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Study of g = m yy decay using the quark-box diagram
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We study the decay of q mesons into m and a photon pair via the quark-box mechanism in a phenom-
enological quark model. The main parameters of the model are the qqq and m.qq couplings, which are
fixed by the g~yy and m. —+yy decays. With constituent quark masses of 300 MeV for u and d quarks
we find the width to be 0.70 eV, in good agreement with the experimental value of 0.84+0. 18 eV. In
contrast, chiral perturbation theory gives a width of 0.42 eV. A detailed comparison with the vector-
meson dominance model is also given.

PACS number(s): 13.40.Hq, 12.40.Aa, 14.40.Aq

I. INTRODUCTION

The radiative decays of light mesons have been a very
fertile testing ground of theoretical ideas [1]. In particu-
lar, ~ ~yy decay has led to the triangle anomaly and
has profoundly influenced the development of particle
physics. Subsequently, many of the radiative decays of
the nonet meson were extensively studied, both experi-
mentally and theoretically. The theoretical descriptions
fall mainly into two categories: (a) chiral perturbation
theory where the degrees of freedom used are the low-
lying hadron states and (b) quark model descriptions. In
chiral perturbation theory (ChPT) [2] the quarks and
gluons are integrated out, and hence they do not appear
in low-energy effective Lagrangians. On the other hand,
the phenomenological quark models make use of constit-
uent quarks in an essential way. By and large, ChPT has
been a very successful framework for studying low-energy
phenomena. The photon decays of pseudoscalar mesons
such as m, g, q', etc. , are described by the Wess-Zumino
term, and the Dalitz decays ~ —+yee, payee, etc. , are
well explained by vector-meson dominance incorporated
into ChPT. The difhculty is the decay

The experimental value for the width [3] of (1.1) is

such as p~gy, my, etc. As expected, the dominant con-
tribution comes from the p, ~ mesons with higher reso-
nances playing lesser roles, and the width in this model is
given by

I vMD=0. 30+ ', eV . (1.4)

The ao meson gives at best a 20% correction to the
above value. We expect this to be true even when one
puts in a myriad of higher meson resonances [6].

In this paper we study (1.1) in a constituent quark
model framework. We propose that the primary mecha-
nism for (1.1) is given by the box diagram of Fig. 2. The
use of quark models to study light pseudoscalar decay
mesons (P) is not new. It has been applied in P~yy,
P~ll, and P —+yll decays [7]. In these studies it was
found that with the correct choice of constituent quark
masses the VMD behavior of form factors can be repro-
duced by the quark loop diagrams. The main parameters
of quark models are the pseudoscalar meson —quark-
quark couplings and the constituent quark masses. In
our study we shall determine the gqq and m.qq couplings
by fitting the radiative decay widths of g~yy and
~ ~yy. To simplify the calculation we shall assume
that the u and d quarks are degenerate in masses, i.e.,
m„=md =m. One can easily generalize to unequal

I (g~n. y y ) = .048+0. 1 e8V . (1.2)

In ChPT the decay (1.1) occurs at higher order in the
momentum (p) expansion, i.e., O(p ). The most recent
calculation in this theory was performed up to 0 (p ) and
gave the value [4]

I czpr 0 42+0.20 eV . (1.3)

Although the order of magnitude is correct, ChPT is
about a factor of 2 smaller than the experimental value
when taken seriously.

In a previous paper [5],we used a more phenomenolog-
ical approach to study (1.1) by assuming vector-meson
dominance (p, m, P) plus the contribution from the ao
meson (see Fig. 1). The necessary couplings are deter-
mined phenomenologically by the appropriate decays

0

7

FIG. 1. The radiative decay g~m yy. The vector-meson
dominance (VMD) model is depicted in (a) and the ao-meson
mechanism is given in (b).
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y(k i) TABLE I. The e8'ect of varying the constituent quark mass
on g qq Q„«, and the width I of g to m y y decay.

qis

+ (), —), )

ques

y(), )

(MeVyc }

280
300
330

g qlqq

0.95+0.04
1.26+0.06
1.62+0.07

8'qrqq

2.96+0.11
3.19+0.11
3.52+0.13

I {g m yy}
(eV}

0.97+0.16
0.70+0.12
0.60+0.10

FIG. 2. The quark-box diagram mechanisms for the decay
~~~'yy.

1s

II. THK QUARK TRIANGI K
AND P yy DECAYS

The main purpose of this section is to set our notation
and calculate the couplings g and g q

for use later.
Since most of this is well known we shall be brief.

The most general Lorentz- and gauge-invariant ampli-
tudes for P~y y is given by

A =He„e",e2kpk2 (2.1)

where Mz is the mass of the decaying meson and k;, e,-
(i= 1,2) are, respectively, the four-momenta and polariza-
tion vectors for the photons, and H is the decay form fac-
tor. The width is given by

0 Mp
I (P~2y) =

64m
(2.2)

masses. The s-quark mass is fixed at 500 MeV/c since
we find that for this problem there is little sensitivity to
the s-quark mass. On the other hand, m is allowed to
vary within the reasonable range of 280 & m & 330
MeV/e .

In Sec. II we outline the calculation of P —+yy decay
and determine the appropriate couplings. The mixing of
g'-q is taken into account and the mixing angle of —20
is used [8]. The bulk of the calculation of (1.1) using the
box diagram is given in Sec. III. We also present double
diff'erentia1 cross sections with respect to photon energies
as a test to distinguish between different models. It is
well known that (1.1) is an important input to the calcula-
tion of the unitarity lower bound for the decay g~mll
(l =e,p). This calculation was reported in Ref. [5] with
VMD as the dominant mechanism {see also Ref. [9]). In
Sec. IV we update the result for the lower bound of both
q~m. ee and q —+~pp using the box diagram. Finally, we
present our conclusions in Sec. V. The Appendix is pro-
vided for the reader who wants the mathematical details
of the integrals involved in the calculation reported in
Sec. III.

2&Qqgpqq m id 1 —2t
1 (1 )M~ o a —t+t (2.3)

where a =m /Mt, . Using Eqs. (2.2), (2.3), and the exper-
imental value of m. ~yy width of 7.75 eV, we obtain

g'77ttg 877dd 3 &9+0 ~& . (2.4)

q) =0. 58( uu +dd ) —0.57ss . {2.6)

&e further assume the couplings of the meson to be in-
dependent of flavor, i.e., g„„„=g„dd=g„„,but rn, is tak-
en to be 500 MeV/c . This assumption appears to be
reasonable and does not contradict any observations.
Again using Eqs. (2.2), (2.3), and the experimental value
of I (q) ~yy ) =0.463 keV [3], we find

gqq
1 e 26 Os 06 e (2.7)

This completes the determination of the parameters of
the model. More detailed values of these couplings for
different values of m are given in Table I.

III. THE BGX DIAGRAM

%'ith the determination of g„and g in the previ-
ous section we are now able to calculate the contribution
of the quark-box diagram to (1.1). The decay is governed
by the gauge-invariant matrix element given by

To obtain the qqq couplings, we have to take into ac-
count the g-g' mixing. In the quark model, the g and g'
are admixtures of octet and single qq states. The physical
states are given by

— (uu +dd —2ss ) — —(uu +dd +ss ),cosO — sin8
v'6 v'3

(2.5)
—(uu+dd —2ss)+ — {uu+dd+ss) .

sin0 — cos0
6 2

The most recent fit [8] gives 8= —20' and the physical
state is given by

In the quark model, H is obtained by calculating the
quark triangle diagram. The result for one quark species

T=e e T

where [10]

(3.1)

j' ~.J zT" =A (x„xz)(k,ki2 —k, k2g" )+8(x„xz) —M~, xig" — P"P +x,k2P +x2P"k; (3.2)

where P" is the four-momentum of the q meson and M„denotes its mass. The four-rnomenta and polarization vectors



47 STUDY OF v]~nyy DECAY USING THE QUARK-BOX DIAGRAM 4941

2

of the photons are, respectively, given by k; and e; (i = 1,2), and x; =P—k; IM „.
Before we go into the detailed dynamics of 2 and B, we wish to advocate that the double differential cross section

with respect to the photon energies will be a good probe of the physics involved in A and B. To see this explicitly, one
examines the differential cross section which is given by

2
d I
X 1dX2

13+—B
2

2(x, +x~)+ —1 +—~8 ~ 4x, x~ — 2x, +2x2 —1+ (3.3)

and

M„—M
X) +X2

2M„
(3.4)

M„—M
X ) +X2 2X )X2

2M„
(3.5)

This is general and independent of models for A and B.
The Dalitz boundary is given by

cay which reside in the two form factors A and B and
how they behave as functions of x, and x2. We shall cal-
culate them in the quark model. The set of gauge-
invariant one-loop diagrams is given in Fig. 2. Only the
u- and d-type quarks contribute since the ~ does not
have any significant ss content. The decay structure ten-
sor T" is given by a straightforward evaluation of the
Feynman diagrams. First we define the quantities U~

(i =1,. . . , 6) by

Hence, near the linear part of the Dalitz plot given by
Eq. (3.4), a high statistics measurement will be a sensitive
test of B.

Next, we turn our attention to the dynamics of the de-
I

and

d4q

and

y(5g +m) yq(f +7 —k'i —@2+m)y (g+P ki+m)—y"(/+7+m)
(q —m )[(q+P —k, —k2) m][(q+—P —k, ) —m ][(q+P) m]—

y5(g+m)y (/+@2+m)y5(/+7 —k', +m)y"(/+8+m)
(q —m )[(q +kz) —m ][(q +P —k, ) m ][(q +—P) m—

y5(g+m)y"(g+k2+m)y"(g+k, +k'2+m)y5(/+7+m )

(q —m )[(q+k2) —m ][(q+k, +kz) —m ][(q+P) m]—
U4 = U","( k, ~k 2 ),
U", '= U2i'(k, ~k2),
Ug" = Up'(k, ~k2),

6
T" = g Tt' (3.6)

Equations (3.6) look prohibitively difficult. However,
to extract A and B one needs only to identify the
coefficients of P„P and g„, in the structure [see Eq.
(3.2)]. This greatly simplifies the calculation, and the rest
of the terms can be used as a check. More details of the
Feynman integrals are given in the Appendix. In general,
A and B are complicated functions of x, and x2 which
can be written in the form of a double integral. These in-

I

tegrals are complicated Spence functions. To evaluate
them analytically will involve hundreds of Spence func-
tions and this we deem to be of dubious value. Instead
we evaluated these integrals numerically and fitted A and
B by a third degree polynomial function using the routine
available in the algebraic computational program of Ref.
[ll]. Within the Dalitz region given by Eqs. (3.4) and
(3.5) we find that a good fit to A, 8 is given by

2 (xi,x2) = —0.616+2.14(xi +xq) —2. 509(x, +x2 ) —4. 184xix2+ 1.5896(x i +x2 )+2.936xix2(xi +x2),
M„

(3.7a)

B ( „x2)=x—0.866+ 1.674(x, +x2 ) —3.260(x, +x2 ) —1.781x,x2+2. 370(x, +x 2 )+ 1.089x,x2(x, +x2),
(3.7b)
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X2
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FICs. 3. Dependence of the
form factor AQ /M„on xz for
fixed values of x&. The solid line
is for quark-box mechanisms
and the dashed line denotes
VMD.
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where Q =k, +k2. The quantities A and B are expressed
in units of 10 MeV . Expressions (3.7a) and (3.7b) are
valid for the value of m=300 MeV/c quark mass. Since
x& and x2 are both small numbers, it is not necessary to
go beyond the third degree in the numerical fit. Using
the forms of 2 and B as given by Eqs. (3.7a) and (3.7b)
the computer time required to do final phase-space in-
tegrations over x, and x2 is greatly reduced. Finally, we
obtain the width of (1.1) in the quark model to be

I (g~yym )=0.70 eV (3.&)

for I=300 MeV/c . In Table I we give the sensitivity of
our calculation for a range of reasonable constituent
quark masses.

It is interesting that the width given in Eq. (3.8) is close
to the experimental value. This is to be compared with
the result of the ChPT and VMD model of Eqs. (1.3) and

(1.4). There are further tests one can use to distinguish
between this model and the VMD model. One such test
will be the measurement of the dependence of A and B on
x, and x2. In Fig. 3 we showed the difference between
the two models for the quantity Q A /M„as a function
of x2 for fixed values of x, . The box diagram gives a
steeper slope than the VMD model. Similar comparisons
are given for B, depicted in Fig. 4. For B the xz depen-
dences for fixed x, are almost indistinguishable between
the two models except for the normalization which is
larger for the box diagram model.

IV. EFFECTS ON THE UNITARITY BOUND
FOR g~m Il

In a previous paper we calculated the unitarity bound
for the semileptonic decay

x1 = 0.1

4 4
I)

Q)

4.0
x 1

= 0.2

C3

4

I

C3

3.6

4.6

0.38 0.40 0.42 0.44 0.46

X2

x, = O. 3

5.0

0.38
I I

0.40

~aaaagg~

I 1 I

0.42 0.44 0.46

X2

0.4

FICs. 4. The dependence of
the form factor —B on x2 for
fixed values of x&. The solid line
is for quark-box mechanism and
the dashed line denotes VMD.

I 3.8
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I
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3.5

I l I
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0.35 0.40
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0.10 0.15 0.20 0.25 0.30

X2
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g —+w pp, g~m ee, (4.1)

assuming VMD which gave a low rate for (1.1). With the
present calculation the unitarity bound is expected to
scale up since the rate (1.1) is higher for the quark-box

I

mechanism. The unitarity bounds for the decays (4.1) are
obtained by calculating the imaginary part of the ampli-
tudes, denoted by Im32~, as depicted in Fig. 5 with the
two intermediate photons put on shell. Explicitly, we ob-
tained [5]

0.' BImd = ——ALm uv+-2y 4
' I

1 4(P )
[ —2+20a +3(1—8a +8a )L]+ [1+6a +20a —6a (1+4a )L]

3P 3sM„P

8(P.p+ )(P-p )

3sM P
[1+26a —12a (1+a)L]

4P.(p- —p+ )
X m&uv+ [1—a —3a (1 2a)L—]univ

3M P' (4.2)

where

m Ia=
S

P= &1—4a

1 1+PL =—ln
1 —P

(4.3)

In general, the 3 and B form factors have dependence
on x, and x2 as calculated in the previous section. We
found that it is accurate to approximate them as constant
by calculating their average values over the entire physi-
cal domain of x, and x2. This should be an accurate ap-
proximation. The unitarity bounds for the widths of (4.1)
for the quark-box mechanism thus calculated are

I (rj~~ pP, )~„,„4).3+0.7 peV (4.4a)

I ( rj 7r ee )
~ b,„)2.9+0.5 pe V (4.4b)

I (rl rr pP )vMD) 2.4+0.8 peV (4.5a)

1 (YI~rr ee)vMD) 3.5+0. 8 peV . (4.5b)

for m=300 MeV/c . Table II displays the results for
280~m ~330 MeV/c . These are to be compared with
the results for the VMD model which are given below
[12]:

It is interesting to note that the ~ ee mode is only sen-
sitive to the term involving B. The rest of the amplitude
is helicity suppressed. On the other hand, the ~ pp, mode
involves interference between 3 and B and hence is more
sensitive to the dynamics involved. This interference is
sufficient to overcome the phase-space suppression [12]
and we obtain I (ir pp))1 (ir ee). With these enhance-
ments, the measurements of these semileptonic decays
should be within reach of the proposed "i) factories" [13].

V. CONCLUSIONS

We have studied the decay (1.1) within the context of a
naive quark model. The model is predictive with regard
to this decay and gives a value of the decay width in
agreement with the current experimental value. The cal-
culation using VMD is about a factor of 2 lower than ex-
periment. Interestingly, if one replaces the quark in our
model by a nucleon (N) loop and the couplings by vrNN

and gNN, the contribution is an order of magnitude too
small to account for the data. This arises from the fact
that the structure form factors 3 and B behave as 1/M
for large M, where M is the mass of the fermion in the
loop. Replacing quark masses with nucleon masses
suppresses A and B by 2 orders of magnitude. On the
other hand, mNN and gNN couplings are larger than
their quark counterparts by only an order of magnitude.
As a result, the nucleon-box diagram is not important for
(1.1).

Although our calculation gives a larger branching ratio
than that obtained from ChPT, given the uncertainties

TABLE II. The width of g~~ pP and ~ ee by virtue of the
quark-box mechanism for u, d quarks in the range 280—330
MeV/c ~.

e(p )

FIG. 5. The decay of q~~ll (l =e or p) via the two-photon
intermediate state.

280
300
330

I (q~m ee)
(peV)

7.3+1.2
2.9+0.5
1.2+0.2

I (q —+~ pP)
(peV)

3.9+0.7
4.3+0.7
4.3+0.7
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involved the obtained ratios should be interpreted as be-
ing consistent with each other. This is seen by examining
Table I. Since the experiments involved are very difficult
and the statistics are not high, one cannot definitely say
that the ChPT and the VMD models are disfavored by
experiments. However, a persistent high value for the
rate of (1.1) would be difficult to accommodate in ChPT
and/or VMD models. We cannot overemphasize the im-
portance of a precision measurement of (1.1) in future ex-
periments.

We have also examined the model dependence of the
form factors A and B. In order to be able to distinguish
between models one needs to measure the x, and xz
dependence of these quantities. In particular, the form
factor A has different behaviors in x, and x2 for the
quark model versus the VMD model. On the other hand,
the difference is small for the form factor B, other than
overall normalization. These studies would require high
statistics measurements. These can certainly be per-
formed at g-factory investigations. In our view, a study
of the decay gimpy will add invaluably to our under-

standing of low-energy hadron dynamics and will be an
important test of chiral perturbation theory as well as the
concept of duality in hadron physics.
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APPENDIX

In this appendix we show some of the mathematical
details involved in extracting the form factors A and 8
from Eqs. (3.6). As has already been mentioned, we need
to find only the coefficients of g" and P"P, since they
are related in a simple way to the form factors. There-
fore, in calculating the traces in (3.6), we need to keep
only the g", P"P,P"q,q "P, and q "q terms. Arrang-
ing these terms so as to provide as much cancellation
with the denominators as possible, one finds

U"'= 4[g" pD —'(0 P —k, )+—,'D2 '(0, —Q)+ —,'(2P k2 —Q )D3 '(O, P Q, P —k—, )

+ —,'(P Q P)D3 '(O,—P —Q, P) —
—,'P kiD3 '(O, P —ki, P)+ —'Q D3 '(0, —Q, —ki)

+ —'Q (2P ki P)D4 '(—O, P —Q, P —ki, P)]

+q"q [
—2D3 '(0, —Q, —k, )+2(P P.Q)D4 '—(O, P —Q, P —ki, P)]

+ ,'(P"q +q—l"P")[ D3 '(O, P ——Q, P —k, ) D3 '(O, P ——k„P)

+(Q +4P 4P Q)D4 '—(O, P —Q P —k P)]

+P"P'[ D3 '(O, P Q, P ——k, ) ——D3 '(O, P —k„P)
+(2P —2P Q+Q )D~ '(O, P Q, P —ki, P—)]I+

U&~ = —4[g" [ ——,'D2 '(O, P —k, ) ——,'D2 '(O, P —k2)+ —'(Q —2P k2)D3 '(O, k~, P —k, )+ ,'P.k2D3 '(O, P—,k2)

+ —'P k, D3 '(O, P —k„P)+—,'(Q —2P k, )D, '(O, P —Q, P —k2)

+ —,'(4P k, P k2 PQ )D4 '(O,—k2, P —k„P)]

+2q "q'(P PQ)D '(0 k—P —k P)+ '(P"q +q "P')—

X [ D3 '(O, kq, P ——ki ) D3 '(O, k2, P)+D3 '(O—,P —ki, P)

+D3 '(O, P —Q, P k2)+2(P P—Q)D4 '(O, k—2,P —k„P)]
+P"P [D3 '(O, P —ki, P)+D3 '(O, P —Q P —k )]]+

U3 = 4[g" pD2 '(O, Q—)+—,'D2 '(O, P —k2)+ —,'Q D3 '(O, k~, Q) —
—,
'P.k2D3 '(O, k2, P)

+ —,'(P Q P)D3 '(O, Q, P)+——,'(2P.ki —
Q )D3 '(O, ki, P —k2)+ —'(2P.k2 P)Q D4 '(O, k2, Q, P—)]

+q "q [ —2D3 '(O, k2, Q)+2(P PQ)D4 '(O, k2, Q, P—)]
+ '(q~P +P~q )[D3—(O, k2, P)+D3 (O, ki, P —k~) —Q D4 (O, k2, Q, P)]I+ (A 1)

where

D„(pi, . . . ,p„)= Q [(q+p, )' —m']
i=1

(A2)

and I is the quark mass. The ellipses denote terms
which do not, after integration, contribute to the g" and
P"P terms in T" . In order to make the integrals
simpler, we have used the substitutions q ~q —P,



47 STUDY OF g~n yy DECAY USING THE QUARK-BOX DIAGRAM 4945

q~q —k&, q —+q —k&, to ensure that each denominator
contains one factor of q

—m .
Some of the integrals in T" are divergent. We handle

this by the standard dimensional regularization method,
where the number of space-time dimensions is n =4—e.
We define

and

D2 ' a, O =5+const,
(2n)"

f ql'q D 3
' (a, b, 0)=—g" 6+const

(2'�)" 4
(A4)

——yE+ ln4~
l 2

16&
(A3)

where yE is Euler's constant. The only kinds of integrals
in T" which are divergent are

so we can easily identify the divergences arising from in-
tegrating (A 1). The divergences all reside in the
coefficients of the g" term and they cancel as expected
leaving only a finite piece.

For the sake of keeping the integrated expressions
short, we define the quantities

d 7l iI(a)—:lim —5+ f D2 '(a, O) = — f dx ln[m —a x(1—x)],
@~0 (2~)" 16m'

d4
J(a, b)—= f D3 '(a, b, O)=—

(2~)
d4

J"(a,b)—:f q"D3 '(a, b, O)
(2m )

2 f dx f dy[m —a x(1—x) —b y(1 —y)+2a bxy]
16m'

2 f dx f dy(a"x+b"y)[m —a x(1—x) —b y(1 —y)+2a. bxy]16~'
r

J"'(a,b):»m ——g"'b+ f q"—q D, '(a, b, O)~-0 4 (2~)"

f dx f dyI(a"x+b"y)(a'x+b y)[m —a x(1 x) by(l——y)—+2a bxy]16~'

+—'g" ln[m —a x (1—x) —b y (1—y)+2a bxy] j

d4
K(a, b, c)—:f D4 '(a, b, c, O)

(2m)

z f dx f dy f dz[m —a x(1 x) b—y(l——y) —c z(1 —z)
16m. o o 0

+2a bxy +2a cxz+ 2b cyz]

d4K"(a, b, c):f q
—"D4

' (a, b, c,0)
(2m. )

f dx f dy f dz(a"x+b "y+c"z)[m —a x(1 x) by(1 —y—) —c —z(l —z)
16~' 0

(A5)

K~ (a, b, c)—:f q "q'D4 '(a, b, c,O)
d4q

(2~)

+2a bxy+2a cxz+2b cyz]

f dx f dy f dz[(a "x+b "y+c"z)(a x+b'y+c z)
16m 0 o 0

X [m —a x (1—x) by (1—y) —c z (—1 —z)

+Za bxy+2a cxz+2b. cyz]

,'g I"'[m ~ a'x (1——x—)—b ~y (1——y) —c'z (1—z)

+2a bxy+2a cxz+2.b cyz]

We also define the functions J[;],J~;.~,J,J,J by
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J (&),&p)= y &PJ(;)(&],&p),

J(~$,~p)= y J(;)(~],~p),

(A6)

where the sums all go from 1 to 2. K~;), K~; ], K, K, and
K are defined similarly, but they have three arguments so
their sums go from l to 3.

If we call V" the finite contributions to the g" and
P"P terms in the integrals of U/', and define A and %
by

J" (a&, ~, ) = g af'a, 'J„,~(a „a,)+g~'J(a„a, ),
l, j

6

g Vf'"=Ag"'+%P"P /M„, (A7)

J(&] &p)= y J(,J)(&] &p) then comparing (Al) to the definitions (A5) and (A6)
gives, after a bit of algebra,

A = —4[2I(Q)+ —,'Q [J(k, , Q)+J(k~, Q)]+(P Q P)[J—(P, Q)+ J(P,P —Q)]

+—'Q (2P.k P) [K—(P P —k P —Q)+K (P k Q) ]

+ 'Q~(2P k P)[K—(P P kq, P ——Q)+K(P, k~, Q)]

+ ,'(4P k, P—k~—P Q )[K(P,k„P —k~)+K(P, kp, P —k))]

—4[J(k„Q)+J(k„Q)]+2(P PQ)[K—(P,P —k„P Q)+K—(P,P k„P——Q)

+K(P, k, ,P —k~)+K(P, k~, P —k, )+K(P,k„Q)+K(P,k~, Q)]]

and

4M„—(2P —2P.Q+Q )[K(P,P —k„P —Q)+(K(P, P —kp, P —Q)]

+2(P —P Q) —g [K(;)(k„P,P —k~)+K(;)(k~, P, P —k, )]
I =2

3 3

+ g g [K(, )(k„P,P —k~)+K(, )(k~, P, P —k, )]
l =2 J =2

+K(P, P k„P Q)+K—(P, P ——k~, P —Q)+K(33)(k„Q,P)+K(33)(k~, Q, P)

(4P 4P.Q+Q—)[K(—P, P —k„P —Q)+K(P, P —k~, P —Q)]+Q [K(3)(k, , Q, P)+K(3)(k~, Q, P)]

(A9)

We wish to write A. and X as integrals of Feynman parameters, as in (A5). It is easy to perform the first Feynman pa-
rameter integration in the cases where one of the four-vectors in the expression is null. By using

K (P,P k;, P —Q) =K(P,—k;, Q),

k(P P k P Q)= K(~)(P k Q)+K(P k Q)

K(P, P k, , P —Q) =K(„)(P—, k, , Q) —2K(, )(P, k, , Q)+K(P, k, , Q),
K(P, P —k, ,P —Q) =K(P, k, , Q),

we can ensure that k, or kz appears as an argument in every K-type function. We get

(A 10)
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r

l 4p ~ dx 0
2 — 1— ln 1 ——x(1—x)

4~2 o. o x p

f 1 1
—x

—2(1 —x, —xz) —,'o(1 —2x, )
+ dx dy +

o o p
—x(1—x)—ay(1 —y)+2(1 —x, —xz)xy 2x, x+try

1

p —x(1—x)—oy(1 —y)+2(x, +xz )xy

1

p —x(1—x )+(1—tz)xy+2x, x(1 —x —y)

40 x)x2 1+(x,~xz )+
2x, x+(1—a —2xz)y p

—x(1—x —y) —(1—2xz)y(1 —x —y)

1

p —ay (1—x —y) —(1—2x, )x (1—x —y)

2(1 —x, —xz) p
—x(1—x)+(1—a)xy+2x, x(1 —x —y)+ (x,~xz )+ ln

2x, x +o.y p
—x (1 —x) —oy(1 —y)+2(x, +xz)xy

+(x,+-+xz)

1 x) x2 p
—ay (1—x —y) —(1 —2x& )x (1—x —y)+ ln +(xt~xz)

2x&x +(1—a —2xz)y p —x (1—x —y) —(1—2xz)y (1 —x —y)

(A 1 1)

f' dx f' dy—2ox+4(l —x, —xz)x
2x )x +oy

1

p
—x(1 x) try (—1 —y—)+2(x, +xz )xy

1

p —x(1—x)+(1—a)xy +2x,x (1—x —y)

2(1 —x
&

—xz )(x +y)( 1 —x —y)+(x,~xz)+
2x, y + (1—a —2x z )x

1

p —(1—2xz)x (1—x —y) —y (1—x —y)

1

p
—(1 —2x, )y (1—x —y) —ax ( 1 —x —y)

+(x,~xz) (A12)

where a =M /M„, p=m /M„, and o =Q /M„= —[1—a —2(x&+xz)]. These are the double integrals referred to in
the discussion after Eqs. (3.6).

From (3.2), (3.6), (A7), and the definition of Vt' one sees that

X 3e Qqgqqqg qq
q

X 3e Qqgqqqg qq
q

1

k, kz

(A13)

where the sum is over the quark flavors and A and % are given by (Al 1) and (A12).
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