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Mass formula for strange and nonstrange quark matter
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A mass formula for spherical lumps of two- and three-flavor quark matter is derived self-
consistently from an asymptotic expansion within the MIT bag model, taking into account bulk,
surface, curvature, and Coulomb contributions. For massless quarks the asymptotic expansion fits
exceedingly well with exact mode-filling calculations. A bulk approximation to the mass formula is
also discussed. The curvature energy is extremely important, adding up to 400A MeV to the
energy per baryon for baryon number A.

PACS number(s): 12.38.Mh, 12.40.Aa, 25.75.+r

I. INTRODUCTION

The possibility that strange quark matter, rather than
Fe, could be the ground state of hadronic matter even

at zero temperature and pressure, has attracted a lot
of attention since Witten resurrected the idea in 1984 [1]
(the first notion of the idea seems to be due to Bodmer [2];
see Ref. [3] for reviews and references on strange quark
matter).

Several experiments with relativistic heavy-ion colli-
sions [4], as well as cosmic ray searches, are ongoing or
planned. Therefore it is important to know the signa-
tures to be expected for small lumps of quark matter, be
it composed of up and down quarks, or (the more stable
case) up, down, and strange.

One decisive property is the mass. A calculation in-
volving mode filling in a spherical MIT bag has been
performed for ud systems by Vasak, Greiner, and Neise
[5], and for two- and three-flavor systems for a few pa-
rameter sets by Farhi and Jaffe [6] and Greiner et al.
[7]. Such calculations, capable of showing shell effects,
etc. , are rather tedious. For many applications, including
studies of decay modes, a global mass formula analogous
to the liquid drop model for nuclei is of great use.

Such an investigation of the strangelet mass-formula
within the MIT bag model was performed by Berger and
Jaffe [8]. That investigation included Coulomb correc-
tions and surface tension effects stemming from the de-
pletion in the surface density of states due to the mass of
the strange quark. Both effects were treated as pertur-
bations added to a bulk solution with the surface contri-
bution derived from a multiple reflection expansion.

Recently it was pointed out that another contribu-
tion to the energy, the curvature term, is dominant (and
strongly destabilizing) at baryon numbers below 100 [9].
In view of this and also in order to test the perturba-
tive approach in Ref. [8] there is a need for a detailed,
self-consistent treatment of the mass formula.

One important problem however is that the density of
states correction due to curvature is only known for mass-
less quarks, whereas the surface tension is an effect of the
mass, vanishing for zero quark mass. The present investi-

II. ENERGY OF A QUARK LUMP

A. General framework

In the ideal Fermi-gas approximation the energy of a
system composed of quark flavors i is given by

E = ) (A, + N~p, ) + BV + Ec „~ (1)
2

Here 0, , N, , and p, denote thermodynamic potentials,
total number of quarks, and chemical potentials, respec-
tively. I3 is the bag constant, V is the bag volume, and
Eg „~ is the Coulomb energy.

Extending the treatment of Berger and Jaffe [8] to in-
clude curvature corrections [9] one gets the following re-
lation for the total number of quarks of flavor i, N, , in
terms of volume, surface, and curvature densities, n, ~,
n, s, and n, t-.

, = n, vV+ n', s~+n', c&,
where area S = $ dS (= 47rR2 for a sphere) and curvature

O = i (u + u ) dS (= 8rrs for a sphere). Curvature

(2)

gation therefore mainly focuses on two- and three-flavor
lumps of massless quarks. First, a general framework will
be presented. Then the bulk solutions will be derived
for the purpose of comparison. Solutions for systems of
massless ud- and uds-quark matter will be derived, and
finally I shall comment on the consequences of a massive
s quark. It will be clear from the results that inclusion of
curvature energy is decisive. All calculations will be done
for zero temperature and strong coupling constant cr, .
As argued by Farhi and Jaffe [6] the latter assumption
can be relaxed by a rescaling of the bag constant. Also,
we shall concentrate on systems small enough (A ( 10 )
to justify neglect of electrons, which if present to ensure
charge neutrality are mainly situated outside the quark
phase. Finally we neglect charge screening, an issue of
negligible importance for the mass formula, but of some
importance for the charge-to-mass ratio for systems of
radii above 5—10 fm [10].
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radii are denoted Rq and R2. For a spherical system
Rg ——R2 ——R.

The corresponding thermodynamical potentials are re-
lated by

n = — ' (1 —A) ~ (1 —-A)
4~2 ( 2

+—A ln
3 4 1+ (1 —A2)'~2)

n, = ns, vv+ n~, sS+ n~, cC (3)
defining A

—= m, /p„with corresponding densities

4
p~

~u, v 4a2 '

p4
~d, v d

4a2 ' (4)

where Bn, /Bp, , = N, ,—and Bn; ~/Bp, = n,—,~ T. he
volume terms n, v are given by [6]

3
p~

nu v-
7r2

p3
nd, v- d

3
n, v= —'(1 —A) ~.

7r2

(6)

The surface contribution from massive s quarks is [8]

3 3 1 —A2
ns, s =

44'
1 ( (1 —A2) ~~2

l
arctan

p2 1/2
—2A(1 —A')'~'+ A'1

A )

3 2 (1 —A2)nss=
4 |"s 2

1
arctan

7r A
~ q(q q2) ~r~l~

) (8)

For massless quarks n, s = n, s = 0, whereas [9]

p2
e —

8 2) (9)

pi
ni, c = (10)

The curvature terms are not known for massive quarks.
With these prescriptions the differential of E(V, S, N, ) is given by

dE = ).n', v+ B dV+ ).n', s+ ).ni, c l
+

l
dS+) p~dNi+dEcou& ~

(1
Rq R2P

Minimizing the total energy at fixed N, by taking dE =
0 gives the pressure equilibrium constraint

B = —).n', v — ).n', s+) n', c l
+

t'1» dS
1 2

d@Coul

dV

I

with

AZV AZ
Coul

y pR 2R )

~+Coul
dV 40vrR4

AZ
8~R4'

(15)

(16)

1 j.
(13)

so, for a spherical volume, the constraint is

B = —).n', v ——) n', s — 2) n', c—

(14)

In general, the differential dS/dV depends on the curva-
ture radii

where Zv = Q,. q, n, vV is the volume part of the total
charge Z, whereas charge Z —Zv = P,. q, (n, sS+n, cC)
is distributed on the surface. The quark charges are q„=
2/3, qd = q, = —1/3. Eliminating B from Eq. (1) then
gives the energy for a spherical quark lump as

Z = ) (N, p, + -,'n, sS+ -,'n, cC) + s4Zc „(. (17)

The optimal composition for fixed baryon number A
can be found by minimizing the energy with respect to



5158 JES MADSEN 47

N, at fixed V, S, giving

O=dE=) (p., + '")diV~ (18)

B. Massless quarks —Bulk limit

For uncharged bulk quark matter Eq. (17) reduces to
the usual result for the energy per baryon:

eo =A ') N,'p, ,',

where a superscript 0 denotes bulk values. The energy
minimization, Eq. (12), corresponds to

8. Ttvo flavor quark matter

For two-flavor quark matter composed of u and d
quarks the Coulomb term does not vanish, but the contri-
bution to the energy per baryon is negligible (less than
4.8 MeV, with a broad maximum for A near 800; cf.
Fig. 1). For small systems the chemical potentials of u
and d quarks are roughly equal (thereby minimizing the
curvature energy), but in the bulk limit, where curvature
is negligible, chemical potentials adjust to allow charge
neutrality, p,&

——2 / p,„.With this relation for the bulk
limit one Ends

47r B
p =

~ i

= 1.830B = 292.8 MeVB
~1+ 24/s ~

160 ~

) - ~o ) - (p,')'
(2o) (28)

The last equality assumes massless quarks. In the bulk
limit the baryon number density is given by

n~ = (p ) /vr = 0.621B (29)

0 1 ~- (p,')'
+A

B' = (3/4~n'„)'/' = 0.727B '/'.
21

And the energy per baryon is

(30)

and one may define a bulk radius per baryon as = (1+2 / )p„= 6.441B / (31)

Three Pavor quark matter

(22)
Adding again the curvature energy as a correction to the
bulk solution leads to

For quark matter composed of massless u, d, and s
quarks, the Coulomb energy vanishes at equal number
densities due to the fact that the sum of the quark
charges is zero. Thus it is energetically most favorable
to have equal chemical potentials for the three flavors.
From the equations above one may derive the follow-
ing bulk expressions for 3-favor quark matter (defining

Bis/0 —Bi/ /160 MeV):

E +A ) 0 C
z, ,C

1031 MeV + 321 MeVA / B /

C. Massless quarks: Self-consistent
asymptotic solution

(32)

n'„= (p,')'/~' = O.700B'/',

B = (3/4am ) = 0.699B

(23)

(24)

(25)

1/4

p,, =
~

= 1.905B / = 304.7 MeVB&s/0,

¹
= p,, R ——p,,B,

4 3 3
37r '

7r
' (33)

Self-consistent solutions can be obtained as follows.
For massless quarks the number of quarks of flavor i de-
pends only on the product p, B, with

And the energy per baryon is

~0 = 3p,,' = 5.714a'/4. (26)

or

f(N, ) = p;R = —( [3~N, + (9~ N, —8) ]'1

2

Following Berger and Jaffe [8] one may to first order re-
gard Coulomb, surface (and here, correspondingly, cur-
vature) energies as perturbations on top of the bulk so-
lution. In this approach one gets

+ [3~N, —(9~'N,' —8) '/']'/'). (34)

Another important property, only valid for massless
quarks, is that the energy is simply given by

—=e'+A-') n,' Co

0+ 313/12~1/4

7r 1/6 21/6 g2/3

914 MeV+ 387 MeVA B16o. (27)

2R
E =4BV+) (35)

(This can be shown explicitly from the equations above
and is valid regardless of Coulomb energies. It is not
valid for massive quarks. ) The radius can be expressed
in terms of B using Eq. (12), giving
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1 ) (f(N, )4 —2f(N, )')
1300 I I I I I I lli I I I I I III

Ct7f'Z~ 0!7tZ2
- 1/4

+ + B—1/4.
10 2

{36)
1200

4Zv = s Q, q, f(N, )s, Z = Q,. q;N, Th. us for fixed com-

position the energy is proportional to B1/4

B~s+) - f( 1) I/4
3

oc B (37)

The preferred corncompos1t1on for a spherical strangelet of
1'adllls R and baryoll number A = ~ N /'
from E k(l 8

u -limit approximations from Eqs. (32) and (27). Th
bulk-limit Bts are ver

n . e
very good for uds-quark matter, with

significant deviations only for A ( 10. In fact one can
show explicitly that E . ~27~ja q. ~ 7& gives the Grst terms in an
expansion in powers of A 1' . Somewhat larger devia-

cal oten '
tions occur for ud matter due t th hue o e c ange in chemi-
ca potentials from p„= pg (A ~ 1) to0 pg ~ 2 p~

For three-flavor quark matte tha er ere is no Coulomb en-
ergy. peril quark flavors have the same h

'
I

p~ and the energy becomes
same c emica potential

Z =3—'V- 'a.
7r2 7t-
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D. Massless quarks: Ewact solution

FIG. 2. ToTotal energy per baryon for ud- dotted cu - o e curves
-q r matter 'solid curves), compared to the "bulk

approximations" of Eqs. (32) and (27). The bulk approxi-
mations undershoot as A ~ 1. Also shown

mo e- ing calculation for uds-quark matter (dashed
curve). The value B = 145 MeV was
scale like B

e was assumed; all energies

1000
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Also shown in Fi . 2 is'g. is the exact solution for three
massless quark Havors, which has the form

E= BR16'
E

100

= 401.66 MeVB 160 ~1111 ~11n I (39)

- 1/8

R~ = ) ~ —) ~„„ /(47rB)1~4 (40)

10 and the num
where the sums are to be taken over all 3A u kv r a quar levels,

e numbers w„„are tabulated in Ref. 5 . The m
formula derived

e . . e mass

these exact u

'
e a ove from the asymptotic ex ' 6xpans1on ts

exac quantum mechanical calculations exceedingly
well, apart from the "wiggles" due to shell eKects

1
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I III I » 'I'
I I 11
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E. Limits on B from the t b'l'ts a ii yof nuclei

FIG. 1. Total energy ~u erupper set of two curves), curvature

num er or ud- dotted curv
curves . Also s

curves and uds-quark matt ~ l'dcurv er so 1

). shown are the chemical potentials, all e ual
for uds, whereas pg 2 f A f udp,„or A. ~ oo in the case of ud
matter. The value B = (145 MeV) wase, was assumed; all energies

ton
The fact that nuclei are composed of n te o neu rons and pro-

be
ons rather than ud-quark matte ll ler a ows a ower limit to
e placed on the bag constant B An estimate can be

o tained from the inequality E/A ( 930 MeV for rnas-
sive nuclei with A = 240
in [5, 6]). Using E . 32 o

i = (similar limits were presented
on gtsap m'ttdrang o) 142.5 MeV. TTa~ing the exact numerical results

strengthens the limit slightly, to BI~4 ) 145 M V,
e existence of a minimum in E/A f dor u matter in
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the range of the heaviest nuclei (this minimum is an ef-
fect of the Coulomb energy). The limits are weakened
by roughly 1 MeV when noticing that ud matter formed
from decay of a nucleus will not have the energetically
most favorable composition, since this would require a
high-order weak interaction. At the time of formation
flavor conservation should be invoked; only later weak
interactions will take the system to the ground state of
ud, or more likely ud8 quark matter.

III. CONCLUSIONS

The present investigation has focused on the mass for-
mula for two- and three-flavor quark matter composed
of massless quarks. As expected from previous investiga-
tions, three-flavor quark matter is energetically favored
in bulk, and could be absolutely stable relative to ssFe
for 144 MeV & B ~ ( 163 MeV. The lower limit corre-
sponds to experimentally excluded stability of ud quark
matter, whereas the upper limit corresponds to a bulk
energy per baryon of uds matter of 930 MeV.

Within the MIT bag model finite-size systems are
strongly destabilized by the curvature energy, with a
magnitude of almost 400 MeVA ~ By60 for three quark
flavors. This may pose problems for the experimen-
tal attempts of producing strange quark matter, since

these experiments so far can only hope to produce quark
lumps of baryon number A ( 10—20. Further destabi-
lization occurs for finite-mass 8 quarks, where the surface
tension (exactly. zero for massless quarks) adds another
100 MeVA ~ to the energy [8, 9]. Since the curvature
correction for massive quarks is not known, the present
investigation has concentrated on massless quarks, where
the energy including curvature and Coulomb contribu-
tions can be calculated self-consistently. A similar treat-
ment for massive quarks will be attempted in the near
future. In this context, where exact mode-filling calcu-
lations are tedious, the nice agreement between mode-
filling calculations and the asymptotic expansion demon-
strated in Fig. 2 is very reassuring.
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