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Simply modeling meson heavy-quark effective theory
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A simple relativistic model of heavy-quark —light-quark mesons is proposed. In an expansion
in inverse powers of the heavy-quark mass we find that all zeroth- and first-order heavy-quark
symmetry relations are satisfied. The main results are the following. The difFerence between the
meson mass and the heavy-quark mass plays a significant role even at zeroth order. The slope of
the Isgur-Wise function at the zero recoil point is typically less than —1. The first-order correction
to the pseudoscalar decay constant is large and negative. The four universal functions describing
the first-order corrections to the semileptonic decay form factors are small. These latter corrections
are quite insensitive to the choice of model parameters, and in particular to the effects of hyperfine
mass splitting.
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I. INTRODUCTION

It has recently been realized that major simplifica-
tions occur in the theoretical treatment of weak decays
of mesons containing a heavy quark [1]. New symmetries
appear in an expansion in inverse powers of the heavy-
quark mass. For example at lowest order the six form
factors for the decays of pseudoscalar to pseudoscalar and
vector mesons become related to a single universal form
factor (the Isgur-Wise function). The latter depends only
on the dynamics of the light degrees of freedom. In addi-
tion the masses of pseudoscalar and vector mesons with
the same heavy-light flavor content are equal at this or-
der, as are their decay constants.

However in the real world it is important to know the
magnitude of the 1/mg corrections. It is expected that
the 6 quark is probably heavy enough for the corrections
to be small, but it is less clear for the charm quark. It is
also becoming apparent that; the size of the corrections
depends strongly on what quantity is being calculated.
We will attempt to shed more light on these questions,

We will present a model based on simple finite quark
loop graphs. It is relativistic and incorporates the effects
of hadronic recoil in a natural way. We demonstrate ex-
plicitly that all heavy-quark symmetry relations among
the semileptonic decay form factors at zeroth and first
order in 1/mq are satisfied by the model. The model
also allows calculations to all orders in 1/mq.

We consider our approach to be complementary to
@CD sum rules [2]. The latter approach relies on a
certain representation of the hadronic contribution to a
three-point function. The basic input for our model is
a representation of a Bethe-Salpeter amplitude for the
heavy-quark —light-quark meson. As such, it may be im-
proved by future @CD-based numerical computations of
Bethe-Salpeter amplitudes. Our model is also comple-

mentary to nonrelativistic quark models [3,4] and it pro-
vides the first indication of how the 1/mq corrections are
affected by hyperfine mass splitting. (Note that hyperfine
mass splitting effects are not included in the Isgur-Scora-
Grinstein-Wise (ISGW) model [3].)

Our model highlights the importance of the difference
between a meson mass and the mass of the associated
heavy quark [5]. This mass difference is needed to ob-
tain consistent results at zeroth order in 1/mq (e.g. , the
Isgur-Wise function). We will show that ignoring this
difference leads to very different results, and correspond-
ingly the 1/rnid corrections to this mass difference must
be properly incorporated into the 1/mq corrections of
other quantities.

Another result is a confirmation that the 1/mq cor-
rection to the B meson decay constant f~ is very large
and negative. This was first suggested by lattice cal-
culations [6] and it has been noted in two-dimensional
calculations [7] and sum rule calculations [8,9]. This is
to be contrasted with the corrections to the weak decay
form factors, which we find to be relatively small. The
latter observation also agrees qualitatively with sum rule
results, although the actual numerical values of various
1/mq corrections differ.

We test the sensitivity of our results to the parameters
of the model, and in particular we find that the form
factor corrections are quite insensitive. We feel that the
quantitative differences between our model and sum rules
give an indication as to the true uncertainty in present
theoretical determinations of these quantities.

II. DEFINITION OF THE MODEL

Before beginning we make the standard definitions of
physical quantities. The meson decay constants are given
by

(0 (A„]P(p) ) = ifpp„and (0 f V„[ V(p) ) = fv Mi e„.
(1)
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Our normalization is such that A„= qp„psQ The vari-.
ous form factors for semileptonic decay are defined by
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(P2(v2) le lPr(vi)) = QMi, MJ, h+(ur)(vr+v2)„+ h (~)(v, —v, )

(V2(v2) lVi1l Pi(v&)) = QM&, Mv, hv(~)s„„~ s2"vz~vi

(V2(v2) lAi1 I Pi(v&)) = gV—~Mi; Mv~ (~ + 1)hz (~)&2 —(hA, (u)vr„+ hA, (u)v2 ) c* vr (4)

where the v's are meson velocities, and ~ = vq v2.
We choose to represent transition amplitudes by dia-

grams with heavy mesons attached to a loop involving
heavy and light quarks. The essential nonperturbative
physics of QCD is that contributions with large momen-
tum fIowing through the light-quark line are suppressed.
We will model this physics by including factors in the ver-
tices which damp the loop integrals when the light-quark
momentum k is larger than some scale A set by QCD.
This has two desirable efFects: the integrals are made
finite and we may consider k small in comparison to a
meson momentum. This latter fact is the crucial ingredi-
ent that gives rise to the correct heavy-quark symmetry
relations.

The effective vertices between a light quark, a heavy
quark, and a pseudoscalar or vector meson are taken to
be

f»v oc m& . The zeroth-order constants A, c, and a
—1/2

will be completely determined in terms of A/mq and n
without further input.

The first-order constants B»v, d»v, and b»v de-
pend in addition on the values of g and h. These lat-
ter constants model the eKect of hyperfine mass split-
ting. Through their effect on di v they determine how
the pseudoscalar and vector masses approach a common
value in the heavy-quark limit. To first order in 1/mq we
will find that g and h dependence cancels out of certain
physical quantities. As with A, c, and a, we stress that
the quantities BI,v, d~~, and bI ~ are not parameters
of the model and will be determined by A/m~, n, g, and
h.

For certain physical quantities we will need to know
mq and A separately. It is reasonable that the appro-
priate efFective light-quark mass should be of order its
constituent mass, in common with most successful quark
models. As for A we note the following relation which
follows from (8):

where A; is the momentum of the light quark. The light
and heavy quarks are assigned standard propagators with
masses mq and mg, respectively. With these choices,
and with n an integer or half-integer, standard methods
involving Feynman parameters may be used in the one-
loop computations.

We may now consider expanding various quantities to
first order in A/mq.

A~ = A
l
1+(+h —g)

( A 5

mg)

C
»V Izeroth order (10)

h, (u) = o,,((~) + 6,h, ((u) + 6bh, (u)
A A

mc mQ

The first equality is the standard definition of A appear-
ing in the literature. When necessary to choose A, it
will be chosen so as to give reasonable values of A. The
parameter n determines the form and extent of the damp-
ing due to the meson vertex factors, and one of our goals
will be to study the sensitivity of 1/mq corrections to
the choice of vertex factors.

The various weak decay form factors may also be ex-
panded:

2 2 A 5
Mi v —m& ——cAmq 1 + di v

mq)

p3 j2 A &fi,v =a,(, 1+b»v
mQ mq) (9)

V symmetry in (7)—(9) at zeroth order is
a direct consequence of the model, as shown in Ap-
pendix A. The same is true of the nontrivial zeroth-order
mq dependence, and in particular the standard scaling

with o.+ ——n~ = o.~, ——o.~, = 1 and n = o,~, = 0.
((w) is the Isgur-Wise function and we will calculate it
in terms of A/mq and n. In QCD it has been shown that
numerous relations exist between the first-order correc-
tions [5,13]. We demonstrate in Appendix B that these
relations are satisfied by our model for any values of the
parameters. This consistency with heavy-quark symme-
try at first order in A/mq is a nontrivial test for any
quark model of heavy mesons.

We will present numerical results for the first-order
corrections and their first derivatives, all at u = 1. We
do not treat the perturbative QCD corrections; they have
been calculated elsewhere [10] and should be added to our
results.
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III. ZEROTH-ORDER RESULTS 0.4

A/mq c —I c —3/3
2 1.5797 1.3949 1.3006
4 1.4635 1.1976 1.0545

(12)

We first consider the results of our model at zeroth
order in A/mq. Details of these calculations may be
found in Appendix A. Computation of c involves finding
the zero of the meson two-point function as given in (A4).
Some examples of these "mass functions" are displayed
in Fig. 1. When we set the location of the zeros equal to
M = m + cAmg we find the following values of c:

0.2

~pv (J )
Amq

-0.2

-0.4
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

(p2 —m~q) /Amq

PEG. 1. Normalized lowest-order mass functions for
n = 3/2 and A/m~ = 4, 2, 4/3.

We see that increasing n decreases M. A is constrained to
be greater than mq, since otherwise we find no sensible
zero of the mass function. We will see later that the
two choices shown in (12), A/m~ = 2 and 4, imply a
reasonable range for A.

We display in (13) the results for the zeroth-order pa-
rameters A and a appearing in Z~ v and fI v, respec-
tively, and given by (A7) and (A9):

strong Adependencerefiects f~v oc A / at zeroth order.
f~ v become smaller for larger n

The Isgur-Wise function ((u) of our model is given by
(A13). It depends only on the index n and the ratio ci-:
m~/A. Let us see the effect of ignoring the zeroth-order
mass difference A. Putting c = 0 in (A13) allows one
to perform the relevant integrations explicitly, yielding a
linear combination

A/mq A„—i An=3/z A~ —2 a„—3/3 a„—3
2 0.9181 0.9184 0.9059 0.25 0.17
4 1.1461 1.1358 1.1077 0.29 0.19

.=o fi(~)(i(~) + fz(~)(2(~)
f ( )( (1) + f ( )( (1)

(14)

of two functions independent of n and n,

We do not include in (13) results for a„ i because in this
casethedependenceof fI on Ais not of the formof (9) (it
is logarithmic), while fI/ diverges. For n = 3/2, mb = 4.8
GeV and A = 500 MeV and 1 GeV we find f~ = f~* =
40 MeV and 132 MeV, respectively, at zeroth order. The

2 ln (~ ~ gee' —1)(,(~) = and (2(cu) =
1 + 4J +Cd —1

The coefficients are given by

/' 0) " '
ir (01 " 'win(t/nz)

a=1 t=l

Expression (A13) for ((u) with nonzero c must be eval-
uated numerically. We plot the result in Fig. 2 together
with the c = 0 form in (14). The difference is quite sig-
nificant; this demonstrates the importance of retaining
the zeroth-order mass difference A. A simple quark-loop
model was recently described by de Rafael and Taron [1lj
in which they obtained ((u) = (z(u). But that model,
like our model with c = 0, does not correctly take into
account a nonzero A.

It is interesting to see how ((w) with nonzero c depends
on n. We plot in Fig. 3 the first and second derivatives
of ((~) at cu = 1, for the case n = 3/2. We see that there
is a range of a over which they are quite insensitive to
the value of o. . Our two choices o. = 1/2 and n = 1/4
more or less fall within the region of insensitivity.

0.9

0.8

0.7

0.6—

0.5 I

1.2
4) =Vi Vg

I

1.4
I

1.5 1.6

FIG. 2. Isgur-Wise functions for n = 3/2 and A/m~ = 4, 2.
Also shown are results for the inconsistent case A = 0.
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A/m, n
2—

21

P
0.379 —(h + g) 0.646
0.385 —(tr + g) 0.886
0.461 —(h + g)0.801

dv
0.335 + (h —g)0.646
0.262 + (h —g)0.886
0.365+ (h —g)0.801

(18)

0
0

I

0.2
I

04
mq A

I

0.8

A/m, n
2 j

21

B~ &v
0.266 —(h+ g)1.387 0.301+ (h —g)1.387
0.193 —(h+ g)0.989 0.274+ (h —g)0.989
0.404 —(h+ g)1.341 0.535+ (h —g)1.341

FIG. 3. First and second derivatives of the Isgur-Wise func-
tion at u = 1 for n = 3/2.

Although we cannot obtain ((u) analytically we have
checked numerically that it has the correct behavior at
large u, namely, it tends to zero. We have also computed
the derivatives of g(w) at u = 1:

1

2, 1 1

& (1)
—1.241
—1.118
—1.359

~" (~)
2

1.370
1.047
1.691

s"'(~)

—1.459
—0.917
—2.094

~""(i)
4f

1.536
0.777
2.631

IV. ORDER-A/mq CORRECTIONS

The purpose of this section is to find the O(A/mq)
corrections and to explore their dependence on the pa-
rameters n, A, g, and h. For (A/m~, n) we take the three
sets of values (2, 2), (4, 2), and (2, 1), and for each quan-
tity we calculate we will indicate explicitly the g and h,

dependences.
We remark that just as the zeroth-order A dependence

of the meson masses (i.e. , c) plays an important role
in the zeroth-order results, the next-to-leading-A depen-
dence of the meson masses (i.e. , dP, v) plays an impor-
tant role in the first-order corrections. The meson masses
enter the loop calculations via the on-shell external mo-
menta p = M&&. A dependence from meson masses
also originates in the factor M~ in the definition of the
vector decay constant (1) and in the factors QMp, Mp,
and QMp, Mv, in the definition of the form factors (2)—
(4).

Our results for the corrected masses M~, ~ and the cor-
rected vertex normalizations ZP v (i.e. , the parameters
Gp, v arid Bp,v) are

(17)
l

Our values for ( (1) are consistent with the present ex-
perimental determinations [12]. [Note that these deter-
minations assume some functional form for ((cu) which is
not identical to ours. ] We see that our model, like most
other models, does not satisfy the constraints on ( (1)
and ( (1) recently argued for in [ll]. It is amusing that
the constraints are satisfied by the inconsistent c = 0
model.

A/mq, n

4, 2

bI b~
—2.92 —(h+ g)1.82 —1.37+ (h —g)1.82
—3.82 —(h+ g)1.52 —1.43+ (tr —g)1.52

(20)

We now turn to the first-order corrections to the weak
decay form factors. It is standard [2] to write the first-
order terms in (ll) as

(21)

In @CD the first-order terms may be expressed in terms
of the universal functions yi 23(cu) and (s(~) in addi-
tion to ((u) [5,13]. These relations are reproduced in
Appendix B. Also in Appendix B we demonstrate that
these relations are satisfied by our model for any values of
the parameters. We also verify in detail Luke's theorem
[13] which reads yr(1) = ys(l) = 0.

At u = 1 we find the following results in which we
temporarily set g = 6 = 0:

Xl(1) x2(1) xs(1) 6(1)
2, — 0 —0.153 0 —0.002
4, 2 0 —0.132 0 —0.008
2, 1 0 —0.148 0 —0.005

(22)

A
7
flma

2
4, —

21

Xi(1) Xz(1) Xs(1)
—0.368 0.212 —0.058
—0.307 0.161 —0.057
—0.419 0.218 —0.073

~;(1)
—0.097
—0.116
—0.101

When g and Iii are nonzero the results in (22) do not

(19)

The values of the correction coefBcients for the decay
constants as defined in (9) are displayed in (20). Note
in particular the large negative values of bI for the pseu-
doscalar. (From our parameter fit at the end we find that
both g and h are positive. ) The implication is that the
first-order corrections to fry are nearly of the same or-
der (with opposite sign) as the zeroth-order values. We
conclude that the A/mq expansion for fir is breaking
down:
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change. The g and h dependence of various preceding
quantities has canceled out. Only two of the first deriva-
tives are changed by the following amounts:

by, (1) = 2:(h —2g), (24)

1
bus(1) = ——xh.

2
(25)

A, n
0.5 GeV, —

1.0GeV, 2
0.5 GeV, 1

'7+(1) r (1) Y&(—1) '7& (1) 7& (1) 7& (1)
0 —8.5 15.8 0 —19.5 11.1
0 —14.8 27.1 0 —31.6 17.5
0 —9.7 17.9 0 —21.8 12.3

(26)

z = 0.193, 0.003, and 0.155 for (A/mq, n) = (2, s2), (4, &~),

and (2, 1), respectively. In fact y2(w) and (s(w) are in-
dependent of g and h for any cu, as demonstrated in Ap-
pendix B.

We may translate these results into values for the
p, (1)'s. At this stage we are finally forced to make a
choice for mq. We choose mq ——250 MeV as a repre-
sentative value of an efFective constituent quark mass in
our loops. Using mg = 4.8 GeV, m, = 1.44 GeV, and
g = h = 0 we obtain the following results for p, (1) and

/

p, (1) expressed as percentages of unity:

with the sensitivity of the results to the parameters rather
than trying to find an optimal set of parameters. The
latter could be accomplished in the following way. We
may calculate a A+ for each of B and D and a A
for each of B and D by fitting the zeros of the full mass
functions to the physical meson masses. By fitting these
four A~'s to the first-order form in (6) we find, for n = 1,
A = 667 MeV, g = 0.057, h = 0.37, and for n = 3/2, A =
818 MeV, g = 0.047, h = 0.32. In both cases A = 504
MeV which coincides with a sum rule estimate [2,8].

Our results for the corrections are somewhat difFerent
from a sum rule calculation [2] which gives (s(1) = 0.33
and y2 (1) = 0 and from an improved sum rule calculation
[14] which gives y2(1) = —0.038. Note that in QCD
yg(1) measures the effect of a chromornagnetic moment
operator insertion [13]. Our values for p, (1) and p, (1)
may be compared directly with the corresponding results
in [2].

In this paper we have presented the zeroth- and first-
order model results for various quantities of interest in
the meson heavy-quark effective theory. The same model
allows the calculation of physical quantities to all orders
in the 1/mq expansion. This comparison, to be pursued
elsewhere [15],should shed further light on the usefulness
of the heavy-quark quark expansion in B and D meson
physics.
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APPENDIX A

Again the only effect of nonzero g and h are in the fol-
lowing first derivatives:

We treat in this appendix the zeroth-order pieces of
(7)-(9)

bye (1) = b'7A, (l) = by~, (1) = —2A2:
l

+
m~ mb

(28)

by+(1) = —2Am(h+ g) l

( I 11
(m~ mb)

(29)

x takes the same values as above.
An important point is that the zero recoil values of

the four universal functions in (22) and the correspond-
ing first-order corrections to the form factors in (26) are
independent of hyperfine mass splitting, as modeled by
g and h. Another is the weak dependence of the results
in (22) and (23) on the parameters n and A. The results
in (26) and (27) show more variation and reflect the fact
that they are proportional to A. Corresponding to the
three rows of these tables we have A —350, 600, and 400
MeV, respectively.

In our discussion thus far we have been more concerned

1. Masses and normalizations

We begin with the pseudoscalar and vector mass func-
tions I'i ~(p ) defined by setting the self-energy graphs
equal to iI'p and —ig„ I'~ +, respectively, where the
ellipsis denotes p„p terms. The light-quark momentum
k may be chosen to be the same as the loop momen-
tum, and the heavy-quark momentum is then vs ~ + k
where v2 = 1. In the heavy-quark limit we may ignore
k compared with Mr v and use (8) to show that the
heavy-quark propagator becomes (after scaling k —+ Ak)i—

A —2k v —c~ ~
(Al)

We have temporarily allowed the constants c~ ~ describ-
ing the lowest-order difFerence between quark and meson
mass to be diferent for the pseudoscalar and vector. Our
first task is to show that they are in fact equal to a com-
mon constant c.

The relevant traces are
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Tr, +1 . +o. , (A2)

where o. = m~/A. The translation is k ~ k —xu where
x is a Feynman parameter; the integral linear in k then
vanishes. We may anticommute the resulting v leftwards
past the gamma matrices since terms proportional to v
do not contribute in the vector case. The results are

(A3)

where (—:—k v + o; is equivalent with z + o;. We thus
find

~4k 4~n Z4 A2 4
7

(2ir) [
—k + 1] "

[
—k + o, ][—2k v —c~,v]

(A4)

We are regarding these mass functions as the full two-
point functions of the mesons; i.e. , there are no tree level
contributions. Thus the meson masses are defined by
the locations of the zeros of the real parts of these mass
functions:

Tr +1 . +A

Re I'~ i (M~ v. ) = 0. (AG)

Notice that imaginary parts are present in any quantity
which is evaluated on the meson mass shell. This is be-
cause the difference A between the meson mass and the
heavy-quark mass is greater than the light-quark mass
m~, and thus the meson is above the threshold for two
free quarks. But note that our A is consistent with that
of other approaches [2,8]. We will not consider these
imaginary parts further. We also find and then drop an
overall, physically irrelevant minus sign [15].

We regard c~ and cv as variables whose value is Axed
by (A4) and (A5). It is then obvious that they are equal
to a common value c because the functions I'i v (M&2 &)
dier at most by multiplicative factors. This demon-
strates that M~ = M~ at zeroth order [see (8)].

The mass functions are also required to satisfy the nor-
malization condition

(A6)

This immediately implies that the normalization factors
Z~ v are equal to one another in the heavy-quark limit.
The value of the zeroth-order constant A defined in (7)
is thus Axed by

1= D2"D D2' (A7)

where Dg = —k +1) D~ k +o, ) D —2k v —c.
Here and in the following we will adopt the convention
that an overall factor 4in, A and f d k/(2n) are un-
derstood whenever the denominator is written explicitly
as a product of D's.

By the Ward identity the above determination of A is
equivalent to the normalization of the Isgur-Wise func-
tion. This will be verified explicitly below.

(AS)

Use of the lowest-order pieces of the expansions (6)—(8)
immediately shows that the decay constants are equal at
lowest order and are given by

As/2 g—2ng
(A9)

3. Form factors

We turn to the zeroth-order results for the meson form
factors defined by (2)—(4). The relevant traces are

, +1 r„ i+1 p5 + (A10)

(z+@+n)Tr (, ) ($2+1)I'„(j,+ 1)1 . (All)

Use of the lowest-order pieces of expansions (6)—(8) and
evaluation of the standard traces immediately yield the
relations

h+((u) = hv (~) = h~, (~) = h~, (~) —= ((~)

The translation is k ~ k —xv~ —yv2 with v, = 1, where
x and y are Feynman parameters. The term linear in k
vanishes, and vi and v2 may be anticommuted to the left
and right, respectively, to yield the standard traces

2. Decay constants

We again choose the light-quark momentum to coin-
cide with the loop momentum. The traces relevant to
the decay constants as defined by (1) at lowest order are

and h (cu) = h~, (~) = 0. (A12)

The quantity x+y+o. is equivalent to (—:—(1+~) ik.
(vi + v2) + o, , and we find for the Isgur-Wise function
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(A13)

where D, = —2k v, —c. The normalization ((1) = 1 is
verified by setting vi = v2 = v and comparing with (A7).

APPENDIX B

The erst-order correction terms to the weak decay form
factors [defined in (11) and (21)] may be expressed in
terms of the universal functions as follows [5,13]:

p~, ( =

w~. ( =

(
A Ai+

I (xi+ 2[1 —~]x2+ 6x3),
mb mc)

A A((+ 2Xi 4X3) + (( 2(3 + 2Xi + 4[1 —~]X2 + 12X3),2mc 2777b

A ('~ —1
1(+2xi —4x3 I2m, ~+1

A (~ —1+
I [( 2(3] + 2xi + 4[1 —~]x2 + 12x3

2mb (w+ 1 r
A 1

m, a+1 [(+(3]+2x2 I

r
A ( A

[((d —1j( —2(3] + 2xi —4x2 —4x3 I
+ (( —2(3 + 2xi + 4[1 —cd]x2 + 12xs).2m, (w+ 1 ) 2mb

(B2)

(B3)

(B4)

(B6)

In the notation of (11) and Appendix A we obtain

c 2(g+ h)( (k —'2 + cdp)(
4 D3D DiD2 D2D D2D2

ct c (I + Ld) k (vi + v2) Xi
4 D2D~D1D2 D2D~ D1D (B7)

c 2(g 6 h)( (k —'2 + cdp~)(
4 D3D DiD2 D D D D2

n c (1+~) 'k (vi+v2) Y;
2 4 D D~D1D2 D D~D1D2 ' (Bs)

where P or V quantities are used in
vector, and X, and Y, are given by

2 Ai

+ 1
0

V 1
Ai 1

A2 0
A3 1

X,
1L2 ac
2 4

1k2 + 0'c
2 4

0
1 k2 cA

1+(u 2 (1+v))
0
0

Yi

X+
—X

0
S+X~,

2T + n(l + ~) —'k (vi + v2)
—2U

(B9)

the expression for b, h, according to whether the final state is pseudoscalar or

The quantities S, T, and U are defined by

k„k
DI2 D~ D1D2

~gatv + T(vipvlv + V2pv2v) + U(vlpv2v + V2pvlv)
D~2D D1D2

(B10)

On the other hand, proper normalization of the vector meson "charge" graph at q2 = 0 gives in the notation of
Appendix A

0= 2B~ ——+c 2(g —h)( (k —'2 + cdv)( a c k v Y'~
3 2 2 3 2 2 2 (B11)
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where

1 2 cA
&v =S

These are satisfied only if the following nontrivial identi-
ties are satisfied:

b, h~ —b,hA, =
(2 1+(8 (BI3)

Setting vq ——v = vq in (B8) and (B9) and comparing
with (Bll) and (B12) shows that 6,h~, = 0 at u = 1.

An analogous argument using the normalization of the
pseudoscalar meson charge graph shows that bbh~, = 0.
Luke's theorem, gq(l) = ys(l) = 0, is therefore satis-
fied for arbitrary m, and mb with no extra constraints
between model parameters.

Returning to arbitrary w we find that all the required
relations which are supposed to hold between the bbh,
follow straightforwardly from the model. The following
two relations which need to be checked for b,h, are less
trivial:

] I 2 k (vl+vg)
c c 2 (1+or)

D~2D~Di D2
(B15)

8+(1+m)(T+U) —zk (vi+vq) c
DkD~DiD22 2

' (B16)

i k2 A: (vl+vg)
c 2(i+u)
D~2D~ By D2

(B17)

We have confirmed these relations numerically and via a
Taylor series expansion around ~ = 1.

The functions yq and (s are independent of g and h.
We find

b, [h~, —h~, —h~, —2(1+.cu) h ]
= . (B14)I+w

(+6
2(1+~)

2T + n k (vl+v2)
C C 1+CcP

D~2D~ Di D2
(B18)
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