'~'
o-h o.h

Finally, we exploit the facts

[r', r'I =o,
r"=r',

(37)

(38)

(39)

(r5)2

to conclude that Vh(p")v (p")= —Vlh(p~)u (p").
Thus, the matrix which connects the instant-form spinors

(following Weinberg [1] and Ryder [9]), in Refs.
[3(a)—3(c), 3(g)]. A brief report, sufficient for the present
discussion, can be found in Ref. [3(b)]. Here we only re-
mark that the construction of instant-form spinors fol-
lows the steps outlined in Eqs. (10)—(19), above, with the
only difterence that one starts with transformation A of
Eq. (2) rather than L of Eq. (10).

The instant-form hadronic spinors of Refs. [3(a)—3(c),
3(g)] satisfy the normalization properties

with front-form spinors reads

B(j) 0
o B() (40)

where B(j) is a (2j+1)X(2j+1) matrix with elements
B =6 (p")u (p")=O'" '=O'"

The explicit expressions for O(j) are presented in Ap-
pendix C. For spin —,

' the transformation matrix O( —,')
computed by us coincides with the celebrated "Melosh
transformation" given by Melosh in [5, Eq. (26)] and by
Dziembowski in [6, Eq. (A8)]. As formally demonstrated
by Kondratyuk and Terent'ev [15], the transformation
matrix O(j) represents a pure rotation of the spin basis.
However, since O(j) has block zeros off diagonal, what
manifestly emerges here is that this rotation does not mix
the even and odd spinor-parity spinors.

V. SUMMARY
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Within the framework of the Weinberg-Soper formal-
ism [1,2] we constructed explicit hadronic spinors for ar-
bitrary spin in the front form, and established their con-
nection with the instant-form fields. For a given spin j
there are 2j+1 hadronic spinors with even spinor parity,
Vl&(p"), and 2j+1 hadronic spinors with odd spinor par-
ity, Vh(p~). The normalization of these spinors is so
chosen that for the massless particles 6'I, (P") and Vh(P")
identically vanish, and only Vlz +J(p") and Vh =+J(p")
survive. The simplest choice of this normalization is
given by Eq. (23). Next we constructed the matrix O(j)
which provides the connection between the front-form
hadronic spinors with the more familiar [i.e., more "fa-
miliar" at least for the spin- —,

' case) instant-form hadronic
spinors. We verified that the transformation matrix O( —,')
coincides with the well-known "Melosh transformation"
[5,6], and the spin- —,

' spinors are in agreement with the
previous results of Lepage and Brodsky [4]. Explicit re-
sults for 8'h (p"), Vh (p"), and O(j) up to spin 2 are found
in Appendixes 8 and C here.
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APPENDIX A: EXPANSIONS FOR THE exp{gb- J) AND exp{ —gb .J) UP TO SPIN 2

(A2)

A~
This appendix provides the expansions for the exp(gb J) and exp( —ilb J), up to j =2, which appear in the spinor-

boost matrix M(L), Eq. (19):
J=p:

exp(rib J)=cosh(g/2)I+(b. o )sinh(g/2), (A 1)

exp( —ilb*.J)=cosh(ri/2)I —(b* o. )sinh(g /2) .

exp(qb. J)=I+2(b.J) sinh (iI/2)+2(b J)cosh(g/2)sinh(g/2),

exp( —gb J)=I+2(b* J) sinh (ri/2) —2(b .J)cosh(g/2)sinh(g/2) .

(A3)

(A4)

exp(qb J)=cosh(g/2)[I+ —,
' [(2b J) —I jsinh (g/2)]+(2b J)sinh(g/2)[I+ —,

' [(2b J) —I]sinh (ri/2)],

exp( —gb* J)=cosh(g/2)[I+ —,'{(2b* J) I.]sin—h (g/2)] —(2b* J)sinh(q/2)[I+ —,'[(21* J) I]sinh (g—/2)] .

(A5)

(A6)

J=2:
exp(gb J)=I+2(b J) sinh (g/2)+ —,'(b.J) [(b J) —I]sinh (rt/2)

+2(b.J)cosh(g/2)sinh(g/2)+ —,'(b.J)[(b.J) —I}cosh(q/2)sinh (g /2) . (A7)

exp( —gb* J)=I+2(b*.J) sinh (g/2)+ —', (1* J) [b* J) I]sinh (g/2)—
—2(b' J)cosh(il/2)sinh(g/2) ——', (b' J)[(b*.J) I ]cosh(rt/2)sin—h (g/2) . (AS)

In Eqs. (Al) and (A2) the o are the standard [9] Pauli matrices. In this appendix, I are the (2j+ 1)X(2j+ 1) identity
matrices.

APPENDIX 8: FRONT-FORM HADRONIC SPINORS UP TO SPIN 2

We begin with collecting together front-form hadronic spinors up to spin 2 for even spinor parity, first. In what fol-
lows we use the notation p„=p„+ip~ and p& =p, ip~, cf. E—q.(15).

Spin- —, hadronic spinors with even spinor parity:

1 1'iI+ i zz(p") =
2 p+

p++m

p+ —m

Pr

1 1

2 p

Pi

p +m
Pi

—p++m

(81)

Spin-1 hadronic spinors with even spinor parity:

p++(m /p+)
v'2p„

p,'~p+
Vl ( ")=-+1 P 2 +

( 2/ +)
v'2p„

—pi~p+
v'2

P, ~p+
Vlo(p" ) =m v'I /2 +

pi lp
0

p, /p '

1

2
VL, (p")=—

P&'~p+

p++(m /p+)

Pi ~p

v'2p,

—p++(m /p+)

(B2)

Spin- —, hadronic spinors with even spinor parity:
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1 1
ll+3n(p") =

2 P

1/2

(p+)'+(m'/p )

2

(p+ )' —(m '/p+ )

2

m 1'tl+in(p")=
2 P

1/2

v 3mpi /p

p++m
2pr

"t/3mpi /p

p m

2P'r

(83)

m 1'll (p" )=——1/2
P

+3pi /p

2PI

p +m
&3mp„/p+

Pr P~3 2/ + -3i2(P")=
2 P

2P(

—p++m
&gamp„/p+

pi /p

+3p 2

+3pip

(p+ )'+(m '/p )

pi /p

+3pip
—(p+ ) +(m /p+ )

Spin-2 hadronic spinors with even spinor parity:

(p+ )'+(m '/(p+ )')

2PrP
2

4/( + )2

VL ( ")=-+2 P 2 ( +)2 (m4/(p+)2) +] PVl ( ")=

2prp

+6p 2

2P,'iP+

p 4/(p + )2

—2m pi/(p+)
p++(m /p+)

V'6p„

2p„'/(p )'

2m pi/(p+)
p+ —(m'/p+)

v'6p„

3/( + )2

(B5)

Pl
&o(p~) =

&6pi /(p+ )

—&6pi/p '
2

&6p„ /(p )

—&6p /(p+) ' ' 2

&6pi/p+

0

V6p„ /p

+6p 2/(p + )2

—2pi /(p )

3P& ip

p++(m /p+)
2m p„/(p+)

2pi'/(p )'

V 6pi
—p++(m /p+)

2m p„/(p+)

(B6)
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4/( + )2

'M (p') =-~ =1
2 2

2p&p

(p+)'+(m /(p+)')
—pt'/(p+ )'

2pt p
—(p+ )'+( m /(p+ )')

(B7)

An examination of the spinor-boost matrix M(L), Eq. (19), implies that the odd spinor parity hadronic spinor can be
obtained from the hadronic spinor of the even spinor parity via the simple relation

V, (p~) =r'n, (p~), (B8)

where the matrix I defined in Eq. (24) interchanges the top (2j+1) elements with the bottom (2j+1) elements of the
hadronic spinors.

APPENDIX C: THE EXPLICIT EXPRESSIONS FOR Q( j), THE GENERALIZED
MELOSH TRANSFORMATION, UP TO SPIN 2

In this appendix we present explicit expressions for the matrix 0(j), Eq. (40), which connects the front-form hadronic
spinors with the instant-form hadronic spinors via Eqs. (33) and (34). As in Appendix B, p„=p +ip» and p& =p„ip», —
in what follows.

For spin- —„the matrix connecting the instant-form hadronic spinors with the front-form spinors is

0( —,') = 1

[2(E+m )p ]'i
P( —,') 0

(Cl)

where the 2 X 2 block matrix P( —,
'

) is defined as

p++m pr

p( p +Ul

For spin 1, the matrix connecting the instant-form hadronic spinors with the front-form spinors is

P(1) 0
Q(1)=

2(E+m )p+ 0 P(1)

(C2)

(C3)

where the 3 X 3 block matrix P(1) is defined as

(p++m ) —&2(p++m )p„

P(1)= &2(p +m )p, 2[(E+m )p+ —p„p, ]

pt &2(p++m )pi

pr
—&2(p++m )p„

(p +m)
(C4)

For spin- —„the matrix connecting the instant-form hadronic spinors with the front-form spinors is

Q(3/2) = 1

[2(E+m )p ]

P(3/2) 0
0 P(3/2) (C5)

where the 4 X4 block matrix P( —,
'

) is defined as
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(p++m )

&3(p++m) pt
p( —', )= &3(p++ m )pt

—&3(p++m) p„

[(p++m ) —2p„p, ](p++m )

[2(p '+ )' p,—pt ]pi

&3(p +m )pt

&3(p++m )p„
—[2(p '+ m )'—p,p ]p,

[(p++m ) —
2p„p& ](p++m )

V3(p++m ) pt

Pr

&3(p++m )p„
—&3(p++m) p„

(p++m )'

(C6)

For spin 2, the matrix connecting the instant-form hadronic spinors with the front-form spinors is

P(2) 0
Q(2)=

[2(E+m )p+] 0 p(2)

where 5 X 5 block matrix p(2) is defined via the five columns

(C7)

(p +m)
2(p++rn ) p&

P(2)a &= &6(p++m) pt

2(p++m )p,

—2(p++m ) p„

2[(E+m )p
+ —2p„pt ](p ++m )

, P(2)., &= &6[(E+m)p' p,pt](—p'+m)pt
[6p+(E+m )

—4p„pt ]pt

2(p +m )pt

&6(p++m ) p„
v 6[ —(E+m )p +p„p, ](p +m )p„

P(2) 3= 2[2(p+) (E+m) —3(p++m) p„pt)

&6[(E+m )p+ —p„p, ](p++m )pt

&6(p++m ) pt

—2(p++m )p„

[6p+(E+m ) —4p„pt ]p„

P(2) &= &6[ (E+m )p+—+p„pt](p++m )p„, P(2)

2[(E+m )p —
2p„p& ](p + +m )

2(p +m ) pt

Pr
—2(p++m )p„

&6(p++m ) p„
—2(p +m ) p„

(p++m )
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