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Pion propagation at finite temperature
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We calculate the pole shift of the pion up to second order in the density, considering the low-

temperature expansion of the axial two-point function. To this order both absorptive and dispersive
properties of pions are completely determined by two- and three-particle S-matrix elements. In particu-
lar, we show how the pole shift can be expressed in terms of these scattering amplitudes and discuss the
size of corrections from three-particle collisions.

PACS number(s): 12.38.Mh, 11.30.Rd, 14.40.Aq, 25.75.+r

I. INTRODUCTION

It is common belief now that hadronic matter under-
goes a deconfinement phase transition into a quark gluon
plasma when the temperature reaches some critical value
Tc [1]. Studying this expected phase transition is one of
the main goals of experiments with high-energy nuclear
collisions which in turn call for an improved theoretical
understanding of the thermalization process occurring in
the aftermath of such reactions. In particular, it is of in-
terest to analyze absorptive and dispersive properties of
hadrons below the critical temperature T&.

In the present paper we analyze the propagation of
pions through matter in a state of thermal equilibrium at
temperature T. If the temperature is not too high the ha-
dronic phase mainly consists of pions, the lightest parti-
cle of the theory, with effects of other massive excitations
such as E, p, g, . . . being exponentially suppressed. At a
temperature of 120 MeV every third particle is an excited
state [2]. Although physics of the hadronic phase below
the chiral phase transition has extensively been studied,
most of the work is restricted to corrections of first order
in the density. At this order the propagation of pions is
described by a sequence of scattering processes involving
only one particle of the heat bath at a time. If the tem-
perature is not too high effects of the interaction with
heavier excitations can be neglected and the correspond-
ing shift in the pion pole is determined by the pion densi-
ty and the ~~ forward-scattering amplitude. The result-
ing corrections to absorptive and dispersive properties
have been evaluated in two different ways: (i) by means
of systematic low-temperature expansions in the frame-
work of chiral perturbation theory [3—5] and (ii) in more
realistic approaches [6,7] exploiting experimental infor-
mation on ~a scattering amplitudes.

In the present paper we carry the expansion one step
further and determine the pole shift of the pion up to
second order in the density, including effects generated
by three-body collisions. Absorptive and dispersive prop-
erties of pions in the heat bath are governed by the pion
pole of the axial two-point function. We will make use of
the fact that at low temperatures the low-energy proper-
ties of pions are controlled by chiral symmetry. Then the
propagation properties can be analyzed in terms of an ex-
pansion which treats the temperature, the energy and the

mass of the particles as small quantities (chiral perturba-
tion theory). The leading term in this expansion de-
scribes the propagation of free particles with a pole at
co =p +M . The leading corrections to the pole shift
are determined by the Bose factor and the current-
algebra prediction for the ~~ forward-scattering ampli-
tude. To include effects of second order in the density we
have to evaluate corrections one step beyond leading or-
der in the low-temperature expansion. At this level, the
contribution of first order in the density will involve the
one-loop result for the ~m forward-scattering amplitude.
Comparing this prediction with the results of an earlier
work [6] which is based on a phenomenological descrip-
tion of this S-matrix element, we can provide a rather ac-
curate estimate for the range of validity of chiral pertur-
bation theory.

At second order in the density, the sequence of scatter-
ing processes the traversing pion undergoes will also in-
volve events of simultaneous interaction with two parti-
cles of the heat bath at a time. In a second part of this
paper we will furthermore show that the pole shift at this
order in the density can still entirely be expressed in
terms of S-matrix elements. The formula now involves
both, two- and three-particle scattering amplitudes and
provides an expression for the pole shift which should be
valid even in ranges of temperature and momenta where
chiral perturbation theory clearly breaks down. The dis-
cussion will also clarify the physical picture describing
the propagation of particles in the heat bath, since effects
of new phenomena such as the absence of asymptotic
states in the medium clearly show up.

Perhaps we should also make a short remark about a
technical point in this introduction. If the 2X2 matrix
formulation of thermal field theory [8] is used, one gen-
erally encounters certain undefined quantities during
finite temperature calculations, which some authors
found difBcult to deal with. We will show in this work
that the occurrence of such terms is not inherent to finite
temperature perturbation theory but the result of an un-
tidy prescription which can be avoided.

II. REAL-TIME
CHIRAL PERTURBATION THEORY

A very efficient technique for the analysis of the low-

energy structure of the theory, in particular, for the
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V„v=r)„v i(U„+a„)v+—iv(U„—a ) . (2.2)

X,a is a sum of terms with an increasing number of
derivatives and mass factors, corresponding to an expan-
sion in powers of the momentum:

—~(2)+~(4)+~(6)+. . . (2.3)

The leading term in this expansion is the well-known La-
grangian of the nonlinear o. model:

&, v„v'v&v+M,'( v+ v') &i,
Fo

(2.4)

analysis of the low-temperature expansion, is provided by
the effective Lagrangian method. Since this technique is
described in detail in the literature for the case of zero
temperature [10], we need only briefiy discuss the exten-
sion to finite temperature [8,9], which is straightforward.
In this framework pions are described by a field U(x)
which is defined on the group SU(2). The generating
functional is represented as a path integral

e "' "' ' =fDp[v]exp i f %ad x dr . (2 1)

The integration extends over all Euclidean space R and
over a contour C in the complex time plane as shown in
Fig. 1. The functional integral extends over field
configurations with the periodicity condition

U( —ae, x) = U( —Oo iP—, x),

where P= 1/T is the inverse temperature.
X,a.=X,a(U, V„U,V„V U, s,p, . . . ) is the standard

e6'ective Lagrangian [10] but the domain of definition for
all fields is now the contour C instead of the real-time
axis. Derivatives with respect to the complex time are
taken along this contour. s and p are the external scalar
and pseudoscalar densities. The external vector and
axial-vector currents a„and v„are coupled to the field
U(x) by the covariant derivative

the pion decay constant in the chiral limit, i e.,
m„=md =0, while all other masses (m„m„. . . ) are kept
at their physical values. Mo is the pion mass at leading
order:

Me=Bc(m„+md) . (2.5)

In our analysis isospin-breaking effects play only a minor
role. Indeed, they do not show up at leading order be-
cause X' ' is isospin invariant. The isospin breaking part
of X' ', being of order (m„—md ), only shifts the mass of
the m . But isospin breaking effects on the mass splitting
are tiny, even as compared to electromagnetic contribu-
tions, and we therefore neglect them. Furthermore, we
neglect all terms in X'"' that do not contribute to the pole
position. The remaining part of X' ~ involves four new
low-energy constants I „L2,L„,L6.

z'"=L, (v„v'v~ v )i'+L, (v„v'v v ) (v&v'v'v )

+L4Mo( U + U)(V„U V"U)

+L6Mo( Ut+ U) (2.6)

For the full Lagrangian, including terms that are not
relevant here, we again refer to the literature [10]. To
determine the pole position at two-loop level, contribu-
tions from X' ' enter only at the tree level. Since they are
temperature independent and merely renormalize the
pion mass, we need not consider them at aH.

The low-temperature expansion of the effective func-
tional Z[a„,u„,s,p] is obtained by expanding the field
U(x)=e'+' ' in powers of y'. The leading term in the
effective action is a quadratic form in y which describes
free mesons. The rest of the action is treated as a pertur-
bation. Evaluating the Gaussian integrals in the standard
manner one obtains a set of Feynman rules that differ
from chiral perturbation theory at zero temperature only
in one respect: All time integrations are replaced by in-
tegrations over the contour C and the propagator is the
Green's function on this contour:

where angular brackets denote the trace in isospace.
Since we are only interested in the axial-vector current,
all other external sources are already switched o6'. Fo is

1

( +Mo )Ai3(r r', x x') = —5c(r —r')5 (x——x')—

with the solution

(2.7)

h&(r r', co )=——i 1

02')p

0 p 0 . 0—icy (w —r') Pe +ice —(r r')
)g ( p) (

—
leap(7 1 )+ l3$p /Bp(7 7 ) )e (

t
)7 T (2.8)

Imt

which obeys Kubo-Martin-Schwinger boundary condi-
tions. We use the notation ec.(r—r') and 5&(r—r') for
the 0 and 5 function, respectively, on the contour. In the
following, real-time coordinates t will be represented by
the symbols t and t, depending on whether t belongs
to the subset C+ or the subset C of the contour C (see
Fig. 1). In this language any time t, is later than any
time t2 . The thermal propagator (2.8) contains a certain
number of Green's functions, some of which will be used
later in this work. From Eq. (2.8) we read off

Ret

FIG. 1. The contour C=C UC+ U C in the complex time
plane runs from t= —~ along the real axis to t=+ ~, then
back to t= —~ and from there down to r= —oo —ii3. The
three portions are labeled C, C+, and C .
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id' (z, —z2)=id'(ti t2—, z, —z~)

d p —
&p (z& —z2) g

~

~(2m)d p —Ma+i E

+8(z, —z2),
ib p +(z, —z~) =ib', p(t, t2+—, z, —z2)

d
p /p. (z)

(2m )"

(2.9)

III. POLE SHIFT TO SECOND ORDER
IN THE DENSITY

At tree level the path-ordered two-point function of
the axial-vector current is just

i ('Tc[A '(z, )A '(z2)]) =5 ' 'Fohn „(z,—z2)

+contact terms, (3.1)

where

Xe( —po)+8(z, —z2) .

The temperature insertion

d

vanishes if the temperature is zero;

(2.10)

(2.1 1)

(z, —zz)=a. d. ~,(z, —., )

is the second derivative of the thermal propagator (2.8)
and the time derivatives are taken along the contour C.
Applying Eqs. (2.14) and (2.16), the retarded two-point
function is then

(iR [A~'(z, )A~'(z2)]) —5 ' 'Fob+„, (z&
—zz)

+contact terms (3.2)

I
n~(x) =

e~ —1
(2.12)

is the Bose distribution. Similar expressions can be de-
rived for the functions 6&+ and 6& . The retarded
propagator

with the retarded propagator (2.13). Throughout this
work we will neglect all contact terms without further
mentioning it because they do not contribute to the pole
position.

A. One-loop contribution

p —ip.z
d" . 1

(27r)" (po+i e) (co~ )—

can then be expressed in terms of these functions as

g —+ g+ — g++
P P P P

(2.13)

(2.14)

The relevant one-loop diagrams are summarized in Fig.
2. Straight lines represent the thermal propagator while
the axial-vector current is indicated by the wiggly line.
Vertices from the Lagrangians X' ' and X' ' are denoted
by dots and filled squares, respectively.

The contributions of diagrams 2(a) and 2(b) are

i(T,(A. 'A. ')) = 6 5
„ z[ai„Ui„,s,p ] , , i o

5a, ' 5a, ' P P
1 2 s=M 0 '

(2.15)

As for the propagator, we obtain, for the corresponding
retarded function,

(R[A, '(t, )A '(t, )])

=e(t, t )( [A „' (t, ), A '(t, )—] )

Furthermore, at finite temperature, time ordering is re-
placed by ordering along the contour C, and the expecta-
tion value of the path-ordered two-point function of the
axial-vector current is given by

F05 ' ' d'x a~, (z, —x )ap. (x —z, )
C 1 2

M02 1X —5 (0)+32 L — LM2-
F2 2 P 6 2 4 0

0

+5 b& (z&
—z2 ) —ib&(0) —16L4MO

k)k2 2 . 2

and from diagrams 2(c) and 2(d) we get

—5 ' '
ikey(0) 32—L„MO b—,p, (z, —z2) . (3.4)

To obtain these results we have performed partial in-
tegrations and made use of the following property of the

=(Tc[A '(t, )A.'(t, )])
—(T [A '(t, )A„'(t+)]) . (2.16)

2.a

2.c + crossed

2.b

2.d

Note that, on the subset C of the contour C, path or-
dering reduces to ordinary time ordering.

In the following we will use dimensional regularization
because the Jacobian relating the measure Dp[U] to the
measure Dp[y] is equal to one in this scheme.

FICz. 2. One-loop contributions to the axial two-point func-
tion. Dots and filled squares indicate vertices from L' ' and
from X'"'. Wiggly lines represent axial-vector currents while
full lines denote thermal propagators (2.8).
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thermal propagator in the dimensional regularization
scheme

amp(0) = —M2ap(0) . (3.5)

Furthermore, although Lorentz invariance is lost at finite
temperature, the first derivative of the thermal propaga-
tor still vanishes at the origin of space-time 3.c

bp, (0)=0 . (3.6)
3.e

Applying Eqs. (2.14) and (2.16) again, the Fourier trans-
form of the axial two-point function is of the form

3.f 3.g & + crossed

with

—5 ' 'F02p p b,„(p)I 1+5f,+5m)bg(p)] (3.7)
3.h 3.1

2M0 —25f, = [16L4 2i—hp(0)MO ],F20
(3.8) 3.J 3.k

4

5m = 32 L — L+—b—, (0)M
M0 j —2

1 6 2 4 2 p 0
0

B. Two-loop contribution

(3.9)
3.1 + crossed

FIG. 3. Two-loop contributions to the pole shift of the axial
two-point function. Dots and filled squares indicate vertices
from X' ' and from X' '. Wiggly lines represent axial-vector
currents while full lines denote thermal propagators (2.8).

So far we have considered contributions to both the
residue and the pole position of the axial two-point func-
tion. To determine the pole shift at the two-loop level, it
is, however, sufficient to know the residue at order F0
Thus, we can furthermore neglect all contributions to the

residue from the two-loop diagrams.
The relevant two-loop graphs are summarized in Fig.

3. Let us first consider the momentum-dependent contri-
butions. From diagram 3(a) we get

—5 ' '—, d "x d "y [b,p(y
—x )&~& (y —x ) —&~p(y —x )&p(y —x ) ]

2 1

0

X tb p (z) —y )hp (y —x )b p, (x —z2)+6 p (z) —y )b p„(y
—x )b p, (x —z2)

+5p (z, —y)bp (y —x)hp„„(x—z2)+bp„(z, —y)bp(y —x)bp „(x—z2)]

M—5 ' ' I d x d y bp„(z, —y)bp(y —x)hp„(x —z2) . (3.10)
0

Again the corresponding contribution to the retarded function is obtained in the standard manner, applying Eqs. (2.14)
and (2.16) and using the propagators given in Eqs. (2.9) and (2.10). For the Fourier transform of this function we get so
far

d d d

F 5 ' 'p p b. (p) f „„,(2~) 5 (p+q&+q2+q3)F(P ql q2)
k k ~ ~1 ~ ~2 q3 d (d)

(2')" (2m)" (2m. )

with

X Ihp (q, )bp —(q2)bp (q3) —&p (q&)&p (q2)&p (q3)] (3.11)

—Mo+ I (p2 —pi )(p4 —p3)]'+ I (p» —pi )(p4 —p2) l'+ l(p4 —pi )(p3 —p»]'
0

(3.12)

and p4 being fixed by energy-momentum conservation.
From diagram 3(b) we obtain the following contribution to the pole term of the two-point function:
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2 1 2 d 0 20 13—FO5 ' ' f d x b p (z, —x )Ap, (x —z2)ib p(0)16 4 3L, +L2+ L6 — L4
1 2 F4

0

—F05 ' ' f d x
AFAR, (z, —x)bp (x —z2) 4 [imp„(D)(L, +2L2)] . (3.13)

Pv2 2 F4
0

The second derivative of the thermal propagator at the origin of space-time can be written in a form which explicitly
shows that Lorentz invariance is lost at finite temperature:

b«„(0)= [Mob p(0)( —g„+n„n, )+Apoo(0)( —g„+dn„n, )],1 (3.14)

where n„=(1, 0) is a constant four-vector. The second term in this equation involves the second derivative of the
thermal propagator with respect to time. In this case the absence of Lorentz invariance is responsible for the fact that
the contribution from diagram 3(b) to the self-energy is momentum dependent —at zero temperature it would only be a
constant. The temperature-dependent part can be expressed in the form

4~p 20
FO5 ' 'p p„b~(p) 16 3L, +L2+ L6—

1 2
0F 3

L4 B(0)

+ „(L,+2L2)f d 2m5(q —Mo)np(cP~) —(k —2MO), (3.15)
Fo (2~)"

where k =(p +q). Again we have omitted terms that merely renormalize the residue. All the remaining contributions
to the self-energy depend only on temperature. Prom diagram 3(c) we readily get

2
2 "lk2 d 25 o 2FO5 ' ' d x bp (z, —x)bp (x —z~) Ap(0)

C 1 2 24 F4
(3.16)

Prom graphs 3(d) and 3(e) we obtain

M M
F05 ' ' d x bp (z&

—x )bp (x —z2) — id, (p 0) imp(0)+32 L6 — L4 Mo +— —5m
&

d y hp(x —y) . .2 7 2 l 0 2 d

8 2 Fp2 c
r

(3.17)

In this expression the last integral over the contour C can
be expressed in terms of the derivative of the thermal
propagator with respect to its mass,

B,bp(x)= f ddy &p(x —y)&p(y),
0 c

(3.18)

and we will see below that this contribution just renor-
malizes the mass of the thermal distribution function.

If the 2 X 2 matrix formalism of thermal field theory [8]
is employed, one generally encounters certain undefined
quantities such as squares of 6 functions during inter-
mediate steps of finite temperature calculations. Al-

though these terms cancel each other in the end, this is
not a very satisfactory situation. In our case all these
undefined quantities would arise from the evaluation of
the Peynman graphs corresponding to diagrams 3(d) and
3(e). An explicit calculation would show that these quan-
tities are introduced by an inadequate splitting of the
contour integral (3.18) into a sum of ill-defined terms,
thus their occurrence is not inherent to finite temperature
perturbation theory but originates in mathematical un-
tidiness.

The remaining diagrams 3(f)—3(1) are straightforward
to calculate. We get the contribution

FO5 ' ' f d x d"y bp (z, —x)bp(x —y)bp, (y —z2)(5m, )

+F05 ' 'f d x hp, (z, —x)bp (x —z2)5m, 5f, +F05 ' 'f d x bp (z, —x)bp (x —z~)

Mp
X 5m

&

—imp(0)MO 2 —16L4, (3 19)F2
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IV. RENORMALIZATION

Most of the singularities in the limit d=4 stem from
the thermal propagator at the origin of space-time and its
derivative with respect to the mass. In the dimensional
regularization scheme, we obtain

i b,p(0) =2MO X+8(0) (4.1)

with the singular part

where we have used the abbreviations 5m, and 5f, from
Eqs. (3.8) and (3.9) for the shifts of the pole and the resi-
due at one-loop level. In this expression the trivial terms
—(5m

& ) and —5m &5f &
do not directly add to the pole

shift of the axial two-point function. Only the last term
provides a nontrivial contribution to the pole position.
That such a contribution arises at all is due to the deriva-
tive coupling in chiral perturbation theory. Evaluating
the corresponding one-particle reducible diagrams for the
self-energy in, e.g. , ky theory, one only obtains the first
term in Eq. (3.19).

——r (1)+1+in(4~)
1 d 4 1 1

(4~} d —4 2

—ln
M0

(4.2)

The temperature-dependent part 8(0) is finite [see Eq.
(2.11)]. For the derivative we get the similar expression

ir} 2bp(0)=2k, + +8 p8(0) .
1

Mo ~ (4~)2 Mo
(4.3)

Again the temperature-dependent term is finite.
The singularity structure in Eq. (3.11) is more compli-

cated. In the representation [Eqs. (2.9) and (2.10)] for the
propagators 6& we have separated the temperature-
dependent part 8 from the limit of these propagators at
T=O. Multiplying out the propagators in Eq. (3.11) we
can identify three different contributions in this equation.
The first one is the temperature-independent limit T=O.
The other two are of first and second order in the Bose
factor nz, respectively. Furthermore, the contribution of
first order develops a pole at the dimension d=4 while
the second-order term is finite. Performing the loop in-
tegrations with respect to q2 and q3 we obtain, for the
first-order term,

ddI „2vr5(q —Mo )nz(co ) —
A, [10(k —2MO) +13MO]+ (k —2MO) + Mo

J o(k) k — kM+ M
48 2F4 5 1P

(4.4)

with k=(p+q) and

J(cr)=2+o ln, o(x)= 1—cr —1

o. +1
2 1/2

I

The reader should be aware of the differences between the
parameters F0 and M0 and their physical values F and
M„, which at this level of accuracy are given by the well
known result

The bare coupling constants L, , L2, L4, and L6 all
contain a pole at d=4. Let us define the renormalized
coupling constants L; by

M
M =M0 1+32 L6 ——I 40 F0

(4.9)

L; =6,k+L; (4.&)
M

F„=F0 1+16 I 44 (4.10)

with

(4.6)

M
5f )

=
2 [16L~—28(0)MO ],F

(4.7)

With this definition all our results remain finite if the reg-
ularization is removed.

Indeed, the requirement for the one-loop results [Eqs.
(3.8) and (3.9)] to be finite, uniquely fixes the constants 54
and 56, yielding

M
M (T)=M + — g(0)

M1 ~ T
2 F' 2~M

3/2 —M /T
e (4.11)

+ (T)=F —28(0)

These relations enable us to express the temperature
dependence of the mass and the decay constant in terms
of the physical quantities:

M +—6(0)M '
1 F2 6 2 4 0

0
(4.8)

M T-F 1 —2
3/2 —M /T

e (4.12)
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Furthermore, one readily obtains the following results in
the chiral limit Mo 0:

M (T)=0, F„(T)=F 1 —— (4.13)

Actually, these one-loop results for the mass and the de-
cay constant are not new [4] and may be considered as a
check for our calculation. In accordance with unitarity
we do not observe any absorption at leading order. Fur-
thermore, dispersion is also absent: at the one-loop level
interaction with the heat bath only modifies the mass and
the decay constant which both become temperature
dependent.

At the two-loop level we obtain the following expan-
sion of the retarded two-point function of the axial-vector
current in powers of I o

The momentum dependence of the term XR ' stems entire-
ly from the two-loop diagrams and is of order I o
hence, it only affects the residue. If the self-energy is ex-
pressed in terms of the physical mass, the quantity XR'
can be eliminated and the pole position is determined by
the equation

(p ) =p +M +X+(p,p). (4.20)

p'=~(p») r—(p—») .
2

(4.21)

In the limit T=O the pole is indeed at the position

p =Qp +M . At nonzero temperature and for real
wave numbers the pole sits at a complex value ofp:

5' 'F—op. p. ~~(p)

X [1+5f,+5f2+b~(p)(5m, +5m, 5f, +X2)

+[5mia~(p)]'] . (4.14)

The one-loop contributions 5f, and 5m, [see also Eq.
(3.7)] are of order Fo while 5f2 and X2 are of order Fo
The two-loop contribution 5f2 merely renormalizes the
residue and has already been neglected. If we define the
retarded self-energy XR by

co(p)=Qp +M +ReX~(co„,p) (4.22)

co(p ) is the frequency of pionic waves with wave number
p and M ( T) ='co(p =0) is the eff'ective mass. The damp-
ing coefficient r(p) is the inverse time within which the
intensity of the wave is attenuated by a factor I/e. In
leading order of small quantities, absorption and disper-
sion are given by

X~(p, p)=Mo+5m, +22(p, p),
Eq. (4.14) is just the geometric series of the function

Fo(1+5f, +5f2)
pv pv ' (po+~e) —p —~~

(4.15)

(4.16)

1
=co + ReXz(co~, p),

2cop

1
r(p) = — ImX~ (co,p),

(4.23)

(4.24)

As in the discussion of Eq. (4.4) we can in general divide
this self-energy into three pieces:

=r' '+r'"+r")
R R R R (4.17)

y T —. y(1)+y(2)
R R R (4.18)

where XR is the zero-temperature result and XR and
XR ' are the contributions of first and second order in the
Bose factor n~, respectively. The discussion in the previ-
ous section already showed that higher powers in the
Bose factor do not occur at the two-loop level. In the fol-
lowing we will also use the abbreviation

where co„='Qp +M is the pole position in the limit
T=O and XR describes the modification by the interac-
tion with the heat bath.

At one-loop level this interaction modifies the pion
mass which becomes a function of temperature. At next
order, therefore, we expect terms accounting for the fact
that the thermal distribution of these particles actually
depends on their effective mass at temperature T instead
of the bare quantity. From diagrams 3(d) and 3(e) we
indeed get the next term in an expansion of the Bose fac-
tor around its bare mass Mo. Together with the one-loop
result we obtain the contribution

for the full temperature-dependent contribution. By
definition this contribution vanishes if the temperature
goes to zero.

The temperature-independent piece XR' still has a pole
at d=4. To remove this singularity we have to add fur-
ther counterterm diagrams such as the one given in Fig.
2(b), but with the vertices from the Lagrangian X' '. To-
gether, we get an additional finite contribution of order
Mo/Fo to the physical value of the pion mass M„, which
is then given by

M
[a(O,M )+5m2a, a(O, M )]g2 0

) Mo
8(O, M (T)),

2 Q2
(4.25)

which involves corrections of second order in the density.
The requirement for the singularities of the first-order

term XR ' to cancel each other uniquely Axes the remain-
ing two constants 6& and 62 at the values given in Eq.
(4.6). If the regularization is finally removed we obtain
the results

2 4

M =MD 1+32 I 6
— L~ + c . (4.19)—2 2 Mo — 1 — MO
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T

1 Mo Mo — 1 — — — 31X'"(co p)=8(O, M ) — — 64 L — L—+80(L +L )—
F4 6 2 4 1 2

s(s —4Mo )

(2m') 2coq
i

Fo 36m 96m Fo

+ (10u —32M u+37M )
967r F0

with the Mandelstam variables s =(p+q ) and u =(p —
q ), and

M M
X'tt'(co~, p)= —

z [8(O,M (T))—8(O, M„)]— [8(0)]

(4.26)

4 4 4

+—' (2') 5 (p+q, +q 2+q3)F(p, q„q 2)(2m. ) 5(qi Mo@(q2 Mo)
d q) d q2 d q3 4(4) 2 2 2 2 2

(2m. ) (2n. ) (2m )

Xntt(coq )ns(co~ ) 2 +2in5(q3 —Mo)e(q3)
q3

—Mo+l E
(4.27)

with the function F given in Eq. (3.12). Furthermore, we
separated contributions coming from Eq. (4.25) according
to their order in the density.

The result for the self-energy confirms a general prop-
erty of finite temperature perturbation theory. If the cou-
pling constants are renormalized in such a way that the
theory is finite in the limit T=O, then it remains finite if
the temperature is switched on: additional singularities
do not occur at nonzero temperature. Indeed, the numer-
ical values for the constants 5; in Eq. (4.6) agree with the
one-loop calculation at zero temperature [10].

V. S-MATRIX ELEMENTS

The relevant mm forward-scattering amplitude

T (s}= g T (s)

can be expressed in terms of the amplitude A (s, t, u ):

T ( )s= A(s, Ou ) +32( ,0us)+ A(u, s, O) .

At one-loop order this amplitude is given by [10]

(5.1)

(5.2)

s —Mo2
A( ts, u)= +B(s,t, u)+C(s, t, u),F2

B(s, t, u)= [3(s —Mo)J(s)+[t(t —u) 2Mot+4M—ou —2Mo]J(t)

+ [u(u —t) 2Mou +4M—ot —2Mo]J(u) j, (5.3)

C(s, t, u)= 8 96rt L, ——(s —2M ) +2 96nL — [s +(.t —u) ]—12Mos+15M
96m' Fo 2 0

In addition to the mass and the decay constant this equa-
tion additionally involves the four new low-energy con-
stants L„L2, I 4, and L6, which are not fixed by chiral
symmetry. To eliminate these parameters, further physi-
cal quantities have to be introduced. The parameters L4
and L6 enter these relations through the physical values
of the pion mass and the decay constant. The numerical
values of the low-energy constants can be estimated by a
phenomenological analysis based on experimental infor-

mation on mm scattering at low energies. The behavior of
the mm partial-wave amplitudes near threshold is de-
scribed by the m.m. scattering lengths aI and by the slope
parameters bI which depend on these four constants
through Eq. (5.3). For the detailed discussion of this
analysis we again refer the reader to the literature [10].
For the numerical computation discussed below we need
to eliminate the bare quantities from Eq. (4.26) using the
relations
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3277 o(ao+Sao) =—Mo Mo+32
4 5(Li+L2)+4 L6 L4 +

F F 2 1024m

(5.4)

o 4 — — 53
a2 = I.i+2I.2—

15+F 3072m

From Eqs. (5.3) and (5.4) we readily obtain for the arm forward-scattering amplitude

T (s) = (ao+5ao)—
3

M4

+ (10u —32M u+37M ) .
967r'F"

(5.5)

The comparison with expression (4.26) shows that we can
express the contribution of first order in the density to
the pole shift in terms of this S-matrix element:

qXg =
3 71' coq T~~ s

(2m) 2a)
(5.6)

In the rest of this section we will show how the contri-
bution of second order in the density can be expressed in
a similar way involving a three-particle forward-
scattering amplitude. Because of the singular behavior of
three-particle amplitudes in the physical region their for-
ward limit can only be taken after some of the poles have
been removed in a well-defined way. This leads to the
definition of what we call proper three-particle scattering
amplitude.

Let us be more precise and recall some well-known
facts [ll] about physical region poles of three-particle
scattering amplitudes T33(p„p2,p3,p~,p5,p6) with three
ingoing momenta p&,p2, p3 and three outgoing momenta
p4,ps, p6. For the sake of simplicity we restrict this dis-
cussion to spinless particles with mass M.

Unitarity requires that three-particle amplitudes in
general contain contributions of the form

—T 1 T22 2 M 2+ ~ 22
q lC

(5.7)

where the four-momentum q is a cross-energy variable,
e.g. , q =(p, +p2 —p4), and T22 is the two-particle scatter-
ing amplitude. (The two matrix elements in this equation
describe processes with different ingoing and outgoing
momenta. )

The physical interpretation of these infinities of an am-
plitude in the physical region has extensively been dis-
cussed in the literature [12] and can be summarized as
follows: If we consider a general scattering experiment,
the lines of Bight of the particles are overwhelmingly like-
ly to miss one another, or at most to interact in groups.
This idea leads to the connectedness structure of S-matrix
elements. The next most likely possibility is that first one
set of particles interacts, and that at a later time one of
the particles emerging from this interaction scatters with

another set of these particles. The pole at q =M occur-
ring in Eq. (5.7) just expresses the fact that it is infinitely
more likely for the particles to interact in two successive
events than to interact simultaneously. Between these
two processes the "intermediate" particle with four-
momentum q is (nearly) on its mass shell and thus can
propagate over large distances in space-time.

Some of the terms in Eq. (5.7), e.g. , if q =(p, +p2 —p6),
do have a we11-defined forward limit, defined by p; =p;+3,
(i =1,2, 3), while for others, e.g. , if q =(p, +p2 —p~), this
limit does not exist. In view of Eq. (5.7) we define the
proper three-particle amplitude f'33 to be

1
33 33+2 22 2 2 . T22

q
—M +is (5.8)

The prime indicates summation over a11 four-momenta
that become singular in the forward limit, i.e., for which
q ~M . Per construction this amplitude does have a
we11-defined forward limit.

S-matrix elements are, in general, well-defined quanti-
ties on the mass shell, whose off-shell extrapolations are
not determined by any physical properties. The
definition of the proper three-particle amplitude T33 on
the other hand, does depend on the off-shell behavior of
the two-particle S-matrix elements in Eq. (5.8). To re-
move the singularities it is sufficient to put all momenta
in these amplitudes on the mass shell. But if we allow the
momentum q to be off shell, we would also remove some
part of the regular contributions and obtain a proper am-
plitude which depends on the off-shell extrapolation of
the two-particle scattering element. Physically the ques-
tion is how much of the three-particle S-matrix element
should be ascribed to double scattering and which part
really describes simultaneous three-particle interaction.
Let us first discuss the consequences when all rnomenta
are restricted to the mass shell. Later we will naturally
be lead to include off-shell effects (see next section).

The physical content of the mathematical prescription
in Eq. (5.8) is readily understood in the phenomenological
language introduced above. For contributions with a
well-defined forward limit the residue of the pole at
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q =M is the square of a two-particle scattering ampli-
tude with non vanishing momentum transfer, thus
describing double scattering with momentum transfer in
each event, while in the other cases it is a product of two
different two-particle forward-scattering amplitudes. For
the cross-energy variable q =(p, +p2 —p6), for example,
we get the forward limit q =(p, +p2 —p3 ) and the residue
(T22) (p„p2,p3, q') with q' on the mass shell, while, for
example, for q = (p, +p2 —p4) we obtain the residue

22(PI«P2«P1«P2) 22(P3«P2«P3«P2)

The relevant three-pion scattering amplitude

has the following form at tree level:

25 Mo2 p&z3+
g

+
2 2FQ (p1+p2+p3) —MQ

P 124+
2 2+

(P1+P2 P4 )'—Mo—

(5.10)

(5.11)

Thus, to get the proper three-particle forward-scattering
amplitude, one has to remove all those double-scattering
contributions from the full S-matrix element, that involve
two successive two-particle forward-scattering processes
separated by large space-time distances. In fact, some of
these contributions should already be included in Eq.
(5.6), and one has to remove double forward-scattering
processes also on physical grounds in order to avoid dou-
ble counting. Indeed, cutting both loop lines in diagram
3(j) with a temperature insertion, one obtains a Feynman
graph describing two successive forward-scattering
events. This effect is completely accounted for by the
first term in expression (3.19) and thus yields just the
next-to-leading-order term in the geometric expansion
(4.14).

We finish this general discussion with a last remark
about unitarity, which .requires the following relation for
the imaginary part of the full three-particle scattering
amplitude:

ImT33 =21r+T225(q' —M')T»+higher,
q

(5.9)

where "higher" contributions involve S-matrix elements
with more than two ingoing or outgoing particles. From
Eq. (5.8) we immediately infer the same unitarity relation
for the proper (forward-) scattering amplitude, but there
the summation only extends over a proper subset of
cross-energy variables q.

l

and for the relevant product of the two-particle scatter-
ing amplitudes

j
3

T p a(apSl p2«p4«q«) sy13y(q«p3«p5«p6)

(pl p2 p4 q)T, (q p3 p5 p6)
= 1 (M2 262)(M2 2~2)

0
(5.13)

Thus we get the contribution —4MQ/(3FQ) from the
regular term in Eq. (5.12) to the forward limit. Finally,
we obtain the following result for the proper forward-
scattering amplitude:

The sum extends over all cross-energy variables and the
P; k are polynomials in the momenta of order p . The ex-
plicit form of this result is straightforward to calculate
but quite lengthy; hence, we will only sketch the pro-
cedure described above. With the definition p; ='p;+3+a;
(i = 1,2, 3), the forward limit is taken by sending the e's to
zero. Let us consider the cross term with
q =p, +p2 —p4=p2+e, as an example and neglect con-
tributions of order 6& ~ Then we get for the corresponding
polynomial

2 2 20, , 8M0 2P124 = —
4 (Mo —26'3) ——

4 p2 E1+O(e'1) (5.12)F F

1 Mo F(P1P2 P3)2(, , )=-
rrrr«r P 1 «P2«P3 3 F4 ( + + )20 P& P2 P3 0

F(P1 P» —P3)—
(P1 —

P2
—P3)' —Mo

F(p»p2, —p3) F(p» —p2, p3)

(P1+P2 —P3)' —Mo (P1 P.+P3)' —Mo—
(5.14)

where the polynomial F is given in Eq. (3.12).
This result enables us to write the full self-energy Xz in

the form

d q&11(co~,p) = —f, n~(co )T (s)(2') 2'

where we have introduced the abbreviation
(co ) ='p +M (T) and the retarded function

«rrrrr(P 1 «P 2 «P 3 ) i «r«r«r(P 1 «P 2 «P 3 )

2vri 51+1((P2+p—3 —p1)2 —
MQ2 )

dqdq~
n~(Q3q )

(2~) 2coq (21r) 2Q)

Xn~(~, ».',(P q1 q2), (5.15)

XF(p1, —p2, —P3) . (5.16)

The three-particle S-matrix element (5.11) is the ampu-
tated time-ordered six-point function of the axial-vector
current. The function in Eq. (5.16) is called retarded, be-
cause it is just (the proper forward limit of) the corre-
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sponding amputated six-point function with retarded
boundary conditions. The momentum p& is conjugate to
the distinguished space-time variable (t„x,) such that
this retarded function is zero for any other time being
later than t, . We will comment on the occurrence of
these boundary conditions below.

The representation (5.15) and the explicit expressions
for the functions T „and 1' „given in Eqs. (5.5) and

I

(5.16) constitute the main result of the present paper. It
specifies the position of the pion pole as a function of
temperature according to Eq. (4.20) and is valid up to and
including contributions of order p in the chiral expan-
sion.

Unitarity relations for the two- and three-particle
scattering amplitude allow us to rewrite the expression
for the damping of pionic waves in the form

1 1 d qi d q2 d q

4~& I+ns(~z) (2n) 2coq (2') 2coz (2') 2' (2m) 5' '(p+q, +q +q )

Xns(cuq )[1+ns(co )][I+ns(co )]~T (s, t)~ (5.17)

which explicitly shows that Bose correlation is accounted
for in both, initial and final states. To obtain this result
we used the exact identity

ns (co2)[1+ns (co3)][1+n~ (co4) ]1+ns co)

I

loop level the interaction with the heat bath modifies the
mass of the particles. Thus, the gas can actually be con-
sidered as a medium consisting of quasiparticles with an
effective mass M (T). The two-loop contribution in Eq.
(4.25), depending on the tree result for the two-particle
scattering amplitude,

ng ( co2 ) +ns ( co2 )ns ( c03 ) +ns ( co2 )ng ( co4 )

n~ (co3)n—s (to4), (5.18)
Z

tree ~o
F2

0
(6.1)

which holds if energy is conserved. The representation
(5.17) involves the isospin averaged S-matrix element
T (s, t) at order p which is given by

~T (s, t) =
~ [2(s +t +u ) —9M ] .1

(5.19)

Equation (5.17) for the damping rate is exact to the order
we are considering here. Note that here only the elastic
mm. scattering amplitude enters. In the unitarity relation
(5.9) S-matrix elements with more than two particles in
the initial or final state only show up at the next order of
the chiral perturbation series. The result in Eq. (5.17) has
already been found in Ref. [3] where the decay of the
probability distribution towards thermal equilibrium is
analyzed using the master equation of kinetic theory.

Neglecting effects of Bose correlation in the initial and
final states one can rewrite Eq. (5.17) in terms of the total
cross section as

indeed accounts for one part of this effect. It represents
the correction to the contribution in Eq. (5.6), which
occurs if the thermal distribution of the quasiparticles is
evaluated with their effective mass M ( T). We could also
replace the Bose factors in the second integral of Eq.
(5.15) since this modification is beyond the accuracy of
our representation. Yet, all momenta in the S-matrix ele-
ments of interest are still on the mass shell, defined by the
mass M„at zero temperature. Beyond the two-loop lev-
el, however, Eq. (4.25) will involve the then momentum-
dependent two-particle amplitude beyond tree level and
the temperature insertion (2.11) will drive the momentum
q off its mass shell to the value q =M (T). Thus, we are
quite naturally led to consider off-shell extensions of S-
matrix elements.

The off-shell extrapolation of the amplitude A (s, t, u ) is
strongly constrained by Bose statistics and crossing sym-
metry. At order p the most general form has only one
free parameter and is given by

y(p) = J ns(co )Qs(s —4M )cr (s) .
(2m )'2'~

(5.20)

A(s, t, u)= s —Mo+ —g(p; —Mo)
0 l

(6.2)

The right-hand side indeed represents the collision rate
for pions of momentum p traversing a pionic target
whose momenta are distributed according to the Bose
factor n~(co).

From Eq. (5.2) one readily obtains the following behavior
for the mm forward-scattering amplitude at leading order:

T (p, q) = [ —Ma+2(a+1)(p —Mo)= 1 2

F2

VI. COMMENTS +2(a+1)(q —Mo)] . (6.3)

Before entering the numerical analysis, we add a few
comments concerning the analytic structure of our result.

We first note that the Bose factor entering the first in-
tegral of Eq. (5.15) is to be evaluated at to~. At the one-

Allowing the momenta q in the two-particle S-matrix ele-
ments of definition (5.8) to be off shell does change the re-
sult for the proper three-particle amplitude as well. As
previously discussed, the singular terms in the forward
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limit of the three-particle scattering amplitude describe
double forward-scattering events. These processes fall
into two different classes. In the first case a probing par-
ticle with momentum p successively scatters with two
particles of the heat bath. In the other case, this particle
interacts with only one particle of the heat bath, which in
turn interacts with a second particle of the medium. If
one allows the momentum q in Eq. (5.8) to be off shell
only in contributions of the first kind, one obtains the fol-

Mo
T = f' 4(—a+1)

Q2
(6.4)

Thus, a slight modification of the proper three-particle
amplitude allows the self-energy to be rewritten in the
form

lowing forward limit for the newly defined proper ampli-
tude T„at the tree level:

d pX~(cd, p)= J 3 Tnt(coq)T (q =M (T),p =M )

d q& d q2
nil(co )ns(co )T (p, q„q2) .

(2') 2') (2m) 2'
q&

(6.5)

First, one should note that the asymmetry between the
momenta p and q in this result was put in by hand right
from the beginning since the self-energy in Eq. (4.20) was
approximated by its value at the position co =p +M .
A more symmetric result can probably be obtained by al-
lowing all momenta in definition (5.8) to be off shell and

by using a better approximation for the self-energy.
Including off-shell extensions of two-particle ampli-

tudes amounts to shifting some contributions from the
second term in Eq. (5.15) to the first one without chang-
ing the final result for the pole position. To some extent
both, two- and three-particle S-matrix elements describe
contributions generated by two successive two-particle
scattering events of the propagating particle in the rnedi-
um. Because of the lack of asymptotic states in the heat

I

I

bath there is no clear-cut distinction between the two.
Furthermore, corrections of second order in the density
can by no means be estimated by neglecting the three-
particle processes but including an arbitrary off-shell ex-

tension of the two-particle amplitude.
The scattering amplitudes entering Eq. (5.15) refer to

zero temperature. Since temperature drives the pole po-
sition away from p =M„, one may wonder whether the
result could not be written in a more transparent manner

by expressing it in terms of a scattering amplitude at
finite temperature describing the scattering of particles in
a heat bath. A straightforward generalization of the am-

plitude A(s, t, u) to nonzero temperature would be a
definition of the form

i dz& dzzdz3exp(ip &z& +ipzzz +ip3z3+ip4z4 ) (R [ A o (z
&

) A 0 (z2 ) A 0 (z3 ) A 0 (z& ) ] )~ 3 ~ ~ ~ ~ 1 k2 k3 k4

k~k2 k3k4 g r
Q(p; —M (T))

(6.6)

d3
X~T = — q

( T)TR, T

(2 )2
(6.7)

which purposely involves the retarded product. A one-
loop calculation will show that the corresponding func-
tion for the time-ordered product does not have a well-
defined forward limit. Thus, Feynman boundary condi-
tions are not appropriate for the description of scattering
processes in the heat bath, which should not come as a
big surprise and should be related to the nonexistence of
asymptotic states in the medium. Furthermore, the re-
tarded structure does show up in the ternperature-
dependent corrections only: in the limit of vanishing
temperature we recover the amplitude A (s, t, u)

Since some of the temperature-dependent corrections
can be written as an integral over the Bose factor and the
retarded proper three-particle amplitude one could ex-
pect the following result for the self-energy in terms of
the temperature-dependent amplitude:

Unfortunately, this is not the case. An explicit calcula-
tion shows that all contributions of second order in the
density are too large by a factor of 2. This result resem-
bles the final-state interaction theorem which also in-
volves the factor e' rather than the full S-matrix element
e ' . Intuitively, the factor of 2 can be understood as fol-
lows. In the scattering problem, the interaction is at
work from t = —Oo to + ~, i.e., both when the particles
approach one another and when they recede. The propa-
gator, on the other hand, describes the evolUtion of a dis-
turbance inserted into the medium at t =0. Here, the in-
teraction is operative only from t =0 to + ~.

VII. NUMERICAL RESULTS

The results of our chiral perturbation theory calcula-
tion to two loops can unambiguously be expressed in
terms of M, F and two scattering length parameters:
the combination ao+Sao of I=0 and 2 s waves and a2 of
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the I=O d wave. Chiral perturbation theory predicts
[14]

0 o =0.20+0.01
&

a o
= 0.042+0.002 (7.1)

a2 =(17+3)X 10 M (7.2)

The combination ao+5ao is therefore very small. For
the d wave, we use the experimental value of Petersen
[15]:

120 .
100-

80-

CC

caiiaaat algebn
gPI'2 ord

~2 ord

phen. ~yes

%Kith this input, we have a parameter-free prediction
which specifies the dispersion law co(p) as well as the ab-
sorption rate y(p) as a function of temperature and
momentum which accounts for all contributions up to
and including O(p ). ' Note that the calculation ac-
counts both for contributions proportional to the density
of the gas (two-particle collisions) as well as for terms of
order nit (three-particle collisions). The other side of the
coin is that the first two terms in the chiral expansion
provide an adequate representation of the relevant
scattering amplitudes only at small momenta so that our
result is reliable only for low temperatures and long
wavelengths. To illustrate the problem, we consider the
real part of the elastic forward-scattering amplitude. The
relevant isospin combination

=1T (s)=—[T (s)+3T'(s)+5T (s)] (7.3)

is shown in Fig. 4.
The dashed line is the chiral perturbation theory repre-

sentation to one loop, given explicitly in Eq. (5.5). The
two dashed-dotted lines represent unitarized versions of
this result and will be discussed below. The shaded area
represents the result of a semiphenomenological analysis
[6] of the relevant scattering amplitude, using chiral per-
turbation theory at threshold and relying on experimental
information at higher energies. The width rejects the
uncertainty of the experimental input. This analysis ac-
counts for effects generated by p exchange and yields a
reliable prediction for the scattering amplitude in regions
where an expansion in powers of momenta is no longer
useful. By comparison we can estimate the range of va-
lidity of the chiral representation. Note that at T=100
MeV, the mean pion energy is of order 300 MeV; accord-
ingly, collisions with +s =600 MeV will occur rather
frequently at this temperature. Figure 4 shows that
current algebra [lowest order chiral perturbation theory
(yPT), dotted horizontal line] does not adequately
represent the scattering amplitude at these energies. The
failure of the current algebra prediction is due to the fact
that, in the isospin averaged forward amplitude, the s-
and p-wave contributions nearly cancel. In the chiral
limit, T contains an Adler zero at s =0 and the corre-
sponding tree-level amplitude vanishes altogether. Our
calculation shows indeed, that corrections of order p to
this amplitude lead to substantial modifications. The re-
sult (dashed line) represents a decent approximation of
the scattering amplitude up to v's 5 700 MeV at the 20%

Recall that in this bookkeeping ~p~, T, and M count as quan-
tities of order p.

I I

500 600

sqrt{s) t MeV]

I

700

FIG. 4. Real part of the isospin averaged ~~ forward-
scattering amplitude.

level. Above this energy, the chiral representation
overshoots, because it violates unitarity.

The violation of unitarity originates in the truncation
of the chiral perturbation series at order p . It is not
dificult to remedy this deficiency in the elastic region
4M ~ s ~ 16M . There unitarity implies that the
partial-wave amplitudes T&(s) are determined by the
phase shifts 5&(s) according to

1/2 . Ii5l
(s) = e sin6)

s

s —4M
(7.4)

5i(s) = ReT& (s)+O(p ) . (7.5)

Although this formula is not exact, the difference is of or-
der (5&) =O(p ) and therefore beyond the accuracy ofI 3 6

the one-loop representation.
The effective range approximation for the cotangent of

the phase shift suggests an alternative unitarization
prescription [17]. The contangent is related to the real
part of the inverse scattering amplitude:

To unitarize the chiral representation, it thus suKces to
express the scattering amplitude in terms of the partial
waves, using chiral perturbation theory for the phase
shifts rather than for the amplitude itself. The procedure
ensures that the resulting representation for the scatter-
ing amplitude does not terminate at O(~n ), but contains
higher-order contributions as required by unitarity. The
problem is that the procedure does not fix these higher-
order terms uniquely, because a one-loop calculation of
the scattering amplitude only determines the phase shifts
to accuracy p . %'e illustrate the ambiguity inherent in4

the unitarization procedure by giving two specific exam-
ples.

Consider first the systematic expansion of the phase
shifts in powers of the momentum, which is determined
by the real part of the partial waves [16]:

1/2
s —4M



PION PROPAGATION AT FINITE TEMPERATURE

1
Re

Ti(s)

' 1/2
s —4M

cot61 . (7.6)

160

140-

2s —M
TO

O, tree (7.7)

In the elastic region, this relation is exact. Truncating
the chiral series for the left-hand side at a given order,
the formula can be solved for 6&, thus providing us with a
second representation of the scattering amplitude which
also obeys elastic unitarity and is correct to order p in
the chiral expansion.

Algebraically, the difference between the two unitariza-
tion prescriptions (7.5) and (7.6) is the following. The tree
graph contribution to the scattering amplitude is real and
is of order 6(p ). In particular,

120-

60-

0
200 600

sqrt(s) tMeV]

2M —s
T', (7.8)

FIG. 5. p-wave phase shift of the m~ scattering amplitude.

s —4M„Tl
1,tree 96

(7.9)

Writing the chiral expansion for ReTI in the form

ReTi =Ti„„[1+Ei+O(p")]
the prescriptions (7.5) and (7.6) amount to

+ —4M (1+el )
I

tan6(
rt= T X' r —1(1—e )

(7.10)

(7.5')

(7.6')

a', =0.038+0.002, b', =(5+3)X 10 (7.1 1)

The quantity 1+E', is given by the ratio ReT', /T1 „„.As
indicated in Eq. (7.7), we are evaluating the tree ampli-
tude which occurs in the unitarization prescription with
the physical values of F, M .

Unfortunately, the gPT prediction for b ', is subject to a
large uncertainty. The unitarization (7.6 ) does imply the
occurrence of a resonance, but its mass varies from 550 to
920 MeV if bi is varied in the range given in Eq. (7.11).
The dash-dotted line shown in the figure results if one

Either of the two correctly reproduces the chiral expan-
sion of the scattering amplitude up to and including
terms of order p .

Figure 5 illustrates the situation for the p wave. The
full line represents the result of the semi-
phenomenological analysis [6]. The dashed and dashed-
dotted lines are based on the evaluation of Eqs. (7.S') and
(7.6'), respectively. This evaluation involves the follow-
ing steps. In the form given in Eq. (5.3), the chiral per-
turbation theory representation of the scattering ampli-
tude contains the effective coupling constants Fo L1 and

In the corresponding representation for the partial-
wave amplitude ReT1, we have eliminated these con-
stants in favor of the threshold parameters a1 and 61.
Chiral symmetry predicts the following values for these
quantities [14]:

fixes the effective range in such a way that the resonance
occurs at the physical mass M =769 MeV; this requires
b,'=3.5X10 . Figure 5 shows that this particular uni-
tarization of the chiral one-loop calculation essentially
coincides with the result of the phenomenological
analysis. The small difference in the slope at the reso-
nance is due to the fact that the full line also correctly
reprodoces the experimental value of the p width,
I = 149 MeV, which is accounted for by another param-
eter in the phenomenological analysis. Note, that Eq.
(7.5'), on the other hand, predicts a phase shift that
passes through 90' well above &s =1 GeV. (In the
figure, we have evaluated this equation with the central
value b i =5 X 10 .) Below the KK threshold, partial
waves with / 2 generate negligibly small contributions.
Dropping these, the isospin-averaged forward-scattering
amplitude becomes

T = (To+9T,'+ST ) (7.12)

Evaluating the partial waves with the prescription (7.5')
one arrives at curve 1 in Fig. 4, while the prescription
(7.6') leads to curve 2. The range between these two
curves indicates the ambiguity inherent in the unitariza-
tion procedure. The s wave violates unitarity already at
rather low energies, which is mainly responsible for the
difference between the chiral approxim tion (5.5) for the
scattering amplitude and the two unitarized chiral repre-
sentations in the region v's =500 MeV.

The numerical result for the temperature dependence
of the effective mass M (T) is shown in Fig. 6. The full
line describes the result of our calculation, as given in ex-
pression (5.15). It includes effects of first and second or-
der in the density. The main point to notice is the small-
ness of the mass shift: For T=100 MeV the mass is
lowered by an amount of merely 2.5% while at T=150
MeV it is reduced by 14%. The remaining lines in this
figure are determined by the numerical evaluation of ex-
pression (5.6), which includes only effects of first order in



5152 A. SCHENK

1.0 a \ a&& %%%&aa

T= 150MeV

08-

04

XPT2 o~, g

xFr 2 otdcf, n

c~gt ggeh

exp. , g +

~ 092

8"

~ e~~

%a

~nC g~
&~2 I,'
gP7 g
XPT 2 QIQt. , g

exp„

~aayv~gPha~

~agpgy~==~-

0.0
0

I

4O

P4e+

t

120
I

160

FIG. 6. Pion mass as a function of temperature. Results of
first order in the density are obtained by evaluating expression
(5.6) with various approximations for the m.m forward-scattering
amplitude. The full result, including all corrections of second
order in the density is obtained by evaluating expression (5.15).
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FIG. 7. Pion energy co(p) divided by the free particle energy
co~. Temperature is T=150 MeV. Results of first order in the
density are obtained by evaluating expression (5.6) with various
approximations for the m~ forward-scattering amplitude. The
full result, including all corrections of second order in the densi-
ty is obtained by evaluating expression (5.15).

the density, and are based on the various approximations
for the m~ scattering amplitude introduced above. To
discuss the importance of the higher-order terms which
our calculation neglects, we make the following observa-
tions.

(1) Effects of order nz, given by the difference between
the full line and the dashed line [see (2) below], turn out
to be very small: even at T=150 MeV they lower the
effective mass by only 2.5%%uo, arising mainly from three-
body collisions (the effects of the mass shift in the Bose
factor are of order 0.2%%uo). Figure 7 shows that this result
also holds for the dispersion co(p) at nonzero momenta.
This indicates that the main contribution stems from the
terms of first order in the density, i.e., the first term in the
virial expansion.

(2) Equation (4.22) together with expression (5.6) for
the self-energy represents an exact formula for the first
term in the virial expansion. It expresses the dispersion
law in terms of the real part of the isospin averaged
forward-scattering amplitude. The shaded area in Fig. 6
is the result for the phenomenological analysis of the for-
ward amplitude while the dashed line is evaluated with
the chiral representation (5.5) for ReT„. As was to be
expected, the chiral representation overestimates the
effect, but still provides an adequate description for
T 8 150 MeV. Note that the current algebra curve (dot-
ted line) is entirely fictitious already at very low values of
T.

(3) The result for co(p), displayed in Fig. 7, confirms
that temperature effects are small: The dispersion law of
pions traveling in a medium closely resembles the one in
vacuo: even for T= 150 MeV, the scattering with the gas
modifies the frequency by less than 20%. In particular,
in the low-temperature long-wavelength region analyzed
here, we do not find any indication for qualitative

changes in the dispersion law such as those envisaged in
Ref. [18].

(4) The curve for co(p) also illustrates the inadequacies
of the chiral expansion for the scattering amplitude T
to order p" (compare the dashed line with the shaded
area). For long wavelength (p 5 150 MeV), the region 400
MeV ~ &s ~ 600 MeV again leads to an overestimate of
the temperature effects but the approximation is not bad.
As p grows the region around the p resonance becomes
more important and the straightforward chiral represen-
tation then goes astray. The importance of higher-order
contributions is nicely shown by the two dashed-dotted
lines in Fig. 7, which correspond to the two unitarized
chiral representations above.

Note, that our analysis of the dispersion law at order
n~ involves the numerical evaluation of the principal-
value integral in Eq. (5.15). To ensure correctness we
have carefully checked our numerical results using vari-
ous different methods of integration.

Figure 8 shows the result for the mean damping rate,

y =(y(p)) = f d'p n~(co~)y(p) f d p n~(co ),
(7.13)

as a function of temperature. The full line describes the
result of our calculation, given explicitly in Eq. (5.17).
Neglecting Bose correlation in the initial and final states,
the remaining lines in this figure are determined by the
numerical evaluation of expression (5.20) and are based
on various approximations for the total ~m. cross section.
To compare the results for the mean damping and for the
dispersion law, we observe the following.

(1) Effects from Bose correlation, given by the
difference between the dotted line [see (2) below] and the
full one, are very small: they increase the mean damping
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by an amount of less than 6%. This indicates that the
main contribution to the damping rate again stems from
terms of first order in the density.

(2) Equation (5.20) represents an exact formula for the
first term of the virial expansion, expressing the damping
rate in terms of the isospin averaged total mm cross sec-
tion. Since the total cross section is determined by the
forward-scattering amplitude through the optical
theorem, Eq. (4.24) together with expression (5.6) pro-
vides an equivalent representation for this formula.
Again the shaded area in Fig. 8 is the result of the phe-
nornenological analysis for the forward-scattering ampli-
tude, while the dotted line is evaluated with the current
algebra representation for the total cross section:

2
4 4M„37 4M

s 1 +
48~F4 5 s 160 s

FIG. 8. The mean damping rate divided by the fifth power of
temperature. Results of first order in the density are obtained
by evaluating expression (5.20) with various approximations for
the total m.~ cross section. The full result, including all correc-
tions of second order in the density is obtained by evaluating ex-
pression (5.17).

the mean damping which are based on chiral representa-
tions for the cross section have to be considered with
care. This is indeed confirmed by the dashed line in Fig.
8, which is evaluated with Eq. (5.20) and the chiral repre-
sentation for the total cross section at order p . At this
order, the cross section is determined by the amplitude
A(s, t, u), given in Eq. (5.3). Note, that the I=O s wave
at order p strongly violates the unitarity bound at ener-
gies &s 600 MeV, which explains the imminent growth
of this approximation with temperature. The dashed-
dotted line marked 2 (lying in the shaded area) is based
on the unitarization prescription (7.6') and shows a de-
cent behavior over the whole range of temperatures.
Line 1, on the other hand, is based on prescription (7.5')
and indicates the importance of p exchange to the damp-
ing of pionic waves already at rather low temperatures
(compare also with Fig. 5).

(4) The phenornenological analysis predicts the quanti-
ty y /T to decrease by more than a factor of 2 at temper-
atures between 90 and 200 MeV. This result, however,
only accounts for the damping in a medium that consists
exclusively of pions. As the temperature rises, the heat
bath also contains a significant number of other particles,
such as K,p, g, . . . , which increase the damping rate.
Including these effects, the mean damping of pions was
found [13] to behave approximately like T /12F„at tem-
peratures above 100 MeV.

VIII. SUMMARY AND CONCLUSIONS

p'=~(p) —(i /2)y(p ) . (8.1)

The real part cg(p) describes the dispersion of pionic
waves while the absorptive properties are determined by
the imaginary part y(p). At infinite wavelength p =0, the
pole occurs on the real axis; its position depends on the
temperature and is referred to as the efFective mass

The propagation properties of pions in hot matter are
governed by the position of the pole occurring in the
various Green's functions, e.g., the retarded two-point
function of the axial-vector current. For real values of
the three-momentum p = ip~, the pole sits at a complex
value of the energy:

(7.14)
M (T)=co(0) . (8.2)

Since the imaginary parts of the partial-wave amplitudes
obey the positivity condition

ImTI «0, (7.15)

cancellations cannot occur. Thus, in the case of the total
cross section the current algebra representation should
provide a better approximation to the phenomenological
parametrization than was to be observed for the real part
of the scattering amplitude. This is indeed born out in
Fig. 8, which shows that the corresponding predictions
for the mean damping agree within 30%%ug at temperatures
below 100 MeV.

(3) We recall, that at a temperature of 100 MeV both
collision partners in Eq. (7.13) have energies of about 300
MeV. Thus, in the range T«100 MeV predictions for

(8.3)

where 0 is the isospin averaged total mm cross section.
At the same order in the density, the dispersion law is
given by

co(p) =co — n~(co )ReT (s),1 d q
2'& (277) 2CO

(8.4)

At low temperatures, the gas is dilute and it is therefore
appropriate to use the virial expansion where the various
quantities of interest are represented as a power series in
the particle density. The leading term in the virial expan-
sion of the damping rate is proportional to the density:

d3
y(p) = f n~(co )Qs(s —4M )o (s),(2~)'2'
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where T is the isospin averaged mm forward-scattering
amplitude. Both expressions can be evaluated with phe-
nomenological parameterizations of the cross section and
the forward-scattering amplitude which are based on ex-
perimental data on ~m. scattering. Comparing these re-
sults with the corresponding prediction of chiral pertur-
bation theory, one can estimate the range of validity of
the chiral expansion and analyze the importance of p ex-
change for the propagation properties.

In the chiral expansion, the leading corrections to the
pole shift are determined by the tree-level amplitude
T = —M /F . They are independent of the momen-
tum and merely renormalize the pion mass, which be-
comes a function of temperature. In accordance with un-
itarity, absorption and dispersion only show up if next-
to-leading-order corrections are included. After isospin
averaging, the s- and p-wave contributions to the m.m

forward-scattering amplitude cancel to a large extent,
which explains why current algebra (chiral perturbation
theory at leading order) fails even qualitatively, predict-
ing an effective mass that increases with temperature.

Corrections of next-to-leading order in the low-
temperature expansion include effects of first and second
order in the density.

At first order in the density the pole shift is now deter-
mined by the one-loop result for the ~m forward-
scattering amplitude. As expected, we indeed get large
corrections to the leading-order prediction of chiral per-
turbation theory; in particular the efFective mass M (T)
now decreases with temperature. The comparison of this
result for the pole shift with an earlier analysis based on a
phenomenological description of the m~ scattering ampli-
tude shows that both predictions for the effective mass
and for the quasiparticle energy co(p) agree within 20% at
temperatures and momenta below 150 MeV. At higher
momenta the effect of p exchange clearly shows up. At
leading order, the damping rate is determined by the
current algebra result for the total ~~ cross section, or
equivalently, by the imaginary part of the ~m. forward-
scattering amplitude at order p . At temperatures below
100 MeV, this prediction for the mean damping agrees
with the result based on the phenomenological analysis to
within 30% which is much better than what has been ob-
served for the dispersion law. Because of the positivity
condition ImTI ~ 0, cancellations between different par-
tial waves cannot occur here and a better agreement for
the damping was indeed to be expected. If the total ~m.

cross section is evaluated at order p (next-to-leading or-
der), we observe a decent agreement between the semi-
phenomenological analysis of the mean damping rate and
the prediction of chiral perturbation theory at tempera-
tures below 80 MeV. At a temperature of 100 MeV, the
energy of both collision partners is of order 300 MeV and
the chiral prediction in this range of temperatures is no
longer reliable. As the temperature rises, the heat bath
furthermore contains a significant number of other exci-

tations, such as K,p, g, . . . , which increase the damping.
Including these effects, the mean damping of pions was
found [13]to behave approximately like T /12F„at tem-
peratures above 100 MeV.

The next term in the virial expansion is a much more
complicated matter. We have shown that both the ab-
sorptive and dispersive properties are determined by the
forward limit of two- and three-particle scattering ampli-
tudes. The latter contain successive two-particle scatter-
ing events which generate singularities in the forward
direction. Removing these singularities, we have intro-
duced a proper three-particle scattering amplitude and
we have shown that the pole shift can be expressed in
terms of this object. Although the definition of the prop-
er amplitude involves an off-shell extrapolation which is
not unique, the result for the pole shift is independent of
the particular extrapolation used. The occurrence of off-
shell contributions is related to the fact that the asymp-
totic states occurring in the definition of the S matrix are
not relevant if the pions are moving through a medium.
We have explored the possibility of defining an effective
scattering matrix describing collisions in this medium.
The corresponding two-particle amplitude indeed con-
tains contributions from three-body collisions. Replacing
the zero-temperature quantity ReT in Eq. (8.4) by this
effective thermal scattering amplitude, and replacing the
pion mass by the effective thermal mass, one indeed ar-
rives at an expression for the pole shift which resembles
th- correct result. The prescription, however, counts the
terms of second order in the particle density twice and
can therefore not be used as a substitute for the actual
calculation. Numerically, the second order terms are
quite small. Evaluating these contributions with chiral
perturbation theory, we find that they lower the effective
mass and the damping rate by 2.5% and 6%, respective-
ly.

Thus, the main results of our numerical analysis can be
summarized by the following two observations: (1)
Effects of order nz are very small. The main contribution
to both, the dispersion law and the damping stem from
the first term in the virial expansion. (2) Temperature
effects on the energy and the mass are small. The disper-
sion law of pions traveling in hot matter closely resembles
the one in Uacuo. In particular, we do not find any quali-
tative changes in the dispersion law such as those en-
visaged in Ref. [18].
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