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Four-fermion interactions from n generations and minimal dynamical breaking
of electroweak gauge group
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The n fermion generation extension of the Nambu —Jona-Lasinio mechanism of spontaneous breaking
of the electroweak gauge group SVI (2) X V&(1) is proven in the bubble approximation. When both the
minimal Higgs condition and the gap equation are satisfied, the explicit calculations of the propagators
for bound states indicate that only a neutral massive Higgs boson and a neutral and two charged mass-

less Goldstone bosons emerge from the theory and they are now some definte combinations of the spin-

zero bound state modes consisting of the n generations of fermions. The mass of the Higgs boson is re-

stricted between the double mass of the lightest and the heaviest fermions but more approaches the
latter. We also give the inverse propagators for the charged and the neutral electroweak gauge bosons
including the insertion of the three Goldstone bosons in the vacuum polarizations and display the com-

posite Higgs mechanism generating the masses of the 8 + and Z bosons.

PACS number(s): 12.50.Lr, 11.15.Ex, 12.15.Cc, 14.80.Gt

I. INTRODUCTION

It has been proven in a recent paper [1] that the four-
fermion interactions from one-quark-like generation,
based on the Nambu —Jona-Lasinio (NIL) mechanism [2],
could induce the minimal dynamical breaking of the elec-
troweak group SUI (2)XUi, (l). The result is the one
quark-like generation extension of the current top-quark
condensate scheme [3,4] when the t and b quarks are
treated on an equal footing. However, such an extension
includes only the very light b quarks, so it is useless for
solving the unsatisfactory fine-tuning problem [1]. In or-
der to be able to deal with this problem we must include
some heavier fermions than the top quarks, together with
the latter incorporated into a N JL-mechanism-based
scheme to realize the minimal dynamical breaking, as-
suming that such fermions exist. These assumed heavy
fermions could be the fourth generation of quark leptons,
some exotic quarklike fermions, the fermions in the
SU, (3) high-dimension representations [5], or the techni-
fermions [6,7]. In a word, they may be in some definite
representations of a colorlike group G„other than in a
standard SUt (2) X U z(1) flavor doublet [i.e., a left-
handed SUI (2) doublet and two right-handed SUI (2)
singlets]. Such fermions will be generally called forming
a fermion generation. For exploring the possibility stated
above we Inust further extend the NJL mechanism from
one generation to n ) 1 generations. In this paper we will
generally prove that such an extension is possible; i.e., the
four-fermion interactions from n generations could
indeed induce the minimal dynamical breaking of the
electroweak gauge group.

The discussions will follow the approach used in the

one-generation case [1] but with greater complexity. In
Sec. II we will give the effective n-generation four-
fermion Lagrangian corresponding to the minimal
dynamical breaking of the electroweak group
SUt (2) XUi (1) and emphasize the following: how to ro-
tate off the possible complex phase angle mixture among
the generations and how to describe the minimal Higgs
condition in this case. In Sec. III a general gap equation
and 2n —1 relations among the dynamical fermion
masses and the four-fermion coupling constants are de-
rived when the n generations of fermions exist. In Sec.
IV it is proven that if the minimal Higgs condition and
the gap equation are both satisfied, then it is still the case
that only a single neutral massive composite Higgs boson
and one neutral and two charged massless composite
Goldstone bosons as physical modes emerge from the
theory. The mass constraints on the Higgs boson are
definitely given. The proof is based on the calculations of
the four-point Green functions and the propagators for
all spin-zero composite particles in the bubble approxi-
mation. In Sec. V, considering the vacuum polarization
effects of the three massless Goldstone bosons we calcu-
late the inverse propagators for the electroweak gauge
bosons from which the composite Higgs mechanism gen-
erating the masses of 8 and Z gauge bosons is
displayed. Finally, in Sec. VI we reach our conclusions.

II. FOUR-FERMION LAGRANGIAN
FROM n GENERATIONS

Let us consider n generations of Q fermions without
bare masses. They will be in n left-handed SUI (2) dou-
blets and 2n right-handed SUI (2) singlets:
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with the general hypercharge assignments

Y(Q L U z)=+1 and Y(Q LD z)= —1 . (2)

Hence once the hypercharge Y& of the left-handed dou-
aL

blet Q L is specified, the ones of the corresponding right-
handed fermions U~z and D~z are also completely fixed.
In addition to the conditions (2), the Y-charge assign-
ments of the Q fermions must make the theory
SUL(2)XUi, (1) anomaly-free [8]. This can be done ei-
ther by including the corresponding lepton generation if
Q are ordinary quarks or by taking Y& =0 if Q are

aL
some exotics [7], and these two ways will lead to the
anomaly cancellation within one generation of the Q fer-
mions. One can also assign the Y charges of the Q fer-
mions in such a way that the anomalies from different
generations cancel each other. The colorlike quantum
number of the Q fermions is not explicitly denoted and all
the colorlike interactions will be omitted in the discus-
sions throughout this paper.

As in Ref. [1], at low energies the effective
G, X SUL (2) X Ui, (1)—invariant four-fermion Lagrangian
X4~ coming from the Q fermions could be obtained
through the equivalent Yukawa-form Lagrangian X i, ap-
pearing in the standard electroweak theory. In order to
keep the minimal dynamical breaking we will introduce
only a single auxiliary static scalar field SUL (2) doublet
H and its conjugate H [4], where

h+
H= and H=icr2(H )

ho
(3)

are both in the 6, singlets, o.
2 is the Pauli matrix, and T

means the transposition of an SUL (2) spinor. The hyper-
charges of H and H are assigned to

Y(H)=l and Y(H)= —1 .

The Lagrangian X i, will consist of the
G, XSUL (2) XUi, (1)—invariant terms coming from Q
and H fields. It is clear that the Y-charge assignments (2)
of the Q-field products will be able to match the ones (4)
of the H scalar fields. However, the assignments (2) do
not specify the Y charges of the left-handed Q fermions,
thus the ones of the Q fermions themselves. There are
three possible cases.

(a) The n generations of the Q fermions have different
Y charges, or, although part or all of them have the same
Y charges, some new symmetry, e.g., a colorlike or hor-
izontal one, would forbidden the emergence of the cou-
plings between different generations with identical Y
charges. In this case there will be no coupling terms such
as (Q L Up~ )H (aAP) and (Q L Dp~ )H (aAP), and the
Yukawa-form Lagrangian can be written as

&i —X [ga«ar. Ua~)H+g (QarDa~)H+H c. ]
a=1
—moH H,

where mo is the bare mass of the H field. The coupling
constants g (g ) could always be taken to be real and
positive by appropriate selections of the relative phases

between QaL, and UaL (Da„).
(b) The n generations of the Q fermions have identical

Y charges but no different new quantum number to dis-
tinguish them. In this case we will have the coupling
terms among the fermions from different generations
such as (QaL Up+ )H, (Q L Dpz )H (a&P), etc. The
6, X SUL (2) X Ur(1) —invariant Xi, can be written as

n

+Y X [g pa(QaL UpR )H+gap(QaL pR )H
a,P=1

+H. c. ] moH—H,
where the Q' fields with the primes represent their weak
eigenstates. By the standard procedure [9] we can take
the unitary gauge so that

0 ~o
H= and H=

ho 0

and make the bilinear transformations of the Q fields:

UL, BL. =
UL. , B~ U~ —U

(7)

DL, AL, '=DL, , A~DR =D~,
(8)

where UL =—( U, L, . . . , U„L ), etc. , and the Q fields
without the primes represent their mass eigenstates. The
transformations (8) must diagonalize the matrices

g'—= (g'p) and g' —=(g'p) (9)

so that

&L,g &z '=DU= (g.& p»—
(10)

ALg A~ '=DD—= (g 5 p),
where g and g all can be taken to be non-negative real
numbers. Then by the inverse unitary gauge transforma-
tion which changes U i ho into Q L H and D L ho into

Q L H, etc. , we will obtain a X i, identical to the one given
by Eq. (5), but the Q fields in it should be understood to
be in their mass eigenstates. Obviously, under the
present circumstances the Cabibbo-like mixture will ap-
pear in the sector of the weak charged current of the Q
fermions when the Q fields' weak eigenstates are replaced
by their mass eigenstates.

(c) Some of the n generations have different Y charges,
and the others have identical ones but there are no
different new quantum numbers to distinguish among the
generations with the same Y charges. In this case, based
on the above discussions of (a) and (b), the Cabibbo-like
mixture will appear only among these generations with
identical Y charges. However, by the same procedure as
the one taken in (b) we may finally represent these Q
fields by means of their mass eigenstates; hence, the re-
sulting Xi will still have the same form as the one in Eq.
(5).

In brief, no matter which one of the above three cases
appears, as long as we take the Q-fermion fields to be in
their mass eigenstates then Xi, always have the form of
Eq. (5). We note that Xr contains 2n real and non-
negative coupling constants g and g altogether.

Now integrating out the auxiliary scalar fields H and
H from the path integral f2)H"2)H exp(i Jd x X~) we
will obtain the desired effective four-fermion Lagrangian
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X4F
—g [ [gU U ( QpL UpR )( UaR Q aL ) +gD D ( Q pL DpR )(D aR Q aL ) l + I g U D ( UpR Q pL 1 K2 )(D aR Q aL ) +H. c. ] ]

a,P=1

where the four-fermion coupling constants are defined by
1/2 1/2 1/2 1/2

gUpU gUpUpgU U & gDpD gDpDpgD D

(12)
1/2 1/2gUD gU UgD DP a P P a a

Among these coupling constants, only 2n "diagonal"
ones with the definitions

t

We note that in the n generation case the coupling con-
I CpCstants gQQ, gQ. Q, and g; become the entries of the

CpCcorresponding 2n X2n matrices. For g, , the row and
column of the corresponding matrix are denoted respec-
tively by (p) and (; ). Similar to the one generation case
[1],we may have the relation

gU U =(g /mo) and gD D =(g /mo)
gapgap gapgap O (17)

are in fact independent ones. They are real and non-
negative and respectively correspond to the 2n coupling
constants g and g (a=1,. . . , n) in Xr. Equation (12)
may be compactly written as

being valid as a result of the minimal Higgs condition
(14).

All of the following calculations based on X4F will be
made in the bubble approximation.

1/2 1/2
gg g=gg gggg, Q, Q=U, D (a=1, . . . , n) . (14) III. GAP EQUATION AND MASS RELATIONS

QL, 2(1+)'s)Q
R

(15)

Equation (14) is exactly the minimal Higgs condition in
the case with the n generations of the Q fermions because
it results from the fact that X r in Eq. (5) contains only a
single static scalar field SUL(2) doublet H. After using
Eq. (1) and the definitions

The gap equation could be contributed by the terms
Nscoming from the neutral scalar Lagrangian %4F. Sup-

pose that X4F will lead to formation of the G, -invariant
vacuum condensates ( U U & and (D D & (a= l, .. . , n)
and generation of the dynamical masses mU and mDa a(a= 1, . . . , n); then we can obtain the coupled equations
expressed graphically as

we may rewrite the X4F in Eq. (11)as

Ns N~ C+4F +4F ++4F ++4F (16) 0 0 0'
0 Q=U, D
0

(a=1, . . . , n)

It is now divided into three independent sectors: the neu-
tral scalar sector

&4~F'=
4 g gg g(Q'Q')(QQ»

Q, Q

(16a)

where henceforth it is always understood that the sum of
Q runs over the full n generation, i.e., Q = U, D
(a = 1,. . . , n ); the neutral pseudoscalar sector

Np

4 X gg g(Q')'sQ')(Q)'sQ)
Q, Q

with the definition

3 3Ig, —Ig
gg'g ( ) gg'g

(16b)

(16b')

where IQ is the third component of the left-handed weak
isospin of the Q ferinions, and the charged sector

(18)

or by means of the Feynman rule from X4F algebraically
Ns

as

mg = ——gggg. ( Q'Q' &

1

Q'

1 1/2= ——ggg'egg'g & O'Q'&
2 Ql

Q = U, D (a= l, . . . , n ), (18')

where Eq. (14) has been used in the second equality. It is
seen from Eq. (18') that all of the fermion masses mg
(Q=U, D, a=1, ... , n) are not equal to zeros simul-
taneously only if the combined condensate

Zg.",'& QQ &«
Q

&,',=g gg, ,
' (Dpr, Up)(U. r, D. )

ij ap
(16c) By means of the expression for the condensates ( QQ &,

I,=l, Is=ys, C =(U D ), Cp=(DpUp)

and

P a —i)pi)a( 1 )
i 5+a —1 ('g 1/2

g
1/2

)
C C 5.

a a a a

(16c')

with the latin indices i,j= 1,5, the greek indices
a,P= 1, . .. , n, and the definitions

&QQ &
= —2mgIg,

Ig =2dg(R) f (21r) l —mg

dg(R)A mg A +mg
1 — ln

Sm A m Q

(20)

a —1 (g 1/2 + 1/2
a a a a

(16c") where dg(R) is the dimension of the G, group represen-
tation of the Q fermions and A is the momentum cutoff of
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the loop integration, the coupled equations (18') can be
divided into the gap equation

&gggIg ='
Q

(21)

and 2n —1 independent relations between the ratios of
the masses and the ones of the coupling constants:

mg/mg =ggg /gg/g, Q, Q'= U, D (a= 1, . . . , n ) .

binations of the spin-zero bound-state modes (QQ') and
(Qy&Q') (Q, Q'=U, D, a=1, . . . , n) by means of the
rule indicated in Ref. [1]. For this purpose let us go back
to the Yukawa-form Lagrangian X r in Eq. (5). Consider-
ing the definition (13) of ggg we can rewrite Xr as

X r =H C+ CtH moH—H
(26)

C = —,'moG' (&2g, gs iP—)

where

Equation (22) indicates +at the heavier fermion Q is re-
lated to the stronger coupling constant gQQ. By the rela-
tions coming from Eqs. (20) and (22),

Ig/Ig =dg(R)mgldg, (R)mg. =dg(R)gggldg. (R)gg.g,

(23)

the gap equation (21) can also be written as

G=Xggg
Q

is the sum of the 2n coupling constants gQQ and

yo —g($0 ) (QQ ) ($0 )
—G 1/2g 1/2

Q

(27)

(28a)

I
Pp —g(gp)g(Q~y5Q), (Pp)g —« ' '( —1) ~g' '

(28b)
gg g 1+ g dg(R)ggg/dg (R)gg g Ig =1,

Q&Qo

(24)
I., a

(28c)
where Qo can be, in general, any fermion fiavor among
the n generations. However, the most stringent condition
ensuring Eq. (24) to have a solution emerges only if Qo is
taken to be the heaviest fermion fiavor Qh among the n

generations. In this case the corresponding strongest
coupling constant gQ Q

must obey the inequality
h h

gg g 1+ g dg(R)gag/dg (R)gg~ g

(y
—

)
a — +2G —1/2 a( 1 )

i5

In addition, the Hermitian conjugate of P can be rewrit-
ten as

(28d)

) 8~ /dg (R)A (24')
Correspondingly, the four-fermion Lagrangian %4p in
Eq. (16) will become

IV. HIGGS AND GOLDSTONE BOSONS , C C= [24 0++(—4')'+(0')'] .
mo

(29)

We will prove that, in the case with the n generations
of the Q fermions, the symmetry breakdown induced by
the condensate (19),

SUL (2) X U),(1)~Ug(1), Q =IL + —,
' Y, (25)

is accompanied by only a single massive composite Higgs
boson and three massless composite Goldstone bosons
corresponding to the three broken group generators.

To start with, we may attempt to read out the
configurations of these composite particles as the com-

If the rule given in Ref. [1] remains valid in the n genera-
tion case, then g, pp, and p+ should be the
configurations of the allowed Higgs and Goldstone bo-
sons. We will show by explicit calculations for the four-
point Green functions that this is the case indeed.

First, let us discuss the sector of the neutral scalar
modes (QQ). The interactions governing (QQ) are ex-

pressed by X4p in Eq. (16a). The four-point functions for
the transitions from (QQ) to (Q'Q') obey the graphical
coupled equations

rg'g'gg(p&) =
00 0

~p=
0

~p, Q, Q'= U, D (a= l, . . . , n), (30)

Q 0 0
0'll

0' 0 Ql

where the digit 1 at a vertex represents the unit matrix
and p denotes the four-momentum of the center of mass
of the corresponding bound states which are presently
(QQ), (Q "Q"), and (Q'Q'). By means of the Feynman
rule coming from Eq. (16a) and the expression for the
loop integration,

0

0
= —2iNg(p ),

2

Ng(p )=Ig+ 2mg — ICg(p )

(31)
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with Ig given by Eq. (20) and Kg(p ) represented by the
formula

~ 4

ICg(p )=2dg(R)
(2~) (l —mg)[(l+p) —mg]

(32)

Such a form make it very easy for us to derive the propa-
gators for all the possible configurations consisting of
(QQ). In fact, the propagator for Ps may be calculated
from Eqs. (28a) and (38) and the result is that

I (p )= g (Ps)gl g ggg(p )(g)g=iG/hs(p ) (39)
Q' Q

dg(R) i A +Mg
dx ln

8~ o M'
Q

A

A +M
Q

where the normalization condition of the configuration
04s

Q, Q'=U, D (a=1, . . . , n) . (33)

Mg=mg —p x(1—x),
we may translate the graphical equations (30) into the
algebraic ones

pre'g'g"g"(p')[5g„g —mg. (p')gg- ]=—'gg g,
Qll

Q

g(Ps)g(Ps)g =1,
Q

(40)

has been used. Since Ps is merely one of the 2n indepen-
dent combinations of the neutral scalar models (QQ)
(Q = U, D, a= l, . . . , n), there must be the other 2n —1

neutral scalar configurations orthogonal to Ps. Denote
them as

When the minimal Higgs condition (14) is used Eq. (33)
can be rewritten as

PP g g g (p
2

) [8 g (p 2
)g

1 /2
] g

I /2
g

1 /2

Ql t
QQ Q QQ 2 QQ QQ ~

Q, Q'=U, D (a=1, . . . , n)

g, k g(fs, k)g(QQ)
Q

whose components satisfy the orthogonal conditions

X( 4's, k )g ( 0s )g
=0, k = 1, . . . , 2n —1 .

Q

(41)

(42)

Xg (p )=Kg (p )gg-g ~ (no g of Q") .

(33')

It is noted that the 2n X2n coefticient determinant in Eq.
(33'),

h(p )=det[5g g
—Sg (p )ggg/ ], (34)

has a special feature; i.e., when we take o6' all the 1's in
its diagonal elements, the remaining determinant and its
subdeterminants are all equal to zero. This is due to the
fact that in these determinants any two rows or any two
columns are always proportional to each other. This fact
will greatly simplize the expansion of the determinant
b, (p ). The nonzero contributions to b, (p ) come from
only its diagonal elements and the result is that

By means of Eqs. (39), (41), and (42), it immediately fol-
lows that the propagators for Ps k,

p0
I '"(p )=0, k=1, . . . , 2n —1 . (43)

This implies that these configurations do not exist. The
Ps given by (28a) is the only neutral scalar bound state
with a nonzero propagator. It is seen from Eqs. (39) and
(37) that Ps is a massive particle. In addition, it has pre-
cisely the same configurations as the nonzero condensate
(19). Therefore, Ps could be correctly identified with the
Higgs boson in the minimal dynamical breaking scheme
of the group SUL (2) X Ui, (1). The mass of the Higgs bo-
son Ps is determined by the condition b,s(p )=0 which,
by Eq. (37), gives

r+g(p )ggg = + g(p ggg . (35) m20 =p =+4mggggEg(p ) ggggEg(p )
Q Q

Considering that the relevant determinants encountered
in solving Eq. (33') possess the same features as b, (p ), we
can easily obtain the solution of Eq. (33') as

rg'g'gg(p') =igg. g/b, (p'),

Q, Q'=U, D (a=1, . . . , n) (36)

=+4mgICg(p ) gmgICg(p ) .
Q Q

(44)

ggg/G =mg gmg
Q

(45)

In the last equality in Eq. (44) we have used the relation

where

~s(p') =&ggg&g(p')(p' —4mg ) .
Q

(37)

which can be derived from Eq. (22). We deduce from Eq.
(44) that m 0 must obey the restrictions

S

It is emphasized that when deriving this expression we
must have used the gap equation (21). A remarkable fact
is that the four-point functions given by Eq. (36) could be
represented by the numerical components of Ps as

rP'g'gg(p2) =iG(g)g. (y )g/~ (p') . (38)

2(mg)-. ™~0(2(mg)
S

where (mg );„and (mg ),„respectively represent the
masses of the lightest and the heaviest ones among the 2n
flavors of the Q fermions. However, in the inequalities
m o will be more inclined toward heavy mass because in
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the sum of Q in Eq. (44) the heavier fermions have the
larger weights. Equation (46) is a definite limitation on
the Higgs-boson mass in the bubble approximation.

Next let us discuss the sector of the neutral pseudosca-

lar modes (Qiy5Q). The interactions dominating them

are expressed by X&F in Eq. (16b). The four-point func-Np

tions for the transitions from (Qiy~Q) to (Q'iy~Q') obey
the graphical coupled equations

rg'g'gg(p2) =
O O' 0 O' O 0" O'

5 S ~P 5 5 + 5 S 5 5
O'I'I

o 5' o O' 0 &" Q'

~p, Q, Q'= U, D (a= l, . .. , n ) (47)

where the number 5 at a vertex represents the y5 matrix. By means of the Feynman rule coming from Eq. (16b) and the
expression for the loop integration,

2
=2iN (p ) N (p )=I — K ( ) (48)

Equation (47) can be translated into the algebraic ones

lgl egg g (p )[5g-g —Ng (p )gg-g]= —ggg, Q, Q'=U, D (a=1, . . . , n)
Qll

~7 ~ %'''7

or
3

QI g g g g (p )[5g-g Ng (p —
)ggg ]=—( —1) ~gg~gggg, Q, Q'=U, D (a=1, . .. , n)

Qtt

where we have used the notations

I I3
N (p )=(—1) gg' N (p ) and g' =( —1) ~g'

The 2n X 2n coefficient determinant b, '(p ) of Eq. (49') is found out to be

b, '(p )=det[5g-g —Ng-(p )ggg ]=1—QNg(p )ggg =1—QNg(p )ggg

(49)

(49')

(50)

(51)

seeing that b, '(p ) possesses the same feature as h(p ) in
Eq. (34). Then when a similar feature of relevant deter-
minants is considered and the gap equation (21).is used
we obtain the solution of Eq. (49') as pp k =g(p~ k )g(Qiy5Q), k =1,. . . , 2n —1

Q

(57)

For the other 2n —1 neutral pseudoscalar configurations
which are defined by

I g g gg(p ) =igg. g/b, z(p )

=iG(gp)g (Pp)g/bp(p ),
(52) and satisfy the orthogonal conditions

g(Pp k )g(Pp)g =0 k = 1 . .. 2n —1

Q

(58)

with the notation

Q, Q'= U, D (a= l, .. . , n ), (53) it is proven that their propagators
y0r '"(p')=0, k=1, . . . , 2n —1. (59)

&p(p') =gggg&g(p')p',
Q

(54)

&(4~)g(4~)g =1
Q

we may obtain the propagator for Pz to be

yO
I '(p )=iG/& (p') .

(55)

(56)
I

where, similar to the case of the scalar sector, the solu-
tions have been expressed by the numerical components
of g in Eq. (28b). From Eqs. (28b) and (53) and from the
normalization

Therefore, g given by Eq. (28b) will be the only physical
neutral pseudoscalar configuration with a nonzero propa-
gator. The expression (54) for b.~(p ) indicates that g is
a massless particle and, hence, can be identified with the
neutral pseudoscalar Goldstone boson in this symmetry-
breaking scheme.

Lastly, let us turn to the sector of the charged bound-
state modes (QQ') and (Qy~Q') (QAQ'). The interac-
tions governing them are expressed by X~~ in Eq. (16c).
The four-point functions for the transitions from
( U I;D ) to ( U&I D&) obey the graphical coupled
equations

U~ Up UG
C C 2~(p )= i i ~p~

DG Op D~

Up U~

+Q
5 ~D

P

~p, i j =1,5, a,P=l, . . . , n . (60)
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By means of the Feynman rule obtained from Eq. (16c) and the expressions for the loop integrations

Dr

iL—~i(p )= —2i[A (p )+Br(p )],

iL(—(p )=2i[A~(p ) B~—(p )],
Dr

A (p )=IU +mD K (p ) pJ—U D (p )=ID +mU Kr(p ) pJD—U (p ),
y r y r r r r y

B (p )=mU mD K (p ),
y r

with the notations

JU D (p') id' 1 1 —x
'=2d (R ) dx X '

(2ir)' (l' —M' )'
r r

(61)

dg (R)
f'dx ln

8~ o

A+MU D
y r

2
PlU D

y r

A

A+MU Dr r

(62)

MU D =(mU —p x)(1—x)+mD x,
y r r r

Eq. (60) can be translated into the algebraic equations

CpC a 2 CC —.CPCgr, ~ '(p')[5;5r —Lg(p')g„]= 'g);~, ,j =1,5, ,p= 1, .. . , n .
k, y

When Eq. (16c")is taken into account, Eq. (63) may be written as

QI ~& (p )[5k;5 —Lk(p )g;( —1) "]=iq ri; (
—1) ",. i j =1,5, a,@=1, . . . , n

k, y

(63')

where

Lk(p") =LE(p')n$ .
r, ;~ (p')=ig, ;P /&, (p')

=iG(P ), ~(P ); /2&, (p') . (69)
Seeing that the matrix corresponding to the coefficient
determinant

h, (p )=det[5k;5~ —Lir(p )q;( —1) "]
has rows and the columns denoted by ($) and (, ) respec-
tively, b,, (p ) will have the same features as h(p ) in Eq.
(34). This means that we may directly write down the re-
sult

~,(p')=1 —QLk(p')nk( —1) "'

In Eq. (69) we have also used the numerical components
of P in Eq. (28c) to represent the solution. The propa-
gator for P can be calculated by

r~ (p')=yy(y ), '( —1) 'r, ,
~ (p')(y-), "

jp i, a

=iG/2b, , (p ) (70)

C
where the definition of (P ), in Eq. (28d) and the nor-
malizations

=1—QLg(p')(rjj )'( —1) "' (66)
(71)

Substituting expression (61) for Lg(p ) into Eq. (66) and
using the gap equation (21) and the relation (22) we may
obtain

~c(p ) g[gU U JU D (p )+gD D JD U„(p )]p

have been used. It is indicated that the normalizations
(71) are difFerent from the ones used in Ref. [1] by a fac-
tor 2, so it is now no longer necessary to add an extra fac-
tor —' when the propagator for P is calculated, as shown
in Eq. (70). For the other 2n —1 configurations which
are defined by

Then the solution of Eq. (63) or (63') is given by

(67)
(hk =g((5k ), "(U 1,D ), k=1, . . ., 2n —1

l, a
(72)
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and satisfy the orthogonal conditions

k =1,. . . , 2n —1, (73)

it is straightforward to prove that they have null propa-
gators, i.e.,

composite Higgs mechanism. We will show this result by
explicit calculations of the inverse propagators for the
electroweak gauge bosons in the n-generation case.

First, we discuss the charged gauge boson sector. The
Lagrangian of the charged current interactions between
the n generations of the Q fermions and the W gauge
bosons may be written as

I "(p )=0, k =1,. . . , 2n =1 . (74)
Xs,„g,=—,—(j„~W"++j „+I W" ),&2

(75)

As for the Hermitian conjugates of P and
(k = 1, .. . , 2n —1)—P+ and Pk (k = 1, .. . , 2n —1), it is
clear that their propagators will be identical to the ones
represented by Eqs. (70) and (74) respectively.

In this way we have proven that only P and P+ ex-
pressed by Eqs. (28c) and (28d) are physical charged
spin-zero bound states with nonzero propagators. In
view of expression (70) for their propagators and formula
(67) for 5, (p ), P* must be massless particles and could
be identified with the two charged Goldstone bosons.

In brief summary, when the minimal Higgs conditions
(14) is satisfied and the gap equation (21) has a solution,
the four-fermion Lagrangian (5) coming from the n gen-
erations of the Q fermions will remain to lead to the re-
sult that only a single massive Higgs boson Ps and three
massless Goldstone bosons Pz and P+ emerge from the
theory. These bosons are precisely the products of the
minimal dynamical breaking of the global
SUI (2) XUr(1) electroweak group.

V. MASS GENERATION
OF ELECTROWEAK GAUGE BOSONS

Just as in the top-quark condensate scheme [4], once
the electroweak gauge interactions are opened, the three
massless composite Goldstone bosons P+ and Pz will
enter the vacuum polarizations of the propagators for the
electroweak gauge bosons 8'+ and Z and become their
longitudinal components. This will lead to the generation
of the masses of these gauge bosons, i.e., realization of the

I

where

j&L =g U~l. yl, D~I. =(J&~i ) (76)

D8"( )
—i

( ~ g p2)
g2

——f d x e'~'"(Tj L(0)j+I (x)), (77)

where gz is the SUI (2) gauge coupling constant and we
have taken the kinetic energy term of the gauge fields to
be of the form ( —1/4g2 )F„'g'"'. When calculating the
second term in Eq. (77), we must include the contribu-
tions of not only the one-loop vacuum polarizations in-
duced by the n generations of the Q fermions but also the
insertions in them of the intermediate states represented
by the massless charged Goldstone bosons P+ whose
configurations and propagators have been given by Eqs.
(28c), (28d), and (70), respectively. By means of the Feyn-
man rule coming from Eq. (75) we may obtain the expres-
sion

are the charged weak currents of the Q ferrnions. In or-
der to avoid the complexity caused by a possible
Cabibbo-like mixture we assume that no couplings among
different generations exist due to different assignments of
F charge or colorlike or horizontal quantum numbers so
that the weak eigenstates of the Q fermions in Eq. (76)
could be identified with their mass eigenstates. In
momentum space, the inverse propagator for the 8'bo-
son becomes

, D~ (p) '=
2 (p~ —g„p')

4
. gd& (R)f tr[y„(1 y)(j' —mU ) —'y, (1 y)(j'+—p—mD )

' ']
a 2' ~

d4I —1 — a+gd& (R)f tr[y„(1—y5)(J' —mU ) '(P ); I';(f+P —mD ) ']
(2~) 2b, , (p )

Xgd& (R)f ~tr[y (1 —y5)(g+P —mD ) '(P )1 I J(g —mU ) ']
~p e (2m) P J J p

(78)

Considering Eqs. (28c), (28d), (67), and the relation (45), by direct calculation we obtain the inverse propagator for the
8'boson expressed as follows (we have taken the same notation as used in Ref. [4]):

1 D„(P) '=i(P+„/P g„„)[P /g (P ) f—(P )], — (79)

where
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1

g2(P')
y+U D (p ) f (p ) 2/[mU ~U D (p )+mD ~D U (p )]

2 cx a
(80)

~ 4

EU D (p )=2dQ (R)f dx f (2') (l —MU D )

dQ (R)
f dx x(1—x) ln

8~ o

A+MU D

MU D
2

A

A+MU D
(81)

and JU D (JD U ~
and MU D given by Eq. (62). The transversity of the inverse propagator corresponds to a gauge-

a a a a a a
invariant Higgs mechanism, as was indicated in Ref. [4]. The mass of the W'boson is determined by the condition in
which the inverse propagator is equal to zero, i.e., by the equation

m$y=p =g2(mii )f (may) .

Noting that on the classical level we have the relation

2GF g2 1 2 2when p && m ~ or p —+0,
2 8m~ 2v

(82)

(83)

where v is the standard-model Higgs vacuum expectation value. Correspondingly, on the quantum level, in the zero-
momentum limit, we may have the relation

GF
v'2

1

8f (0)
(84)

Equation (84) is a basic relation in this kind of model. It provides a connection between the fermion masses and the
momentum cutoff A, as was shown in the top-quark condensate scheme [4]. In the present case, from Eqs. (80) and (61)
we can put down the explicit expression for f (0):

dQ (R) A +mU (1—x)+mD x
f (0)=g f dx[mU (1—x)+rnD x] ln

16~' mU (1 —x)+mD x
a CX

A

A +rnU (1 x)+rnD x-
a a

(85)

After integrating out x, the basic relation (84) will become

4 2
=gdQ (R) .

F a
2 2

mU mDa a

mU ln 1+4 A

mU

—mD ln 1+4 A

mD a

A
1n

mU mDa a

1+m 2

—1
1+m 2 yA2

(86)

Next let us turn to the neutral gauge boson sector. The Q fermions interact with both the SUI (2) gauge field 3 "
and the Ur(1) gauge field B"and the interaction Lagrangian can be written as

~N ] ~ 3g3P. ] OBP
gauge 2 p 2 p

where the neutral currents j„and j„are defined by

j „' =QQL)'~QI. &Q,
Q

j', =X«1'„QI'Q, +-,'Q~)'„Q~&Q)
Q

and 5& is a sign function defined by

+1 for Q= U
5Q=

1 n=D (a=1 . .. n) .
a

(87)

(88)

(89)

(90)

In writing down the expression (89) of j„we have used the general relation (2) of the hypercharge assignments of the Q
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(91)

where g& is the Ur(1) gauge coupling constant. When calculating the second term in Eq. (91), in addition to the one-
loop vacuum polarizations induced by the n generations of the Q fermions, we must include the contribution of the in-
termediate state represented by the massless pseudoscalar Goldstone boson Pp. The latter is equivalent to the insertion
of the pseudoscalar four-point Green functions I g ~ ~~(p ) given by Eqs. (52) and (54) in the one-loop vacuum polariza-
tion diagrams. By means of the Feynman rule coming from Eq. (87) we will have the expressions

——f d x e'P'"( Tj„(0)j„(x))

1 dg(R) d lf 4 tr[y„(1 y—5)(E+P —
m& ) 'y (1—y~)(l —m& ) ']

fermions. In momentum space and in the space spanned by the gauge fields 3 " and B", the inverse propagators for
the neutral gauge bosons A and 8 can be expressed by the 2 X 2 matrix

1/g' 0 (Tj„'(0)j'( )) (Tj„'(0)j ( ))
0 2 d4 dip x

g g
"' +' " 0 1/g $ 4 ( Tj „(0)j,'(x) ) ( Tj„(0)j,(x) )

J

dg(R )5g d 4l lgg~g+g , tr y„1—y, + —mg 'ry, —mg
(2 )4 &p(p')

dg (R )5g. d4q
X tr iy& + —m&. y 1 —

y5
—m&.

(27r )

——f d x e'P'"(Tj„(0)j (x))

dt's(R ) d4lf tr[y„(1—y5)( j'+p —
m& ) 'y (1+y5+2Y&. 5& )(j'—m& ) ~]

dg(R)5g d4l g O'Q+ g 4
tr y„1—y, + —mg 'iy, —mg(2~)4 &p(p')

dg. (R )5g d 4q
X 4 tr[iy~(g+gf —m&, ) 'y (1+y~)(g —m&, ) ']

2 (zn)

and

——f d x e'P'"(Tj„(0)j (x)) = ——f d xe 'P "(Tj (0)jo(x))

as the consequence of the translation invariance and

d4X e'p' Xg„' 0 J'. X

dg(R) d4lf 4tr[y„(1+y5+2Y& 50)(j'+gf —m&) 'y (1+y5+2Y& 5&)(E—m&) ']
(2~)4 L L

dg(R)5g d41 + a'a+ g tr y„1+y5 + —
m& 'iy5 —

m&
q g. 2 (Zm-)4 &p(p')

dg. (R )5g d 4q
X tr iy5 + —mg. 'y 1+yq —mg.

2 (2~)

(92a)

(92b)

(92c)

(92d)

I 2l„l —g„ l +g„M&
al

p l2 —M2 (l2 —M2 )2
Q Q

(93)

The first and the second sums in Eqs. (92a) —(92d) respec-
tively represent the contributions of the one Q-fermion
loops and the insertions of the massless Goldstone boson
g. Note that in the calculations of the one-loop integra-
tions we may use the formula

I

so as to remove out the square ultraviolet divergent sec-
tors since the loop integrations have been regularized by
taking the momentum cutofF; Noting the relation

I —I
)

o' Q=5 (94)

after a direct and lengthy calculation we ultimately ob-
tain the expression for the inverse propagators for the
neutral gauge bosons as (still take the denotations in Ref.
[4])
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i o ) . p vD„(p) '=i —g„
J

1/g2(p') 0
2

2( 2) p

1 —1

where

—g —,'(Yg 5g+1)Eg(p ),1 1

g2(p') g2 g
'

1 =1
2

=
2 &( Yg + l Yg ~g+ l )Eg(p'»

g

f (p )= ——gmgKg(p ) — QYg 5gEg(p );
4 g 2

Eg(p )=2dg(R) I dx x(1—x)Io (2m) (I —Mg )

dg(R) A +Mg
dx x(1—x ) ln

8~2 M
Q

(95)

(96)

(97)

(98)

mz=p =f (mz)[g, (mz)+g2(mz)] . (103)

Up to now we have eventually completed our argu-
ments of that the minimal composite Higgs mechanism
remains to work when the four-fermion interactions to
carry out the NJL mechanism come from the n genera-
tions of the Q fermions.

It should be emphasized that the whole discussions
above correspond to only the minimal dynamical break-
ing of the electroweak gauge group. An important sign
about this statement is that we finally obtain only a single
composite Higgs boson emerging from the theory. The
same result could not appear if the four-fermion interac-
tions of the n generations would not obey the minimal
Higgs condition (14). For instance, if the four-fermion
interactions of each generation would correspond to a
separate Yukawa-form Lagrangian which contains
respective static scalar field doublet, then the calculations
of the inverse propagators for the gauge bosons could
show the same results as (79) and (95). However, this
case does not correspond to the minimal dynamical
breaking since we would obtain n Higgs scalar bosons
with the configurations gU U (U U )+gD D (D D )CK Q a a
( a = 1, . . . , n ), and not a single one.

A

A +M
Q

(99)

1
( 2) P + P 2f z( 2)

2
1+—
2

+4f4(p 2
)

gl(p ) g2(p )

' 1/2

(100)

The squared momentums at which A,+(p ) are equal to
zeroes will determine the masses of corresponding neutral
gauge bosons. In fact, it is found that

A, +(p ) =0 when p =0 (101)

and

(p )=0 when p =f (p )[g', (p')+g, (p )] . (102)

Mg =mg —x(1—x )p

and the expression for Kg(p ) has been given by Eq. (32).
It is not difficult to verify that when we take Q = t, b
quarks only and A))m„ the results (95)—(98) are coin-
cided with the ones given by the formulas (A12) —(A14)
and (A16) in Ref. [4].

The 2 X 2 matrix in the inverse propagator (95) can be
diagonalized by appropriate linear combinations of A "
and B"and the resulting diagonalized matrix has the di-
agonal entries

VI. CONCLUSIONS

In this paper we have proven by explicit calculations in
the bubble approximation that the n generation extension
of the NJL mechanism leading to dynamical breaking of
the electroweak gauge group SUL(2)XY&(1) is com-
pletely feasible, especially when the minimal Higgs condi-
tion is satisfied it will still lead to the minimal dynamical
breaking. The configurations of the resulting single mas-
sive Higgs boson and three massless Goldstone bosons
will be some linear combinations of the spin-zero modes
coming from the n generations of Q fermions. These
configurations look a little complicated but are complete-
ly understandable from the vantage point of quantum
theory. The mass of the Higgs boson is restricted be-
tween the double mass of the lightest and the heaviest Q
fermions but is closer to the latter. Once the electroweak
gauge interactions are opened, the three Goldstone bo-
sons will enter the vacuum polarizations of the elec-
troweak gauge bosons and lead to generation of the
masses of the 8'* and Z bosons and the realization of
the composite Higgs mechanism.

The many generation extension of the gauged NJL
mechanism will provide the possibility to include heavier
ferrnions than the top quarks in the same minimal
dynamical breaking scheme of the gauge group
SUL(2)XU&(1) so as to tackle the fine-tuning problem
encountered in the top-quark condensate scheme. The
detailed discussions about this topic will be given else-
where.

Therefore, the two combinations of A " and B" corre-
sponding to A, +(p ) and A, (p ) could be respectively
identified with the massless photon and the massive Z
gauge boson. The mass of the latter is determined by the
equation
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