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SU(2) flux distributions on finite lattices
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We studied SU(2) flux distributions on four-dimensional Euclidean lattices with one dimension
very large. By choosing the time direction appropriately we can study physics in two cases: one
is finite volume in the zero-temperature limit, another is finite temperature in the intermediate to
large volume limit. We found that for cases of P ) P, there is no intrinsic string formation. Our
lattices with P ) P~ belong to the intermediate volume region, and the string tension in this region
is due to finite volume effects. In large volumes we found evidence for intrinsic string formation.

PACS number(s): 11.15.Ha

I. INTRODUCTION

There are two complementary ways to obtain approx-
imate solutions of strong-coupling QCD. One is to take
three-space to be a finite-volume torus and obtain semi-
analytic solutions [1—3] of an efFective Hamiltonian. The
second is via lattice simulations. Confinement can be
studied by each method in limited domains. In small
physical volumes the fields are very rigid and the prob-
lem can be treated using a variational method applied
to a small number of dynamical variables. In this do-
main the string tension is found to be zero. This result
is consistent with asymptotic freedom since only short-
wavelength modes occur. At intermediate volumes there
is a clear signal for string tension, and further that it is a
consequence of a tunneling amplitude between the vacua
that are degenerate for small volumes. In this domain,
lattice methods are also accessible and are in good agree-
ment for quantities such as glueball masses and string
tension. Lattice calculations can take over to study larger
volumes where semianalytic methods become prohibitive.

The existence of string tension in finite volumes does
not imply confinement. Clearly if the volume is not large
enough to allow the fields to spread out, the finite box
itself may be responsible for the linearly rising potential
energy between quarks. Global studies have left open
the question of the volume at which intrinsic confinement
takes over [4]. In this paper we look at a local quantity,
the flux tube profile between static quarks as a function
of physical volume in SU(2) lattice gauge theory in order
to elucidate this question.

The physical size of the box is characterized by a di-
mensionless variable

zg = m(0+)L,

where m, (0+) is the lowest glueball mass which is the
energy gap or in terms of length it is the inverse of the
correlation length. The length L is the linear size of the
box. Luscher studied QCD in a small box, zg & 1, with
periodic boundary conditions. He derived a low-energy
efFective Hamiltonian for SU(N) gauge theory in small
volumes [1], i.e. , zg & 1. Subsequently the lowest-energy

N & Nb((N, . (2)

By identifying N, to be the time extent, one can sim-
ulate the zero-temperature finite-volume, N N&a, field
theory, with the temperature defined as [6]

1
Tgjf ,a (3)

where T~ is called box temperature in Ref. [4], and a is
the lattice spacing.

Physically, the choice of the time direction is related
to interpreting Polyakov loop correlations as the qq po-
tential; then the time direction is the one in which the
Polyakov loop closes. In our study we follow Berg and
Billoire to choose Polyakov loops closed in the N direc-
tion and their correlations measured along the N, direc-
tion. Then the physicaL temperature is defined to be

1
TP N

0 (4)

In the coming sections we shall use the physical tern-
perature (T&) interpretation, so we shall drop the sub-
script p, i.e. , T = T„. In the last section we shall relate
this to the box temperature (TB) interpretation.

After a complete study in the intermediate volume re-
gion (1 & z~ & 5), Berg and Billoire concluded that they
did not find evidence for string formation in this region,
but it is expected to occur in larger volumes. The ques-

levels of SU(2) [2] and SU(3) [5] gauge theories in small
volumes were computed by using this Hamiltonian. van
Baal and Koller then found that the crucial tunneling
between degenerate vacua can be obtained by imposing
appropriate nonperturbative boundary conditions on the
Raleigh-Ritz trial wave functions [3]. They extended the
calculation of the SU(2) glueball masses up to zg = 5.0.

Berg and Billoire [4] carried out a thorough study of
glueball masses, electric flux states, and string tension
for intermediate volumes (1 & z~ & 5). They provided a
detailed comparison between their numerical results and
the analytic results of van Baal and Koller. They chose
lattice sizes N x N& x N„with
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tion this paper studies is how to understand the string
tension measured in intermediate volumes. Is the string
tension just due to finite-size effects'? Since the string ten-
sion was calculated from correlations of Polyakov loops
closed in the N direction, this can be considered as mea-
suring the potential energy of a qq pair in a long rectan-
gular box, with the volume V = N& N, a and at the finite
temperature T = 1/N O„as shown in Fig. 1. As we know,
at high temperatures, T & T„where T, is the deconfining
temperature, the qq is unconfined in the infinite volume
limit (Nb, N, ~ oo ). However, as the transverse size Nb
is made small, i.e. , r/Nba & 1, one expects the side walls
of the box would squeeze the flux lines of the qq pair to
form a tube although there is no intrinsic string forma-
tion in this case, as displayed in Fig. 1. In the following
we will present our studies about the qq flux distributions
which would support the above description.

The remaining parts of this paper are arranged as fol-
lows. Section II gives the basic concepts of the flux mea-
surements. Section III discusses the qq flux distributions
at finite temperatures and finite-volume effects. Section
IV discusses the relation between the qq flux distributions
in a finite box and the string tension in intermediate and
large volumes. Finally, Sec. V gives the summary.

where P(r)—:2Trg i U (r, r), is the Polyakov loop
closed in the NG direction and ~ = 2Tr(Up) is the pla-
quette variable with the orientation (p, v), which has six
different values: (p, v)=(2, 3), (1,3), (1, 2), (1,4), (2, 4),
(3, 4).

To reduce the fluctuations of the quantity P(0)Pt (r)
in practical calculations we measure the quantity [7]

f„'„(r,x)

p (P(o)P'(r) (x)) —(P(o)P'(r) (x~))
C4 (p(o) pt(r))

(7)

as the flux distribution instead of Eq. (6), where the ref-
erence point xR was chosen to be far from the qq sources.
This replacement does not change the measured average
due to the cluster decomposition theorem. The six com-
ponents of f' in Eq. (7) correspond to the components
of the chromoelectric and chromomagnetic fields (E, 6)
in Minkowski space, i.e. ,

2(
—~i —~2 —~s ~i ~2 ~s).

We then define the total electric energy density to beII. MEASUREMENTS OF THE FLUX
DISTRIBUTIONS

In our study of the SU(2) lattice gauge theory (LGT)
we use the standard Wilson action

p.i = -[8, + 8, + t;],
1 2 2 2

and the total magnetic energy density

(9)

S(U) = P) (1 ——TrU~), (5) (1o)

where U~ is the product of link variables around a pla-
quette, i.e. ,

U~(n) = U„(n)U (n+ p)U '(n+ v)U„'(n).

We can measure the flux distributions of a qq pair by
calculating the quantity [7]

P (P(0)Pt(r) „(x))
(P(0)P ( ))

N, o,

N, a

Nba

In the following we will concentrate on studying the total
energy and action densities p~ and p~, which are the
combinations of p, ~ and p a. The total energy density is

pE = pel + pma.

The total action density is

pA = pet pma

In our measurements we transformed our flux data
from lattice units to physical units by using the scal-
ing relation given by Table I, which was obtained from a
similar table in Ref. [8] and we interpolated points in the
region 2.22 ( p ( 2.50. The details of the interpolation
process are presented elsewhere [9].

III. FLUX DISTRIBUTIONS AT FINITE
TEMPERATURES

It is well known that SU(N) gauge theory has a de-
confining phase transition at some finite temperature, T,

TABLE I. The correspondence of the lattice spacing a and
the coupling constant P for SU(2) LGT.

FIG. 1. The qq color sources in a long rectangular box.
The flux lines between the qq pair are confined by side walls
and have a flux tube form.

a (fm)
2.25
0.1966

2.28
0.1785

2.36
0.1374

2.40
0.1203
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To see the behavior of the flux distributions changing
with the qq separation r, in Fig. 3 we show the p~ dis-
tribution on the transverse plane for four different sep-
arations, r = 3a, 4a, Ga, and 6a. The flux data were
measured on the lattice 4 x 52 x 65 with P = 2.40. From
this figure one can see the peak values of p~ decrease
rapidly with the increase of r. At large r (i.e. , r = 6a)
the peak of p~ almost vanishes, the flux density on the
plane approaches a uniform distribution.

We then calculated the center slice energy o.z and ac-
tion o~ from our flux data, which are the energy and
action stored in the transverse slice of unit thickness mid-
way between the qq pair. The results are shown in Fig. 4.
In this figure we plot the behaviors of o@ versus r and
a& versus r, respectively, for P = 2.36. This shows that
for Nb small o.@ and o.~ do not decrease to zero as r in-
creases. However, for Nb large (e.g. , Nb = 9, ll), az
and o~ decrease rapidly with r and become very small
at large qq separations (i.e. , r = 6a).

B. Analysis of finite-volume effects
for cases with P & P,

To see how the finite-volume effects influence qq flux
distributions in a finite box, let us consider an electro-
static charge pair +e, —e enclosed in a similar long rect-
angular box such as that of Fig. 1. The interaction be-
tween charges is the Coulomb interaction V(r) 1/r.
As the charge separation r becomes very large, i.e. ,

r/Nba ~ oo, one can assume the electric field 8 on the
middle transverse plane is uniform, and can be written
as

C

(Nba)2
'

where C is electric flux through the transverse plane,
which is a constant for the Coulomb interaction, and
(Nba) is the transverse size of the box. So the total elec-
tric field energy on the transverse plane is

(o ~)o = 8(Nba—)
12 2 1

2 Nba ' (16)

0
2

This shows that at large charge separations the center
slice energy (crz)& decreases with the behavior (Nba)
as the transverse size Nb increases, and (a'~)c vanishes
as Nb + oo, where the label C denotes a Coulomb inter-
action.

Now let us return to the qq pair in the box with

p & p, . As we discussed in the above section, the sys-
tem approaches the unconfined phase for large Nb. In
this phase the qq interaction is a screened Coulomb in-
teraction V(r) e™/rwith m the screening mass [12j.
Then if the qq pair is put in a box such as that in Fig. 1,
the flux C through the transverse plane is not a constant,
but would decrease with r and Nb. So we expect that in
this case the center slice energy o.@ for a qq pair would

P =2.36 P =2.40

1.0

0-
2 10

FIG. 4. The behavior of center slice energy o.& and action
cr~ vs the qq separation r in the region of p & p„(a) os vs r,
(b) ag vs r. The data were measured on lattices 4 x Nb x 65
with P = 2.36 for various spatial sizes, Nb = 5 (circles), Nb =
7 (squares), Nb = 9 (triangles), Nb = ll (diamonds). The
data are in the physical unit GeV/fm.

FIG. 5. The plot of or~ in the region of p & p, vs the
transverse size of lattices Nb at large qq separation r = 6a.
The solid line is the Coulomb behavior (¹a),the dashed
line is the inverse quartic behavior (Nba), both are nor-
malized to the data at Nb = 5. The data were measured on
lattices 4 x Nb x 65 with Nb = 5, 7, 9, ll, and P = 2.40.
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decay faster with N5 than (o@)~, which has the inverse
square behavior, (o@)~ (Nsa), for r -+ oo. In ig.

d ta versus the transverse size Nb or
large qq separation r. Our data are compared with the
Coulomb behavior (Nba) and for reference purposes
the inverse quartic behavior (N5a)) 4. The data were
measured on lattices 4 x Nb x 65 with Nb ——=5 79 11

From Fig. 5 one can see that for large r our o.~ data ap-
pear to decay faster with N5 than the Coulomb behavior

ba~~as exp
action in the unconfined phase at least contains a term
that decays faster than the Coulomb interaction, such as
the screened Coulomb interaction, although the data are
not good enough to determine the screening mass.

In conclusion, our fiux data in the region of p ) p,
show that in the unconfined phase there is no string for-

t F a small transverse size Nb, the finite-volume
effects are large; the flux lines between a qq wou e
squeezed by side walls of the box significantly. This
would result in a finite string tension.

C. Flux distributions with p & p,

For p & p, the qq system approaches the confined
phase as the volume becomes large (Nb —+ oo). We ex-
pect string formation would occur in this phase. To see
this we need to study behaviors of the fiux distributions
as a function of the qq separation r.

In Fig. 6 we show the action density p~ distribution
changing with the qq separation r. The fiux data were
measured on the lattice 4 x llew x 65 with p = 2.25. Since
Ns is large (N5=11) we deleted the margins of the trans-
verse cross section of the lattice, as we i in Fig. 2.
This figure should be compared with Fig. 3, which is for
p ) p, . One can see Fig. 6 shows significantly differ-
ent behavior from Fig. 3. In Fig. 6 the peak values of

th plane approach a finite value as r becomes
'll ex-large. Even at large r (i.e. , r = 6a) this peak sti ex-

ists. However, in Fig. 3 the peak of the p~ distribution
almost disappears at r = 6a. So the flux distribution in
Fig. 6 implies that intrinsic string formation occurs in
the region of P & P, . This is not due to finite-volume

(g ) 4x112x65, r=3a ( C) 4x11 x65, r=5a

241 24—

12

0

6
Z p 2 4 2 p 2 4

( b ) 4x11'x 65, r=4a (d) 4x 112x 65, r=sa

24- 24—

12- 12—

0-,

6 4 6

0-

6 4 2 p 2 4 8

ion densit z flux distributions in the region of P ( P, on the plane midway between the qq sources of—6 Th 8 data were measured on lattices 4 x 11 x 65various separations (a) r = 3a, (b) r =, ( ) —, l 1
—6

with P = 2.25. The data are measured in the physical unit GeV/fm .
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effects because these effects are small at large volumes
(i.e. , Nb=9, ll), as we discussed in Fig. 2 and Table II.

We also calculated the center slice energy and action
cr@, c7~ from our flux data in the region P ( Pc. If string
formation occurs in the confined phase, for Nb large both
a.~ and o ~ should approach some finite nonzero constants
when r ~ oo. In Fig. 7 we plot the behaviors of cr@ versus
r and cT~ versus r, respectively, for P = 2.28. The data
were measured on lattices of various spatial sizes Nb=5,
7, 9, 11. From this figure one can see that in all cases
cr~ and cr~ do not decrease with r. For each fixed Nb the
values of o.@ and o~ are almost constant as r increases.
Further, for large Ng (Nb = 9, 11), where finite-volume
effects are small, both o@ and o.~ keep as finite nonzero
constants as r becomes large. This behavior is totally
different from that of Fig. 4, which is in the region of
P & P, . So Fig. 7 also implies that string formation
occurs. In this figure we also notice that fluctuations of

P=2, 28

P=2.28

the data are large compared to the unconfined data. This
is a typical behavior because confinement corresponds to
disorder.

In conclusion, our flux data in the region of P ( P,
provide evidence for intrinsic string formation in the con-
fined phase. This string formation is not due to finite-
volume effects because these effects are small as the vol-
ume becomes large (i.e. , Nb = 9, 11).

IV'. SU(2) GAUGE THEGRY' IN FINITE
VOLUMES AT Tjy 0

As we discussed in Sec. I, we have two ways to inter-
pret the LGT calculations. One way is to identify the
shortest extent N of lattices to be the temporal size.
This is a convenient way to study the LOT system. In
previous sections we have discussed our calculation re-
sults in this way. However, to compare with analytical
results in finite volumes at zero temperature, one can use
another way to interpret LGT results, that is, the longest
extent N, of lattices is chosen as the time direction, so
that the temperature is as low as possible. In this case
Polyakov loops closed in the N (or Ni, ) direction are no
longer viewed as quark sources; they are considered to be
spatial operators. Quantities such as the glueball mass
and string tension can be calculated from Polyakov loop
correlations along the tiine direction (N, ). No matter
which way we choose, quantities calculated in LGT are
the same; the mathematics of the two ways are equiva-
lent. In this section we shall look at the system in terms
of this second interpretation, and reinterpret the results
of previous sections.

If we choose N, as the time direction, we are studying
SU(2) gauge theory in the volume U = N N&~as at near
zero temperature T~ = I/N, a, because N, is large. For
convenience, instead of zs defined in Eq. (1), we shall use
another parameter, z„= ~icl = ~icNba, to characterize
the physical size of the volume [4], where r, is the string
tension measured by two Polyakov loops closed in N~
with correlations measured along N, . This corresponds
to Kc of Ref. [4]. Koller and van Baal used z~ in their
analytical calculations [3], so that they could easily com-
pare with Monte Carlo results. Berg and Billoire used
both zz and z„parameters and other z parameters in
analyses of their LOT Monte Carlo data for convenience
[4]. The parameter z„ is equivalent to zg. For example,
from the data of Ref. [4] one can see that zs —1 corre-
sponds to z„-0.24, and zg = 5 corresponds to z„=1.3.
In Table III we show the correspondence of z~ and z„.

FIG. 7. The behavior of center slice energy cr~ and action
crz vs the qq separation r in the region of P ( P~, (a) cr~ vs r,
(b) cT~ vs r. The data were measured on lattices 4 x Ni, x 65
with P = 2.28 for various spatial sizes, Ni, = 5 (circles), Ni, =
7 (squares), Ni, = 9 (triangles), Nq = ll (diamonds). The
data are in the physical unit GeV/fm.

Small volume

zg&1
z & 0.24

Intermediate volume

1&z, &5
0.24 (z„(1.3

Large volume

zg ) 5
z~ & 1.3

TABLE III. The correspondence of the two parameters
zg = rn(0+)Nba and z„= v tcNt, a, which are obtained from
data in Ref. [4].



47 SU(2) FLUX DISTRIBUTIONS ON FINITE LATTICES 5111

TABLE IV. The values of the string tension data and z„on lattices of size 4 x Nb x 64 with
Nb = 4, 6, 8 and P = 2.36, 2.38, and 2.41. The data are quoted from Ref. [4].

P = 2.36 +KG
z„= Nb~ica

4 x Nb x 64
4

0.2475 (18)
0.99 (1)

6

0.1593 (39)
0.96 (2)

0.1091 (39)
0.87 (3)

P = 2.38 ~r.a
z„=Nb~ra

0.2424 (23)
0.97 (1)

0.1357 (44)
0.81 (4)

0.0732 (81)
0.59 (6)

P = 2.41 chica
z„= Nb~ica

0.2264 (14)
0.91 (1)

0.1314 (51)
0.79 (3)

A. Results in intermediate volumes
(0.24 & z„& 1.3)

In this part we will show that our lattices with P & P,
belong to the intermediate volume region. Since in this
region our string tension data have large error bars, we
just simply use the string tension data of Ref. [4] to show
that our lattices with P & P, satisfy 0.24 & z„& 1.3. The
data of Ref. [4] are given in Table IV, which have high
statistical accuracies.

Prom Table IV we can see the values of string ten-
sion chica and the parameter z„decrease with the in-
crease of Nb and p. Our data were measured on lat-
tices of the size 4 x Nb x 65 with Nb= 5, 7, 9, 11
and P = 2.36 and 2.40, which are similar to the lat-
tices in Table IV. We can estimate our string tension
and values of z„ from Table IV. For example, the es-
timated string tension for the lattice 4 x 52 x 65 with
P = 2.36 could be interpolated from the string tension
measured on lattices 4 x Nb x 64 with Nb = 4, 6 and
p = 2.36. From Table IV one can see that for Nb = 5
the string tension satisfies 0.1593 & ~ra & 0.2475, and
0.80 & z„= ~icaNb & 1.24, which is in the intermediate
volume region, 0.24 & z„( 1.3, as shown in Table III.
By comparing our lattices with Table IV in this way, we
find that our lattices with P = 2.36 and 2.40 for Nb = 5,
7, 9, ll are all in the intermediate volume region, with
the box temperature approaching zero, i.e., T~ ~ 0.

As we discussed in Sec. III, for p & p, there is no
intrinsic string formation. However, since finite-volume
effects are large when the transverse size Nb is small, this
results in the observed string tension in these cases. As
Nb becomes larger, finite-volume effects becomes smaller,
the string tension becomes smaller. This is confirmed in
Table IV. Since the lattices with p & pc in our study
all belong to the intermediate volume region, in these
cases we find there is no intrinsic string formation, and
the string tension is due to finite-volume effects. In gen-
eral, we expect that the results apply to the whole in-
termediate volume region in the zero-temperature lira. it
(T~ ~ 0).

B. Results in large volumes (z„& 1.3)

the values of z„ for lattices with P & P, . We can see
that most lattices listed in Table V satisfy z„& 1.3, with
one case in the critical region, z„= 1.3 for P = 2.28 and
Nb = 5. From Table III we know that lattices satisfying
the condition, z„& 1.3, belong to the large volume region
in the zero-temperature limit (T~ —~ 0). So our lattices
with P & P„as listed in Table V, are in this region.

As we discussed in Sec. III C, a system with p & p, is
in the confined phase in the infinite volume limit. In this
case we have shown that intrinsic string formation occurs.
As the transverse size Nb is made small (e.g. , Nb = 5),
we also observed some finite-volume effects; however, it
does not change the nature of qq confinement. We have
shown that the lattices with P & P, in our study all
belong to the large volume region in the zero-temperature
limit (T~ —+ 0). From our study we have found evidence
for intrinsic string formation in these eases, which is not
due to finite-volume effects. We expect that the intrinsic
string formation occurs in the whole large volume region.

V. SUMMARY

We used two ways to interpret the LGT results cal-
culated on lattices N x Nb x N, with the geometry
N & Nb (& N, . First, we chose the convenient way
to interpret our data, by identifying N to be the time

Nb

2.25
2.28

4 x Nb x 65
@ra

0.300 (22)
0.251 (34)

z„=Nb~isa

1 5 (1)
1.3 (2)

2.25
2.28

0.288 (31)
0.258 (31)

2.2 (2)
1.8 (2)

2.25
2.28

0.262 (84)
0.226 (67)

2.4 (8)
2.0 (6)

TABLE V. The string tension data K and the values of the
z„parameter on lattices of the size 4 x Nb x 65 with Nb = 5,
7, 9, 11 and P = 2.25 and 2.28.

For p & p, we can easily extract the string tension,
which is given in Table V. In this table we also show

2.25
2.28

0.307 (48)
0.232 (64)

3.4 (5)
2.6 (7)
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E„=~nEi (17)

where E„ is the energy of the n unit flux. However, both
analytical results [3] and LGT calculations [4] produce a

direction we can study the system at finite temperatures
(T~ = 1/N~a) in the volume U = NbN, as. We ana-
lyzed the fli distributions of a qq pair in terms of this
interpretation. If we choose N, to be the time direc-
tion we can study the system at near zero temperature
(T~ = 1/N, a) in the volume U = N~N&~as. We find that
for P ) P, there is no intrinsic string formation. Our
lattices with P ) P, belong to the intermediate volume
region. We then established that the origin of the string
tension measured by Berg and Billoire [4] in this region
is related to finite sizes of the lattice. For P ( P, we find
clear signals for intrinsic string formation. Our lattices
with P & P, are in the large volume region, but near the
borderline of intermediate volumes and large volumes.
This is just beyond the volume region investigated by
Berg and Billoire.

Another remark on string formation is that for higher
units of 't Hooft electric flux one expects that string for-
mation predicts the relation [4],

diferent behavior in the intermediate volume region,

E„=nEg, (18)
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where n = 1, 2, 3 for SU(2). Even in the large volume
region some Monte Carlo data of Ref. [4] still show the
behavior of Eq. (18). We speculate that Eq. (17) may
be due to lattice artifacts since the origin of v 2 and v 3
in this equation are for the planar diagonal and volume
diagonal on lattices.

Our study supplements the global study of Berg and
Billoire [4], and provides evidence that string formation
does not occur in intermediate volumes, but occurs in
large volumes. To verify Eq. (17) or (18) we need to
measure the energy E„of higher unit flux in the large
volume region.
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