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When can hadronic loops scuttle the Okubo-Zweig-Iizuka rule?'
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We have improved and extended our previous calculations of hadronic loop contributions to meson
propagators. As we anticipated from our study of the vector mesons, systematic cancellations among
the loops, which are crucial for the preservation of the Okubo-Zweig-Iizuka rule, continue to occur
in all the low-lying nonets except 0++. The failure of the cancellation mechanism in this sector has
striking repercussions for the masses and couplings of the scalar mesons. We also present calculations
of loop-induced SU(3) violation in the low-lying nonets.

PACS number(s): 12.40.Aa, 12.38.Aw, 13.25.+m, 14.40.—n

I. INTRODUCTION

Recently, we proposed a resolution to a longstand-
ing and vexatious theoretical dilemma surrounding the
Okubo-Zweig-Iizuka (OZI) rule [1, 2]. This dilemma,
dubbed the "higher-order paradox" by Lipkin [3],
emerges when one considers hadronic loop corrections to
OZI-suppressed processes. Take, for example, uu ~ dd
mixing in a vector meson propagator. The amplitude
for such mixing, A, is directly measured by the ~-p mass
splitting, and its smallness reflects the validity of the OZI
rule: m~ —m~ = 2A 10 MeV. Two time-orderings for
this process are shown in Fig. 1, and though we may hy-
pothesize that Fig. 1(a) is suppressed, Fig. 1(b) would
seem to be large. It corresponds to a mesonic loop in
the propagator (Fig. 2 makes this clearer), with strong-
interaction vertices and a loop momentum that extends
up to AQcD (where it is cut off by the meson wave
functions), so that this diagram must be expected to
contribute AQcD to OZI violation, i.e., to the ~-p
mass splitting in this case. [Alternatively, we may note
that the imaginary part of such a graph is a hadronic
width. While small compared to typical hadronic masses
(as expected from N, ~ oo arguments) typical widths
are nonetheless large compared to 10 MeV. ]

Our proposed resolution to the higher-order paradox,
which we briefly recapitulate here, was based on the ob-
servation that the sum (over all two-meson intermediate
states) of the "virtual-decay" diagrams in Fig. 2 can nat-
urally be small, even though each individual diagram is
indeed rather large. We pointed out that in fact there is a
limit in which this sum is identically zero. To extract this
limit, first note that the mixing amplitude corresponding
to Fig. 2 is . (ddlH", ln) (nlH"dluu)

A E) =

where H&~c~ is the quark pair creation operator for the
flavor f and the set (ln) j is a complete set of two-meson
intermediate states. In a closure approximation, in which
the variation of the energy denominators associated with
this sum is neglected, A is proportional to

B —= ) .("dlH~."ln) (nlH,"."I«) = (d&IH,"."H,".I«),

and in the spectator approximation this further simplifies
to

B = (ddlH","IO)(OIH","luu) = l(ddlH","I0)l
= l(oIH,."Iuu) I' (3)

thus we see that Fig. 2 will be suppressed whenever the
created (destroyed) pair has only a small overlap with
the final (initial) meson.

In Ref. [2] we argued that the approximations used to
arrive at this suppression mechanism are not contrived,
and in fact are well satisfied in what is currently the best-
tested (and most successful) hadron decay model, the sPo
model [4, 5]. In this model the spectator approximation
applies and the qq pairs are created and destroyed with

Po quantum numbers so that, except in the scalar meson
sector, they are orthogonal to the final and initial states.

(a) (b)
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FIG. 1. A diagram associated with OZI violation shown
in two time orderings.
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FIG. 2. OZI violation via two OZI-allowed amplitudes [a
redrawing of Fig. 1(b)].

Furthermore, the severity of the closure approximation
is mitigated because the cancellations that occur in the
sum for B [Eq. (2)] occur between states with similar
energy denominators. In our full calculation of Eq. (1)
we indeed found A 10 MeV, for a wide range of model
parameters.

In this paper, we extend our calculations of A(E) to all
of the low-lying meson nonets [except the pseudoscalars
which have a special status since g-g' mixing arises from
the U(l) anomaly and there is no OZI rule to protect].
We also calculate the uu ~ ss mixing amplitudes

. (ss~H", ~n)(n~H';~uu)A' E
(Q Q )

(4)

The physical significance of A and A' is most apparent
when they are displayed as contributions to the meson
mass matrix: in the flavor-diagonal (uu, dd, ss) basis the
mass matrix may be written as

m+A A A'
A m+A A' (5)
A' A' m+ Am+ A"

(A" is the ss ~ ss mixing amplitude. ) Note that A-
A is an octet source of SU(3)-violation induced by the
quark mass difference Am—:m, —mg. Transforming to
the ideally mixed basis f ~ "~, ~""~, ss), the mass
matrix becomes

-m 0
0 m+ 2A
o

0

m+ Lm+ A"
(6)

and one sees that, in the almost ideally mixed nonets,
2A is the mass difference between the mostly nonstrange
isoscalar meson and its isovector partner, and ~2A'/An;
is the mixing angle between the strange and nonstrange
isoscalars.

In Sec, II below we will describe the ingredients of our
calculations of A and A', highlighting some differences in
detail between our present and previous work. In Sec. III
we discuss our findings, focusing especially on the scalar
meson sector, where the loop graphs produce some ex-
traordinary effects. Section IV contains our concluding
remarks.

= (2ir)s~ ppPZ. d'ke~(k) C ~(1 )(2k+ q)

x4~ k ——

where the C's are momentum-space meson wave func-
tions, q is the momentum of meson B, P is a flavor over-

lap, Z is a spin overlap, and po, the intrinsic pair creation
strength, is the only parameter of the model. The lat-
ter is fixed by fitting Eq. (7) to a measured decay width.
Three modifications of the simple Po model are required
for our purposes.

(i) Inclusion of a string overlap factor -We employ .the
flux tube picture of Refs. [5] and [6], wherein the decay
vertices of Fig. 2 arise from the breaking of a chromoelec-
tric flux tube that joins the initial quark and antiquark.
The pair is thus created in a finite region defined by the
overlap of the initial and final string wave functions. In
Ref. [5] it was shown that this overlap function has the
approximate form

iIJ(r, w) = e

where 6 is the string tension, the coordinates r and w
are defined in Fig. 3(a), and tv~ is the component of w
perpendicular to r. Here we mock up 4(r, w) with a sum
of staggered Gaussians [see Fig. 3(b)]:

n &'
4(r, w) = ) exp —— w+ —r

~2g+1 - 2 2g )

II. CALCULATING THE LOOPS

A. The 3PO decay model

Computation of the loop diagrams depicted in Fig. 2 is
straightforward once the meson wave functions and the
form of the (virtual) decay vertices are specified. Faced
with the extremely large number of intermediate states in
Eq. (1) (the principal, orbital, magnetic, and spin quan-
tum numbers of both mesons, as well as the quantum
numbers of their relative coordinate, must all be summed
over), we have found it necessary to use harmonic oscil-
lator wave functions. These are of course qualitatively
similar to more realistic wave functions (e.g. , Coulomb-
plus-linear wave functions), and they give a tolerable ac-
count of the meson spectrum and its pattern of decay
amplitudes (see for example Ref. [5]), but it would be
desirable to dispense with this approximation in future
calculations.

For the decay vertices, we employ a variant of the
Po model. As mentioned above, this model has been

thoroughly tested in studies of meson decays [4, 5]. Our
present implementation of the Po model differs some-
what from the standard one (and, in one respect, from
our own previous work in Ref. [2]). The classic sPo
model supposes that decays proceed by rearrangement
of the quarks in the original hadron with a qq pair that
is created out of the vacuum in a Po state. The pair cre-
ation is assumed to be pointlike and to occur with equal
amplitude everywhere in space, leading to the following
expression for an A ~ BC meson decay amplitude:

M(A —+ BC)
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we take to have the form
3/2

Hpc =
I

"= -;) d uq~ r+—
3tl
Sr 2 Uxe '"~ n Vq r —— . (10)

2

(b)

FIG. 3. (a) Position space coordinates for meson decay
by pair creation. (b) The amplitude for pair creation in the
region surrounding a fixed quark and antiquark [at (x,y) =
(—1,0) and (1,0), respectively]. This function, obtained from
Eq. (9) with g = 1, closely approximates the cigar-shaped
function advocated in B.ef. [5].

In Ref. [2] we used a simpler, spherical form for 4', but
this is not adequate for our present calculations because it
"artificially" causes the closure sum to vanish identically
for even-parity initial states —see Sec. II B.

(ii) Form factor for pair creation It is app. ropriate in
a constituent model to replace the pointlike pair creation
operator qt(r)n Vq(r) with a nonlocal operator, which

This operator creates the pair with a mean separation
of order the "constituent quark size, " rq. In addition to
being well-motivated physically, this nonlocality renders
finite the sum over the complete set of virtual decay chan-
nels. As discussed in [2], the value of rq is constrained
by meson decay data.

(iii) Suppression of pair creation at short distances.
Pair creation occurs in the chromoelectric Beld between
the initial quark and antiquark. As the distance r be-
tween these sources approaches zero, the field vanishes
and so does the amplitude for pair creation. In our pre-
vious calculations with 1 initial states, it was plausible
to ignore this short-distance effect. It is, however, poten-
tially very important in the 0++ sector: since the initial-
state qq pair must be rather close together (r rq) in
order to be annihilated by H~„weakening H~, at small r
may significantly reduce the otherwise unsuppressed 0++
closure sum. %'e incorporate this effect by multiplying

2
H&c by (1—e ~ " ). This physically reasonable functional
form allows us to perform some of our computations an-
alytically. The parameter t controls the onset of short
distance suppression; we shall find that our results are
not strongly t dependent.

Combining the above three ingredients, we obtain the
following generalization of Eq. (7):

2
M(A ~ BC) = s]2pop&.

27r '~'

CA k--'-p

d kd pd p@(p, p') C~~ &+ —
~

C'~
I

k ——
I

. ( p'l . & v'&

2)
q 2rq

x (k+ —) exp — k+—
2 3 2

where iII (p, p') is the Fourier transform of (1
e 'b" )@(r,w). With our model thus completely spec-
ified, we can proceed to calculate the loop diagrams.

B. Results
One of the main lessons of Ref. [2] was that the magni-

tude of A(E) is essentially controlled by the value of the

I

closure sum, B; the energy denominators in Eq. (1) do
not significantly alter the relative signs and magnitudes
of the terms in Eq. (2). Thus, with the expectation that
A(E) will be of order B/Ei~~, where Ei~~ 1 GeV is
a typical energy denominator, we begin by calculating
closure sums. The general formula is

B=6s,ip&P d ur ) (l, l, m, —m[0, 0)(E, S, M+m, —m[J, M)

x d r(l —e ' " )iIJ(r, w)g~ + (r)Q~' (r)

where @zan~ is the spatial wave function of the initial me-
son (with harmonic oscillator parameter P), S is its to-
tal quark spin, Qr& is the wave function of the created
pair, and (jr j2mim2[JM) is a Clebsch-Gordan coeffi-
cient. This equation shows that B vanishes identically

in odd-parity nonets (where l~ is even), and in nonets
with total quark spin zero (because the pair creation op-
erator has total quark spin one). It turns out that B
vanishes in the Pi nonet as well, due to an "accidental"
selection rule. In the P2 and I"4 nonets, B is nonzero
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because the nonsphericity of the string-overlap function
4(r, w) effectively violates the spectator approximation.
Figure 4 shows the Pq and Po closure sums as functions
of rq and t. We do not show the sF4 closure sum, as it
is extremely small (less than 10 4 GeV~ over the whole
range of our parameters).

Observe that the closure sum is quite small in the Pp
sector; the string-overlap function does not badly spoil
the spectator approximation. On the other hand, B
tends to be very large in the sPo sector. Though the

—Cbshort-distance suppression factor (1 —e ib"
) causes B

to vanish when rq ——0 as expected, B rises very rapidly
as rq is increased. Beyond rq ——0.1 fm (which is perhaps
its minimum reasonable value) the closure result is large.
One reason for the failure of the short-distance suppres-
sion factor to completely subdue the closure sum is that
any overall weakening of the pair creation operator H~,
must be compensated by an increase in po, in order to fit

-gbr~the meson decay data. [In particular, po(1 —e ' "
) goes

to a nonzero limit as t ~ 0.]
With our expectations thus primed by Fig. 4, we turn

to the actual calculation of A(E). Performing the sum in
Eq. (1) is a numerical challenge; in order to see good
convergence, we have found it necessary to sum over
intermediate-state mesons with up to ~4 units of radial
excitation and -9 units of orbital excitation. This trans-
lates into ~104 terms overall. Appendix I details some
of the calculational techniques we used to compute these
terms efficiently, and Appendix II discusses some finer
details of the sum, especially the tendency of neighbor-
ing terms to cancel. Our results are shown in Tables I
and II [7].

Referring first to Table I, we see that our closure limit
findings were not misleading; A is uniformly small except
in the scalar nonets (which we will discuss in Sec. III),
and this qualitative result is stable under all reasonable
parameter variations. This is our first main conclusion:
the closure mechanism suppresses loop corrections in all
of the low-lying sectors except 0++. (In Ref. [2] we
calculated A only in the vector nonet. ) While we do not
expect our calculations to accurately predict the exper-
imental mixing amplitudes, both because of the rather
delicate cancellations that occur among the loop dia-
grams and because we have neglected some potentially
important physics [such as "pure annihilation" through

f ~ I
l

~ ~ ~ ~

l
I ~

[
~ y y

l
~ 'I4, .

t=o
Q

O
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FIG. 4. Closure sums of Eq. (12), for the Pz and P&&

nonets, shown as functions of the pair creation form factor,
r~, and the short-distance suppression parameter, t.

gluons as shown in Fig. 1(a), and interactions between
the intermediate-state mesons], it is nevertheless inter-
esting to compare our results to the experimental val-
ues shown in the final column of Table I. We can draw
no definite conclusions about the signs of our sSi and
Ds amplitudes, since they are sensitive to parameter

changes. Note, however, that S~ generally comes out as
the smallest calculated amplitude, and it is also proba-
bly the smallest measured amplitude. (sF4 is also small,
but with large error bars. ) In the i Pi, sPi, st, and sF4
nonets the calculated signs are stable, and only Pq is
in disagreement with the data. We consistently obtain a

TABLE I. Hadronic loop contributions to the mixing amplitudes A(u8, ~ dd). In the al-
most-ideally-mixed nonets, 2A is the (nonstrange-) isoscalar-isovector mass splitting. Entries are
in MeV, and our "standard parameters" are P = 0.4 GeV, b = 0.18 GeV, rq ——0.30 fm, g = t = 1.

Nonet

Sy
lP
3P

3F
Pp

2 PG

Standard
parameters

-2.0
-15.0

6.2
12.4
3.6

15.6
-459
-63

Tg

0.25 fm

2.2
-22.3

0.5
23.9
2.9

14.5
-528
-135

P=
0.3 GeV

-1.1
-15.8
19.7
13.9
-3.8
10.3

-254
-96

b=
0.24 GeV

43
-15.2

5.1
15.0
3.1

13.4
-431
-58

1/2

0.3
-12.9

8.9
6.5
4.3

22.1
-422

-92

g =
1/2

-2.2
-15.9

3.9
15.6
3.2

12.2
-597

-60

Expt

7+1
-32+12
-22+3
11+15
-12+4
6+18

see text
see text
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TABLE II. Hadronic loop contributions to the mixing am-
plitudes, A'(uu +-+ ss). For reference, we also show the corre-
sponding amplitude, A, from Table I. Entries are in MeV and
our standard parameters were used.

3g

P
3P
D3

Pp
2 Po

A(m„, )

-2.0
-15.0

6.2
12.4
3.6

15.6
-459
-63

A'(m. a)

8.6
-59.4
-7.1
89.5

7.4
11.2

-537
-89

A'(m~. )
-4.2

-47.4
-18.7
91.6

2.4
-0.8

-572
-61

relatively large P~ amplitiude, and the measured value
is also relatively large. Surprisingly, the calculated A' s
are, on the whole, in fair quantitative agreement with the
data, suggesting that the hadronic loop diagrams may be
the dominant source of mixing.

The uu (or dd) ~ ss mixing amplitudes A'(E), defined
in Eq. (4), are shown in Table II. Recall that A'(E) mea-
sures the amount of P-w mixing in the vector sector, f2 f2-
mixing in the tensor sector, etc. For each parameter set,
we show both A'(m„-) and A'(m„, ) (m» is the mass of
the mostly-sS isoscalar and m„, is the mass of its mostly
nonstrange partner). These two amplitudes are in gen-
eral difFerent, reflecting the fact that (for example) the
amount of ~ in the P is not necessarily the same as the
amount of P in u once we admit more than just valence
quarks into the mesonic wave functions. From the per-
spective of SU(3) symmetry, these efFects are very mild.
If we write, for example

a = wq cos 8 + cu8 sin 8,

P = —~s cos 8 + ~i sin 8,
then 6I = 8;d, ~

= 35.3', but it deviates from this value at
m~ and m~ by angles P~ and P~ which are both small
(+5'), so that SU(3) breaking is small. However, our
calculation shows that (P —Py)/(re + Py) can be of
order unity, so that deviations from ideal mixing can be
very difFerent in the w and P. Thus there seems to be
little reason to expect that OZI violation in, e.g. , P —+ per
or P ~ vrp, arising from A'(my), can be quantitatively
correlated with m~ —m~, which arises from A(m~).

In the S~, P~, D3, and E4 nonets, the loop graphs
produce only a small deviation from ideal mixing: [A'[ ~
10 MeV. However, the Pr and Pi nonets, where [A'[ +
50 MeV, are more interesting. The relatively large am-
plitudes in these sectors are a consequence of nearby S-
wave threshold efFects: h& and fi are within =100 MeV
of K'K threshold, while f2, for example, is 270 MeV
from its corresponding K'K" threshold. (Of course, in
the vector sector P is very close to KK threshold, but
there the coupling is P wave and hence rather weak. )
A mixing amplitude of 50 MeV corresponds to a devia-
tion from ideal mixing of approximately 10'. This should
have observable efFects on the decay branching ratios of
hi, hi and fi, f~', unfortunately, the data on these states
is presently too sparse to check this.

III. THE SCALAR SECTOR

Our most striking results are contained in the final
two rows of Tables I and II. Both in the closure limit
and in the full calculation, we find that hadronic loops
lead to extremely large OZI-violating mixing amplitudes
in the scalar mesons: A, A' —500 MeV for 1 Po (and
~ —100 MeV for 2 Po).

Large values for A and A' imply large isoscalar-
isovector mass splittings, and large deviations from ideal
mixing. It is difllcult to accurately quantify these state-
ments because the scalar meson sector, even in the ab-
sence of loop effects, is exceptionally complex: the light-
est glueball is expected to appear at -1.5 GeV [9], the
observed states near KK threshold are apparently ex-
otic objects, probably KK molecules [10], and 8 wave-
pseudoscalar-pseudoscalar channels like ~x, KK, etc. ,
which dominate the low-energy intermediate states of
Fig. 2, are known to have very strong final-state inter-
actions. Given these complexities, the only firm conclu-
sion we can now draw is that we expect the scalar meson
sector to behave with respect to the OZI rule in a dramat-
ically difFerent fashion from any other sector, and hence
that a full coupled channel analysis of the scalars is worth
pursuing.

In the meantime, we would like to outline a rough sce-
nario, which neglects all of the complications just men-
tioned, and compare it with what is known experimen-
tally. Returning to the mass matrix of Eq. (5), we sup-
pose that in the absence of loop efFects the scalars are
split from the other P waves by a small spin-orbit cou-
pling; we thus adopt the nominal masses m =1200 MeV
and m+ Am =1450 MeV. Also, since the differences be-
tween A and A' are rather small (on the scale of A), for
the sake of simplicity we set A' = A" = A. Then, upon
diagonalizing the mass matrix, we find that the isovec-
tor of course remains at 1200 MeV, while the isoscalar
masses vary with A as follows:

A = —100 MeV ~ m = 950 MeV and 1400 MeV,
A = —200MeV ~ m = 660MeV and 1390MeV,
A = —300MeV ~ m = 370MeV and 1380MeV.

In each case, the low mass eigenstate fz~ is rotated

away from ~""~ Havor composition towards the Havor-

singlet state, while the high mass state foH moves from ss
towards (—1x) flavor-octet. The rotation to the octet-
singlet basis is essentially complete for —A & 250 MeV.

Thus, in this naive scenario, we see that the loop dia-
grams would produce a drastic distortion of the usual
quark model picture of the scalar meson sector, and
lead us to predict a low-mass (ml. = 500—1000 MeV)
state with approximately Bavor singlet couplings, to-
gether with an approximately Havor-octet state with
mass mH —1400 MeV. The widths of these states, cal-
culated in the flux tube model of Ref. [5) are I l. =
200—500 MeV and I'0 ——150 MeV, respectively. The
mass ml, and also the width I'r. (through its dependence
on the available phase space) are strongly dependent on
A, but our perturbative calculation cannot be trusted to
give an accurate value for this quantity. We can only
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conclude with certainty that A is large. On the other
hand, mH varies only slightly with A, and our estimate
of its width is probably reliable to within a factor of 2.
(This being the intrinsic accuracy of the flux tube decay
model. )

The faH may be the observed fa(1400), which has a
measured width of 150—400 MeV [11]. (The calculated

width assuming ( "~ flavor composition is 450 MeV. )
By an unhappycoincidence, the ~7t. : KK: gq branching

ratios are the same for ~ and flavor octet assign-(tl6+dZ)

ments, so it is difficult to distinguish between these two
alternatives.

There are also some experimental indications of a
scalar meson in the 700—900 MeV mass region. For exam-
ple, the coupled-channel analysis of Au et al. [13] found
a broad isoscalar scalar at 910 MeV with I' = 700 MeV.
Their state couples to xvr about twice as strongly as it
does to KK. See Refs. [11,12] for a discussion of this
region and for further references.

The loop graphs would have similar, though less pro-
nounced, efFects on the radial recurrences of the qq scalar
mesons, moving them from = 1.8 and 2.0 GeV to = 1.5—
1.7 and 1.95 GeV, respectively, and rotating the flavor
wave functions about halfway towards the octet-singlet
basis. The former state may be the f0(1710).

It is interesting (and unsettling) that even this naive
scenario is not yet ruled out. We cannot anticipate the
conclusions of a more comprehensive analysis, but we
offer two comments: (1) The strong attractive vrvr in-
teraction at low mass will tend to raise the mass of fz~

and make it broader, and (2) The interaction of these
states with the f0(975) could be important; for example,
Ref. [10] found that the fa(1400) was essential in pro-
ducing the interaction which bound the KK molecule.

However, in the scalar meson sector, the cancella-
tion mechanism breaks down spectacularly, leading us
to predict very large OZI-violating loop effects which are
expected to manifest themselves as large shifts in the
masses and mixing angles of the scalar mesons: the ini-
tially nonstrange 0++ isoscalar could well appear sev-
eral hundred MeV below the naive quark model estimate,
with approximately fiavor singlet couplings, while the ini-

tially ss state suffers an associated downward shift of
=50 MeV, ending up with an approximately flavor-octet
composition. Similar but subdued effects would in this
scenario be expected for the radial recurrences of these
states. The experimental situation is very unclear, but
it appears not to be in contradiction with this naive pic-
ture. Nevertheless, there are many complexities in the
scalar meson sector, so that considerable further study is
required before any definite conclusions can be drawn.

In addition to such studies, we hope in the future to ex-
tend our calculations to baryon two-point functions, and
then to general three-point functions, where the effects
of the virtual hadronic loops may be seen more directly
by external probes.
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IV. CONCLUSIONS AND OUTLOOK APPENDIX A: CALCULATIONAL TECHNIQUES

We have tested our proposed explanation for the
anomalous absence of strong loop corrections in meson
propagators, and found it to be viable: except in the
scalar nonets, PD dominance of the effective pair creation
operator causes the sum of all loop diagrams to vanish in
the closure and spectator approximations. Furthermore,
in a realistic model which incorporates departures from
these approximations, the loops continue to cancel to a
great extent.

I

In order to accurately sum the large number of loop
diagrams that contribute to each meson propagator, we
required a very fast and accurate technique for computing
sPD overlap integrals. The method we settled upon en-
tails working in rectangular coordinates, where the over-
lap integrals separate and, more importantly, satisfy re-
cursion relations.

The overlap integral appearing in Eq. (11)may be writ-
ten as

g
—3/2

ABC )
A= —g

d ud edu)( 6 w+ —(u —v)
2g

2
exp =' w+ —"(u —v)4th 2g

(4~th)

x exp
(u —v)2

26

r2
exp ——(u+ v+ q) (u+ v+ q)6

x 4~(u) @~(v) e& 1 )
(A1)
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(A2)

where NA
—= A~ + A„+A„etc., and we have introduced a set of four basic three-dimensional integrals,

(We have set the harmonic oscillator parameter, P, equal to 1.) If we work in a basis of rectangular harmonic oscillator
wave functions 4A A„A. , etc. , then the x, y, and z integrations separate:
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Here the H's are Hermite polynomials, g = qz, and the 1)'s are normalization constants given by q~—:(7r1~22~ j!)
Because the Hermite polynomials satisfy recursion relations,

H„+.1(x) —2xH„(x) + 2nH„1(x) = 0 (A7)

dH„(x) —2nH„1(x) = 0, (A8)

it is possible to show that the i's and j's may themselves be obtained recursively:
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and similarly, for the j's,
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The recursion constants k1 through k1o may be written in terms of
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as follows:
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TABLE III. Individual contributions to A in the P2 sector, from some low-lying intermediate
states. The terms are grouped by N = n& + n, and L = 8&+ S + E, &, and within each group they
are labeled by (kb f, E„~). Note the tendency for the terms to cancel locally. (Entries are in MeV,
and our standard parameters frere used. )

L=2

(0 0 0): -30.2

-30.2

(0 0 2):
(1 0 1):
(1 10):
(200):

total:

23.6
62.5

-34.6
0.5

52.0

(1 0 3):
(1 1 2):
(2 0 2):
(211):
(220):
(3 0 1):
(3 1 0):

total:

0.7
-6.3
-5.1
17.3
-6.0
0.3

-1.4
-0.5

(0 0 0):

total: -15.0

(0 0 2):
(1 0 1):
(11o):
(2 0 0):

-0.2
5.1

-1.8
-0.7

2.4

(1 0 3):
(1 1 2):
(2 0 2):
(2 1 1):
(220):
(3 0 1):
(3 1 0):

total:

0.1
-0.5
-1.5
2.0

-0.1
0.1

-0.2
-0.1

(0 0 0):

total:

-1.5

-1.5

(oo2):
(1 0 1):
(1 10):
(2 0 0):

total:

0.0
0.9

-0.3
0.0
0.6

All less than
1 MeV

total: 0.1
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The recursion technique allows the i's and j's to be
obtained very rapidly. The transformation back to the
spherical basis via

Inurn) = ) [n n„n, )(n n„n~lnErn)
Ax Ay Az

(A24)

APPENDIX B: MAGIC LIMITS

In Ref. [2] we discussed at length the cancellations
that occur in the closure sum. We showed that not only
does the sum over all intermediate states vanish, but in
fact many subcancellations occur. Moreover, these sub-
cancellations are among states with similar energies, so
that they tend to be preserved even in the full calculation
with energy denominators.

is straightforward. Note finally that, by virtue of
Eqs. (A7) and (A8), the i' 's and j' 's are simple linear
combinations of the i's and j's.

Specifically, for a "magic" value of rq, namely rq ——2&,
the overlap integrals simplify greatly and it was possible
to show that each subset of terms with a given value of
2(nb+n, )+(Eb+E,+E„i) = 2N+L sums to zero (Th. us,
for example, intermediate states containing two S-wave
mesons in a relative P wave exactly cancel with interme-
diate states where an S-wave meson and a P-wave meson
are in a relative S wave. ) These exact results hold for
S-wave initial states with a spherical string overlap func-
tion [4(r, w) = e & ], and without the short-distance
suppression factor (t = oo). The corresponding results
for non-S-wave initial states are slightly weaker: with P-
and D-wave initial states, for example, the terms with
2N + L=const no longer exactly cancel —some of the
2N + L =const+2 terms must be added. With a non-
spherical 4' and/or a finite value of t, there are no longer
any such exact results, but our numerical calculations
indicate that the terms in the closure sums still tend to
cancel "locally. " See Table III for an example of the per-
sistence of the local cancellation in the full calculation of
A in Pg.
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