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Reduction of the wave packet: Preferred observable and decoherence time scale
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Environment-induced destruction of quantum coherence is investigated in a simple model where the
system is a harmonic oscillator, the environment is a collection of harmonic oscillators, and the interac-
tion between them is linear in the position coordinate of the system. We study decoherence for initial
states consisting of coherent superpositions of two Gaussian wave packets in either position or momen-
turn. A new measure of the effectiveness of decoherence appropriate to the model and choice of initial
conditions is proposed. By studying the dependence of the decoherence rate on the location of the initial
peaks of the Wigner function, we clarify the sense in which position is a preferred observable even

though position eigenstates are not the pointer states of this model. We analyze decoherence in the low-

temperature regime and show that the usual "high-temperature" approximation is remarkably accurate
in its domain of applicability. We also examine the relationship between the decoherence process and
the frequency distribution of the environment oscillators {in particular, we focus attention on a specific
"supra-Ohmic" environment). Implications of our results for the quantum to classical transition in vari-
ous contexts are briefly explored.

PACS number{s): 03.65.8z, 04.60.+n„98.80.Dr

I. INTRODUCTION

The role of the interaction between a quantum system
and its environment in the transition from the underlying
quantum laws, based on the principle of superposition, to
the familiar classical reality, where this principle appears
to be violated, has been a subject of increasing interest,
especially within the past decade. This surge of activity
has been motivated by increasingly sophisticated experi-
ments which allow one to probe the boundary between
the quantum and classical as never before [1—3]. Fur-
thermore, the interest in the transition from quantum to
classical has also been boosted by the emergence of new
contexts where a careful analysis of the reduction of the
wave packet is of either fundamental (as in quantum
cosmology [4]) or practical interest (as for detection of
weak forces [5] or quantum optics [6]), and the tradition-
al "Copenhagen interpretation" does not suffice. The key
idea focuses on the process of decoherence by which
quantum coherence is dynamically suppressed by the
continuous buildup of nonseparable quantum correlations
between the quantum system and the environment (see
Ref. [7] for an introduction and a list of basic references
and Refs. [8—11]for more detailed discussions). The out-
come of such an interaction is the quick demise of the su-
perpositions of states of the system that can be dis-
tinguished through their effect on the environment. This
results in a negative selection which leads to the emer-
gence of a preferred set of states, sometimes referred to as
the "pointer basis" [8], which remain least affected by the
"openness" of the system in question.

Classicality is then characterized by the de facto inac-
cessibility, an effective environment-induced superselec-
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tion rule [8], which excludes the vast majority of the
states, in principle, contained in the Hilbert space of the
system. If this idea is to be viable, one should be able to
(at the very least) demonstrate by means of simple models
that the process of negative selection described above is
(1) efficient and (2) that its outcome is compatible with
our first-hand experience of "classical reality. " The dis-
cussion of such a specific model, a harmonic oscillator in-
teracting with a heat bath of environment harmonic os-
cillators (investigated before by many authors [12]),is the
purpose of this paper.

Early discussions of decoherence [8] focused on ideal-
ized models where the self-Hamiltonian of the system H,
was either completely neglected (as is usually the case in
models of quantum measurements, where the "to-be-
classical" quantum system of interest is the apparatus) or
was assumed codiagonal with the interaction Hamiltoni-
an H;„,. The eigenspaces of H, +H;„, were then com-
pletely unaffected by the evolution. They constituted an
obvious "pointer basis, " and the corresponding "pointer
observable" A satisfied the commutation relation

[H, +H;„„A]=-0 .

The decay of coherent superpositions between various
eigenspaces of the pointer basis states was identified with
the rate at which reduction of the wave packet was ac-
complished. It was then argued [8—10] that a sufficiently
rapid decay rate enforced an effective environment-
induced superselection rule which made only a subset of
the Hilbert space, the long-lived pointer states, accessible
to observers.

The success of this program in the context of quantum
measurement theory, where the transition between quan-
tum and classical domains is perhaps the most dramatic,
has encouraged the idea that decoherence is always the
key to understanding the emergence of a classical domain
from within the presumably quantum "substrate. " How-
ever, in such a more general setting, the idealized as-
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sumptions appropriate for simplified "gedanken experi-
ments" considered in quantum measurement theory are
no longer appropriate. In particular, while one can still
appeal to the environment, a set of nontrivial observables
which simultaneously commute with both the self- and
interaction Hamiltonians is not likely to exist. Thus, all
of the states in the Hilbert space will be "degraded" by
the evolution to some extent [13]. However, the pre-
ferred basis can still be found because the rates at which
different states "degrade" will be very different. There-
fore, the "pointer states" of the system can be selected by
a "predictability sieve" [13]: they are the ones least
affected by the interaction with the environment.

We shall demonstrate that, even though in the pres-
ence of a self-Hamiltonian that does not commute with
the interaction, the nature of the pointer states is not ob-
vious, the role of the observable codiagonal with H;„, is
still important. In the model we will study here, the in-
teraction Hamiltonian wil1 be taken to be proportional to
the position x of a particle. However, for this same mod-
el the pointer states selected through the "predictability
sieve" turn out to be minimum uncertainty coherent
states. This result (which will be explicitly demonstrated
and discussed in a separate paper [14]) implies that, in
weakly damped systems, pointer states are, in some sense,
as close to position as to momentum eigenstates. There-
fore, it is natural to ask if position, the choice for the
pointer observable suggested by H;„, alone, is really a
preferred observable in this model and if so, in what
sense. We shall show that this is indeed the case by con-
sidering initial states for the system consisting of super-
positions of coherent states which differ in position and
momentum. We will compute the decoherence rate for
such states (which was first computed in [15] in a
simplified version of the model which is considered much
more carefully in this paper) and show that, as expected,
super positions of spatially separated states decohere
much faster than those of states which only differ in their
momentum content.

When trying to compute the decoherence time scale,
one naturally faces the problem of having to define a
reasonable "measure of the effectiveness" of decoherence
(i.e., a function that quantifies the importance of interfer-
ence efFects). We will define such a measure using the
signer function rather than the density matrix. It will
be based on the peak-to-peak ratio between the interfer-
ence and the direct terms (a quantity which is related to
the so-called "fringe visibility function" [16]). We will
compare this measure with other measures of coherence
loss previously used in the literature.

The discussion of decoherence has been usually con-
ducted under the simplest possible set of assumptions,
e.g. , an Ohmic environment in the often physically un-
realistic (but mathematically convenient) high-
temperature limit [12]. In this limit it is possible to ob-
tain a simple expression for the rate of decay of the terms
of the density matrix which are ofF-diagonal in the basis
of Gaussian coherent states [15]:

2

II. THE PROBLEM AND ITS SQLUTIDN

A. The model

We will deal with one of the most popular models used
to describe the interaction between a quantum system
and its environment. The system is taken to be a particle
moving in one dimension while the environment is
modeled by a collection of harmonic oscillators. The ac-
tion describing the model is

S[x,q„]=f ds —M(x —Qox )+ g —m„(q„—co~q~)
n

—g C„xq„ (3)

where x is the system coordinate and the q„are coordi-
nates of the environment oscillators. As is obvious from
(3), all nonlinearities are neglected and the particle is
therefore just an harmonic oscillator (the cases of a free
particle and an unstable oscillator are equally tractable).

In the above, kdB is the thermal de Broglie wavelength,
Ax is the separation between the two Gaussian peaks,
and y is the relaxation rate of the system. The most use-
ful tool in studies of decoherence is the quantum master
equation describing evolution of the statistical operator
of the "oscillator of interest. " Such an equation has been
derived under less and less constraining assumptions by a
number of authors. Notably, Caldeira and Leggett [12]
have used the inAuence functional technique to arrive at
the high-temperature Markovian limit. More general
equations, valid at arbitrary temperatures, and with
time-dependent coefficients, have been obtained in Refs.
[17—19]. We will employ the most general results based
on the discussion in Ref. [19] to study decoherence for
temperatures lower than those mandated by the high-
temperature limit. In these cases we wi11 investigate the
accuracy of the above approximation for the decoherence
rate.

The techniques we use allow us to study the effects pro-
duced by very general environments characterized by
general frequency distributions (and arbitrary tempera-
tures). One of the important questions still unanswered
relates to the conditions an environment should satisfy in
order to be able to produce decoherence. In other words,
given a closed system, what are the natural splittings into
subsystems and environments (or coarse grainings) such
that classical behavior arises in one of them? By varying
the spectral density of the environment in our model, and
studying the dependence of decoherence on these varia-
tions, we attempt to gain a deeper understanding of some
of the aspects of this issue.

A discussion of the model and the explicit form of the
density matrix evolved from an initial superposition of
Gaussian states will be the subject of the next section.
Numerical results will be presented in Sec. III and a dis-
cussion of their relevance for various aspects of the quan-
tum to classical transition will be given in Sec. IV. We
end with some concluding remarks in Sec. V.
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This simplification allows us to solve the problem exactly
but does not prevent the solution from having interesting
nontrivial properties.

It is well known that not all the constants entering in
the environment action (3) affect the evolution of the sys-
tem. In fact, the effect of the environment on the reduced
dynamics is contained completely in one function con-
structed from the constants entering in (3). This function
is related to the number density of oscillators with a
given frequency present in the environment and to the
strength of the coupling between these oscillators and the
system. It is called the "spectral density" of the model
and is defined as

C2
5(co—co„) .I(co)= g 2mn~n

2m 70 co 6)
I(co)= exp+n —1

where y0 is a constant and A is a high-frequency cutoff.
The above choice is widely used in the literature to model
various physical situations. The environments described
by (5) are known as sub-Ohmic (n & 1), Ohmic (n = 1), or
supra-Ohmic (n ) 1) depending on the form of the spec-
tral density in the low-frequency (co«A) part of the
spectrum. In particular, we will consider the n =1 and 3
examples. The first of these choices is the one most stud-
ied in the literature and produces a dissipative force that,
in the limit of A~~, is proportional to the velocity.
The case n =3 is a prototypical example of a supra-
Ohmic environment that is used to model the interaction
between defects and phonons in metals (see Refs. [20,21])
and also to mimic the interaction between a charge and
its own electromagnetic field [22).

B. Initial conditions

We will assume that the system and the environment
are initially uncorrelated. The total density matrix then
factorizes into a product of a function of the system vari-
ables and another function of the environment variables.
We will further assume that the initial state of the envi-
ronment is one of thermal equilibrium at a given temper-
ature T.

As we are interested in analyzing decoherence (follow-
ing the discussion in Sec. I), we will consider an initial
state for the system that consists of the following super-
position of coherent states (we set A'=1 throughout the
paper):

%(x, t =0)=%,(x )+%z(x),

The environment induces noise and dissipation in the re-
duced dynamics of the system. These two effects are en-
tirely determined by the spectral density (and eventually
also by the initial conditions). Therefore, two environ-
ments defined by two different actions but possessing the
same spectral density are equivalent from the point of
view of the system that interacts with them. In this pa-
per we will consider environments that have a spectral
density of the form

where

(x+Lp)(x}=Nexp1,2 26
exp(+iPpx ),

C. Time evolution

The above model is linear and the initial condition is
Gaussian. Consequently it can be solved exactly for an
environment with a general spectral density in an initial
state with arbitrary temperature. Here we briefly de-
scribe only the general features of the solution as it has
been extensively treated in the literature (see, e.g. , Ref.
[20]). One of the possible ways in which the exact solu-
tion can be obtained is by using the form of the evolution
operator for the reduced density matrix (the reduced den-
sity matrix is the full density matrix traced over the envi-
ronment variables: it depends only on the system vari-
ables). This propagator, which we denote by J(t;tp),
operates in the following manner:

p„~(x,y, t)= f fdxpdppJ(x p t'xp yp tp)

Xprcd(xp&3 p, tp )

and can be written in a path-integral representation as

2
1 L0

2~'5' 1+exp — —6 P02

Note that we assumed (just for simplicity) that the two
initial wave packets are symmetrically located in phase
space and that the relative phase is zero. These assump-
tions are visually manifest in Fig. 1 where we have plot-
ted the initial Wigner function [23], defined in terms of
the density matrix as

+oo ~Z iz~(x,p)= f e'~'p(x —z/2, x+z/2),
2 7T

for two special initial conditions: Fig. 1(a}corresponds to
the case L0=55, P0=0 which, in what follows, will be
called condition A while Fig. 1(a') corresponds to
Lp=0, Pp=5/5 (condition A'). We consider conditions
3 and 3 ' as two extreme cases that will allow us to study
the dependence of decoherence on the initial condition of
the system (the coherent states are spatially separated for
A while for A' they are separated in momentum). The
above two initial conditions share the common feature
that, as a consequence of quantum interference, the
Wigner function oscillates and becomes negative in some
regions of phase space (and therefore cannot be interpret-
ed as a probability distribution).

More generally we could consider nonsymmetric initial
conditions for which the wave packets 4; are centered
about the position L; and the momentum P;. In this case
the graph of the initial Wigner function turns out to be
identical to the one shown in Fig. 1 provided we shift the
origin to the point centered between the two wave pack-
ets [whose coordinates are x =(L, +Lz)/2 and

p =(P, +Pz)/2] and use the relative coordinate and
momentum as the values of Lp and Pp (i.e., Lp=L, Lz, —
Pp =Pi —Pz).
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J(x,y, t~xp, yp tp)

Dx Dyexp —S x —Sy F xy

where F[x,y ] is the Feynman-Vernon influence function-
al that arises due to the integration over the environment
variables. For the model we are considering, this func-
tional is well known and can be written as (see Ref. [20])

ln(F[x,y])= f ds f 'ds'(x —y)(s)
0 0

X [ i q(—s —s')(x +y )(s')

an arbitrary time (it is simply a matter of calculating
several Gaussian integrals). After a straightforward but
somewhat tedious calculation we can show that the
Wigner function can always be decomposed into two
Gaussian peaks and an interference term:

W(x,p, t ) = W, (x,p, t )+ W~(x,p, t )+ W;„,(x,p, t ),
(18)

where

g2 52 (x+x, )
W, 2(x,p, t)= exp

51
—v(s —s')(x —y )(s') ], (12) X exp[ —5',(p +p, —P(x +x, ) )'], (19)

where v(s) and g(s) are the noise and dissipation kernels
defined in terms of the spectral density:

g(s) = —f dro I(co)sin(cps),
0

v(s)= f dcoI(tp)coth cos(cps) .
0 8

As the integrand of (11) is Gaussian, the integral can be
computed exactly. Written in terms of the variables
g=x —y and X=x+y, the result is

b3(,g, t;Xp, gp, tp ) = exp( —a &Ig
—a (2g'p —aq2(p)

2

X exp — —5z(p —Px )~

1

and

Xcos[2~ p+2(x„—Pa )x],

52 a + +52b2 b
—21

22 ~62 4 3

N 52
W;„,(x,p, t )=2 exp( —A;„, )

lT

(20)

(21)

X exp(ib (Xg+ib2Xpg ib3X/—p

ib4Xp (—p), (14)

5 =4 a +5 b
1

11 2
1

a, 2
—26 b2b4

P=2b, +
5b3

2 2
a12 —25 b2b4

b3
(22)

(23)

where the functions bk(t) and a;~(t) depend on the envi-
ronment and can be constructed in terms of solutions to
the equation

KX 2
+25 Pob4

Lo

26,b3 6
(24)

u(s)+cpu(s)+2f ds'g(s —s')u(s')=0 . (15)
K =52 25 Pob2+

Lo
52

+25 b4Po

If u, and u2 are two solutions of (15) that satisfy the
boundary conditions u, (0)=uz(t) =1 and
u, (t) =u2(0) =0, then the functions that appear in (14)
are

a, 2
—25 b2b~

X
25 b3

2b, (t) =u, (t),
2b3(t) =u2(0),

2b, (t) =u, (t),
2b~(t) =u, (0),

Po 2Lob4

2b3

(16) pc =2 ~bx+2ILpb2

L 2 2

(26)

(27)

(28)

a;, (t)= f f dsds'u;(s)uj(s')v(s —s'),
1+5~ o o

(17)

where the overdot signifies di6'erentiation with respect to
s. Note that the functions b, (t, tp) [i = 1, . . . , 4] depend
only on the spectral density while the a;.(t, tp) Ii,j =1,2]
are functions both of the spectral density and the temper-
ature.

Knowing the form of the propagator (14) and the ini-
tial condition for the reduced density matrix [obtained
from (6)] we can compute the reduced density matrix at

5 =5 =5
1 2

Kx Po S'c ~

3;„,=0 .

K =Lo=x, , (29)

If we consider a nonsymmetric initial condition the

Expressions (19) and (20) are the main results exploited in
this paper. The form of the Wigner function at the initial
time is recovered from the above equations by using the
initial conditions
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FIG. 1. The Wigner function corresponding
to the initial conditions A (a): La=550, Pa =0,
and 3' (a'): LO=O, P0=5/6O. The coordi-
nates of the points 8 and 8' are (x =7,p =4)
and (x =4,p =7) respectively. The interfer-
ence between the two wave functions is respon-
sible for the oscillations.

above expressions are modified in a very simple way. In
fact, the Wigner function for the nonsymmetric case
W„,(x,p, t ) can be obtained from the one corresponding
to the symmetric case W,„( xp, t) [which is given by
(18)] as

W„,(x,p, t ) = W,„(x—x (t),p —p (t), t ), (30)

p, =2xmb, +2(L, +L2)b2 . (32)

D. Analysis of the solution
and the decoherence process

where the functions x (t) and p (t) describe the evolu-
tion of the midpoint between the two Gaussian peaks and
are defined by

Pl +P2 2(L1+L2 )b4I
4b3

W,„,(x,p) can also be examined using (20). From that
equation, we see that the peak value of W;„,(x,p) (in our
case the peak is always at the origin due to the symmetry
of the initial conditions but this does not have to be the
case), the wavelength of the oscillations, and their orien-
tation are all affected in a temperature-dependent
manner.

Starting from the initial conditions A and A ' [see Figs.
1(a) and 1(a')], we have numerically computed for vari-
ous environments the time evolution of the functions that
enter in (19) and (20). We will present the results in the
next section but would like to discuss our method of
analysis here. In order to do so, it will be useful to have
in mind the concrete example shown in Figs. 2(a) —2(d)
and 2(a') —2(d'). These figures correspond to the evolu-
tion of the Wigner function of a harmonic oscillator

Having already presented the basic technical in-
gredients of our method, in this subsection we will pay at-
tention to two, more conceptual, aspects. We will first
study the general features of the evolution of the Wigner
function and will later define and describe the "measure
of the effectiveness" of decoherence appropriate to this
problem. We will analyze its properties and compare
then with those of other possible choices.

From the solution given above, it is possible to imrnedi-
ately gain some qualitative understanding of the behavior
of the Wigner function. Let us consider first a symmetric
initial condition (i.e., x =O=p ) and analyze the two
direct terms in (18). The center of each of the two Gauss-
ian packets W', z(x,p) follows a trajectory given by the
equations x, 2 =+x, and p, 2 =+P, which, as can be seen
from (26) and (27), depend only on the spectral density of
the environment and not on the temperature. The tem-
perature affects the shape of these packets through its
inhuence on the variances 6, and 5z as well as on the
function P. The shape of the "isodensity" (W;=const)
contours of an individual Gaussian wave packet is always
an ellipse that may rotate in time due to the presence of
P. Apart from this rotation ("shearing" ), the state may
get squeezed due to the changes in the values of 6& 2 in-
duced by the interaction with the environment. The area
of the rotating ellipse is always equal to n.5, /52 which
may also vary with time (note that the peak value of W& 2

is inversely proportional to m.5, /52). We will later study
examples of environments for which some (or all) of these
effects are clearly seen. The effect of the environment on

t = 0.0

= 0.0
(b')

t= 0.1

t = 0.

FICx. 2. The time evolution of initial conditions A and A .
The oscillations disappear faster in the first case since the envi-
ronment can distinguish between the two peaks. In the second
case, the interference is damped over a dynamical time scale.
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whose renormalized frequency is set to unity (i.e. , all
times are measured in units of fI,,„). This oscillator is in
contact with an Ohmic environment characterized by a
spectral density of the form (5) with n =1. The dissipa-
tion constant is taken to be go=0. 3 so the oscillator is
underdamped, and the high-frequency cutoff set to
A=500. The initial state of the environment is the vacu-
um (zero temperature). As we see from these figures, for
late times (i.e., times of the order of the dynamical scale)
the effect of the interference is washed out by the interac-
tion with the environment. This occurs for both the ini-
tial conditions we considered. However, it is also evident
[see Figs. 2(b) and 2(b')] that decoherence is much faster
in the first case. The effect of the interaction with the en-
vironment is much more pronounced for condition A
where the centers of the two Gaussian wave packets are
initially separated in position. In this case, the interfer-
ence is damped very rapidly. Moreover, the system feels
an initial kick that has no direct effect on decoherence
but affects the dynamics of the system. Initially, it no-
ticeably moves the centers of the Gaussian packets closer
to the origin.

To quantitatively analyze decoherence in a situation
such as the one described above we need to define a func-
tion that allows us to quantify the importance of the in-
terference at a given time. As our diagnostic tool we will
use the peak-to-peak ratio between the interference and
the direct terms in the Wigner function, a quantity which
is determined by A;„„and is related to the so-called
"fringe visibility function:"

1 ~int(x &p ~ peak
exp( —A;„, ) =—

2 [~i(x,u)l...k~~(x p)~...k]'" (33)

A close analysis of the definition of 2;„, given in (28)
shows that this function vanishes initially and is always
bounded from above, i.e.,

L
$2

(34)

The value of A;„, cannot grow to infinity as a conse-
quence of the fact that the two Gaussian initial states
have a finite overlap which is proportional to
exp( —A;„,~,„). The process of decoherence destroys the
potential for interference between the states of the pre-
ferred "pointer basis, " which is measured by the size of
the off-diagonal terms of the density matrix in that basis.
As A;„, grows, the interference effects become less and
less important, and the state of the system becomes closer
to a mixture of the pointer states. Because of the simpli-
city of the initial conditions we are considering, A;„,
seems to be a good measure of the efticiency of decoher-
ence and we can say that such a process is indeed comp-
leted when A;„, becomes much larger than unity and
then remains ))1 over dynamical time scales.

We will soon discuss some of the advantages of A;„, as
a measure of the effectiveness of decoherence. Now we
turn to some other candidates that can be proposed to
play this role. One of them is simply the entropy
S=—Tr(p„dlnp„d), the calculation of which is rather

X exp[ —B;„,( t) ]cosg(x, t ), (35)

and as a diagnostic tool for decoherence attempt to use
the function B;„, (in fact, this was done in Ref. [24]).
However, it is easy to show that this function depends on
the initial conditions in a rather trivial way:

B,.„,(t) = +5 &0III'

Qpp

&»+(1/2)5 '+5'b', (36)

complicated for the initial conditions we study here. In
our case it is much simpler to compute the linear entropy
Si;„=1—Tr(p„d) which is an important quantity in its
own right: S&;„provides us with information about the
degree of mixing generated by the interaction with the
environment. For an initial pure state such as (6) the
linear entropy vanishes while for a mixture of two or-
thogonal states (with equal probability) it is equal to —,.
Thus, if the interaction with the environment is such that
interference is suppressed, we should observe the linear
entropy growing from its initial vanishing value to a
value which should be close to one-half. This is indeed
what happens in many of the cases we analyzed where the
conclusions reached by using A;„, as an indicator of
decoherence were almost the same as the ones obtained
using the linear entropy as a diagnostic tool. However, in
some other cases S&;„was not as sensitive a measure of
the decay of the off-diagonal terms as A;„,. The reason
for this is simple to understand: A;„, is a "relative"
quantity that compares the effect of the environment on
the interference terms to the one it produces on the direct
terms. On the other hand, the linear entropy is an "abso-
lute" quantity that may vary simply because the direct
terms S„„,2=1 —Trp, 2 depend on time [note that for
Gaussian wave packets Trp& 2 is inversely proportional to
the area inside the curves defined by the equation
8", 2=const and that this area grows with time due to
the interaction with the environment: if the system ap-
proaches a thermal equilibrium the final value of the area
is proportional to (ks T/fiQ)2M]. One can also define a
quantity related to the entropy contrast,

C=Tr(p )/[Tr(p, )Tr(pz)]'~~,

and show that its behavior is always qualitatively similar
to that of A;„,.

As remarked above (and as illustrated in Fig. 2) the
rate of the decoherence process strongly depends on the
initial condition. Any reasonable measure of the
effectiveness of decoherence must be able to distinguish
between the evolutions illustrated in Fig. 2. As is evident
from (28), 3;„, does depend on the initial condition and
turns out to have a drastically different behavior for con-
ditions A and A ' (much the same happens with Si;„). We
remark here that some other naively reasonable measures
have to be ruled out as they turn out to be rather insensi-
tive to initial conditions. For example, one may notice
that the structure of the reduced density matrix is such
that the diagonal elements of the interference term satisfy

p;„„(x,x, t ) =2[p, (x,x, t )p2(x, x, t ) ]'~
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Xcos[a(x,p, t )],
where B;„,(t) is a function that does not depend on the in-
itial conditions. Therefore, B;„„(t)cannot properly de-
scribe the decoherence process.

In the case of nonsymmetric initial conditions, very lit-
tle of the above discussion has to be changed. In particu-
lar, as is clear from definition (33), the function A;„, is the
same in both cases and depends only upon the initial
values of the relative coordinate LQ and momentum PQ.
This is an obvious consequence of the fact that, due to
the linearity of the model, the interaction with the envi-
ronment does not introduce a preferred position in the
system (but still makes position a preferred observable)
since the infiuence functional (12) is invariant under
translations. Thus, decoherence in the nonsymmetric
case takes place exactly in the same way as in the sym-
metric case.

What are the physical processes that affect the value of
A;„t7 To get a flavor of the time evolution of this func-
tion it is very helpful to remember that for a harmonic
oscillator the Wigner function obeys an equation of the
Fokker-Planck type. This important result is valid for a
linearly coupled environment characterized by a generic
spectral density in an initial state of arbitrary tempera-
ture. In fact, as was recently proven in Ref. [19], this
equation can always be written as

W= —Ia„„(t), W] „+2)(t)a, (p W)

+D(t)d „W f(t)d „W, — (37)

where the first term on the right-hand side is a Poisson
bracket. All the coefficients that appear in this equation
[i.e., the friction y(t), the diffusion coefficients D(t) and

f(t), as well as the frequency renormalization that is con-
tained in the renormalized Hamiltonian H„„(t)] are
time-dependent functions that strongly depend on the
spectral density of the environment (the diffusion
coefficients also depend on the temperature). From
definition (33) we can compute the time derivative of

Therefore, the behavior of B;„,(t) is identical for condi-
tions A and A ' and we have to conclude that it is a very
bad candidate to measure the potential for interference
(especially for the case Lo =0). Something similar would
occur if, instead of using the peak-to-peak ratio between
the interference and the direct terms in the Wigner func-
tion, we try to use simply the ratio between them. Indeed
it is possible to prove that W;„,(x,p, t) can be always
written as

W,„,(x,p, t ) =2[ W& (x,p, t ) Wz(x, p, t ) ]'

I 2

Xexp — +6 Po B;„,(t)$2

3;„,=D(t)a~ 2—f(t)Kp(Kx PKp) . (39)

This simple (and exact) equation shows that the evolu-
tion of A;„, depends very strongly on diffusion effects
[that explicitly appear in the right-hand side of (39)] but
rather weakly on friction or free evolution. These two
effects only change A;„, indirectly through their impact
on x„and a. [note that the two first terms on the right-
hand side of the Fokker-Planck equation (37) do not con-
tribute to (39)]. In fact, while there are two time scales
affecting the evolution of W;„, [a dynamical time set by
the combined effect of H„„and y, as well as the diffusion
time determined by D(t)] only one affects A;„, since the
dynamical contribution is canceled out by the last two
terms in (38). The normal diffusion always results in
decoherence since the first term in the right-hand side of
(39) is positive. This term is proportional to a which, as
can be seen from (20), is related to the wavelength A, of
the oscillations in the Wigner function:

=2~
Kp

= cosO, (40)

where 0 is the angle between the p axis and the axis along
which the Wigner function oscillates. On the other hand,
the contribution of the anomalous diffusion [the last term
in (37)] to decoherence does not have a definite sign since
the signature of the second term in (39) depends on the
relation between K and K„. The dependence of A;„,
upon the initial condition enters (39) through v~ and ~
whose initial values are determined by (29).

To better understand the main features of the evolution
of A;„, in some very important cases we will solve the
evolution equation (39) approximately assuming that the
normal diffusion dominates the right-hand side. This
happens in the widely studied case of an Ohmic environ-
ment in the high-temperature regime (where D ~ T and

f ~ T ') However, . we must stress that, in other cases,
the anomalous diffusion can be important and its effects
can be observed (if not experimentally, at least theoreti-
cally). This can happen, for instance, when v~ is small.
[Note also that the right-hand side of (39) is zero when a.

vanishes. ] For some environments (such as n =1 at low
temperature), close to the time when a =0, the effect of
the anomalous diffusion can be such that the value of
A;„, may locally decrease. This effect will be illustrated
in the next section.

Starting from condition A, where the ripples in the
Wigner function are initially oriented along the p axis, we
will assume that the decoherence process occurs on a
time scale much shorter than the dynamical scale, and
that during this time the interference fringes remain
oriented along the p axis. Using the Fokker-Planck equa-
tion, it is now a simple matter to derive an equation for
the wavelength A, of the interference oscillations:

lnt
int

1

peak

S') 8'2
+8') 8'2 peak

(38)

which, using the Fokker-Planck equation, can be
transformed into

A, = —4D5 A, .
dt

(41)

Equation (37) also allows us to show that, under the
above assumptions, the evolution of 52 (which is simply
related to the momentum dispersion of a single Gaussian
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packet) is given by 52 =5 +4Dt. Then (41) can be easi-
ly integrated and the result used to obtain

A;„,(t) =L
1+4D5 t

(42)

This equation can essentially be thought of as being a
high-temperature (and low damping) approximation of
the behavior of A;„,. One of the most remarkable
features of (42) is that it describes the approach to the
correct asymptotic value A;„,~,„ in a time scale that is
entirely unrelated to the relaxation time scale of the sys-
tem. This confirms the suspicion that, as we argued be-
fore, A;„, evolves on a time scale which is more or less in-
dependent of any dynamical scale. In contrast, the ap-
proach to equilibrium of other quantities (such as the
variances 5, and 52) can also be described by the Fokker-
Planck equation (37) but the characteristic time scale
governing this process is fixed by the friction coefficient y
(i.e., these quantities do not approach their asymptotic
value if one neglects friction).

In the next section we will compare the high-
temperature approximation (42) with the results obtained
from the numerical calculation of 2;„, and find the cir-
cumstances under which (42) is a reasonable approxima-
tion. From (42) it is easy to derive a decoherence rate
I d„=l/td„, where td„ is such that A;„,(td„)=1. This
rate is given by

cutoff in the spectral density (5), the dissipation kernel is
transformed into a distribution that can be related to the
Dirac 5 function (or some derivative of it). In this way
(15) can be transformed into a difFerential equation that
may be analytically solved by ordinary methods. The
functions u', ~g found in this way are good approximations
to the true solutions of the nonlocal equations for times
much longer than the one fixed by the cutoff frequency.
However, for earlier times the true solutions must be ob-
tained from the nonlocal equation. Comparing the exact
and approximate solutions we have found that, for times
larger than —100A ', the two coincide to a very high ac-
curacy (10 ). We point out that the trick of using a lo-
cal approximation for (15) may work only for some spe-
cial environments (such as those considered in this paper)
but may be totally useless for situations where the dissi-
pative kernel is intrinsically nonlocal (as, for instance, in
the sub-Ohmic case or in environments with noninteger
exponents).

B. Ohmic environment

This environment [which corresponds to n = 1 in (5)] is
undoubtedly the most popular one found in the literature.
The local approximation of (15) is very simple in this
case: disregarding the high-frequency cutoff in (5), the
dissipation kernel (13) becomes proportional to the first
derivative of the Dirac 5 function. The local approxima-
tion to (15) then becomes

$2
I d„=4LDD 1—

L 2
(43) ii (s)+ 2yaf1 (s) +Q„„u(s) = —4y05(s) u (0), (45)

For the Ohmic environment at high temperatures, the
diffusion coefficient D =2yomk&T. Replacing this value
in (43) we obtain

~dec 8 0 VOkB T (44)

in agreement with the estimate [15] previously obtained
by one of us.

III. NUMERICAL RESULTS

A. The method

We will examine here the numerical results obtained
for two different classes of environment. First we will
treat the Ohmic case which is characterized by a spectral
density given by (5) with n =1. Later we will consider a
typical supra-Ohmic case corresponding to n =3 in (5).
We will present data extracted from numerical calcula-
tions and compare them with some analytic estimates. In
particular, we will analyze the behavior of 3;„,and of the
decoherence rate and confront the approximations dis-
cussed in the previous section with the numerical results.

The major part of the computation consists of calculat-
ing the time-dependent coefficients that appear in the
propagator, i.e., bk(t) and aj(t) Our num. erical scheme
is based on solving the integrodifferential equation (15)
for u, 2. We do this by using a shooting method that al-
lows us to impose the appropriate boundary conditions.

In some cases, it is actually possible to find a local ap-
proximation to Eq. (15). In fact, for the n =1,3 environ-
ments, by neglecting the existence of the high-frequency

where the renormalized frequency is Q„„=Qo+ hQ
with b,A = —4y05(0)= 4yDAn'~— The eff.ects intro-
duced by the environment in the above equation are
threefold: it not only dresses the bare oscillator renor-
malizing its frequency but also introduces friction [pro-
duced by the second term in the left-hand side of (45)]
and an initial kick [associated by the right-hand side of
(45)]. Solving this equation, the behavior of the
coefficients in the long-time regime is easily shown to be

Zb, (t) = 2b, (t) =0 c—ot(Qt ) —y, ,

2b, (t) = —2b (t2)exp(2y, t )

0
exp(yat ),

sin(Qt )

(46)

where Q=(Q„„—y0)'~ . As a side remark we mention
that our equations differ slightly from the ones obtained
by Caldeira and Leggett in Ref. [12]: since we are solving
(15) numerically there is no need to neglect the kick term
appearing on the right-hand side of (45) as they did. This
term may significantly alter the value of b4 and affects the
motion of the centers of the two wave packets only if
LDAO [it is responsible for the sudden jump of the posi-
tion of the center of the wave packets observed in Fig.
2(b)] but it has no direct effect on decoherence [in fact, by
setting the right-hand side of Eq. (45) to zero, the evolu-
tion of A;„, is almost unchanged]. The functions a;~(t) do
not have a simple form even in the local approximation
but it is possible to write them as integrals of simple func-
tions.
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FIG. 4. The short-time evolution of A;„, in the high-
temperature regime. The parameters are the same as in Fig. 3
and we display only the result corresponding to initial condition
A. Curve (i) corresponds to our numerical results while curve
(ii) was obtained using the high-temperature approximation
given by Eq. (38). For curve (i) the asymptotic value of A;„, is
approached in a time scale that is of the order of the collision
time tA =0.002. The high-temperature approximation fails be-
cause it predicts a much shorter decoherence time while the en-
vironment cannot react on a time scale shorter than t&.

temperature is taken to be T3 =25 000 and the time scale
of the plot is set much shorter than in the previous exam-
ples since we want to examine in detail the region in
which the function grows. As we can see, there is some
discrepancy between the approximation (42) and the ex-
act result. The approximation predicts decoherence in a
shorter time than the one obtained from the numerical
results. The discrepancy between the numerical results
and the "high-temperature" approximation is more clear-
ly seen by examining Fig. 5 where we have plotted the
decoherence rate 1 d„as a function of the temperature.
Curve (i) corresponds to our numerical results (we com-
puted the decoherence time td„ for 15 temperatures
ranging from zero to T3} while curve (ii) corresponds to
the approximation (43). Note that for temperatures of
the order of T3, the approximation for the rate of
decoherence is 3 orders of magnitude larger than our nu-
merical result. At first sight this discrepancy appears
paradoxical since the temperatures we are considering
are such that the high-temperature approximation is very
well justified (this approximation holds for T )A=500}.
However, the physical origin of the result can be easily
understood as follows: as seen in Fig. 4, the time td„we
obtain from our computation is of the same order as the
"collision" time tA=A '=2X10 (remember that for
zero temperature we obtained td„—-10 ). This is an ex-
trernely short time and on this scale the nonstationary
(transient) efFects produced by the environment are very

Flax. 5. The decoherence rate calculated numerically [curve
(i)] is lower than the one computed using the high-temperature
approximation [curve (ii)]. In the high-temperature regime the
difterence can be 3 orders of magnitude. The reason for the
disagreement is that the decoherence rate predicted by the
high-temperature approximation [Eq. (39)] turns out to be
larger than the one determined by the high-frequency cuto6'
(which fixes a real physical limit on the time the environment
needs to be able to react).

important. Therefore, it is incorrect to assume that the
diffusion coefficient is a constant given by D =2yok~T
since this is only the asymptotic value reached after a few
times t A. Thus, as the diffusion vanishes initially,
decoherence must occur slower than predicted by (44).
In fact, the rate (44) can only be a reasonable approxima-
tion provided that the predicted decoherence time td„ is
much larger than the collision time t&. The high-
temperature approximation cannot be trusted on time
scales smaller than Silk~ T, since they correspond to ener-
gies larger than k&T which are out of the range of
guaranteed validity of (42).

To test the validity of approximation (42) parameters
should be chosen such that the decoherence rate is re-
duced. A way to achieve this is by decreasing the
strength of the coupling yo. For this reason we studied
the highly underdamped case yo=0. 001. The results are
shown in Fig. 6 where curve (i) represents the numerical
results for 3;„, and curve (ii) the approximation (42).
The two curves are almost identical for initial times and
differences arise only when dynamical effects become im-
portant [as expected, since (42) is supposedly good only
for times shorter than the dynamical time]. The good
agreement between the approximation for the decoher-
ence rate and the numerical results is well illustrated in
Fig. 7 where curve (i) corresponds to the numerical re-
sults and curve (ii) to the approximation (44). The coin-
cidence is rather remarkable and the difference is just as
intuitively expected since we know that approximation
(44) overestimates the rate at high temperatures (when
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FIG. 8. The evolution of A;„, for a harmonic oscillator in a supra-Ohmic environment at temperatures Tj =0, T&=10, and
T3 25 000. For the initial condition A (a) the system is sensitive to the initial transient that is strong enough to produce decoher-
ence. In the stationary regime, the environment does not produce irreversible behavior and, after a small oscillation, the value of A;„,
returns to the one it had reached after the initial jolt. On the contrary, for condition A the interaction is not effective initially since
f0=0. When the centers become spatially separated, the environment is no longer able to produce irreversible behavior and
decoherence is not achieved in this case.

decoherence time t~„, is of the same order as that corre-
sponding to the Ohmic environment. For lower tempera-
tures, we observe that the maximum possible value of
2;„,=LQ I5 +5 PQ is never reached since the function
grows very fast initially, reaches a value A;„,(0 ), and
then starts an oscillatory regime with a frequency that
seems to coincide with the oscillator frequency. After the
oscillator makes a complete turn, the value of A;„, re-
turns to A;„,(0 ). The existence of oscillations in A;„, is
not surprising and can be shown to be an amplification of
the effect we observed for the Ohmic environment in Fig.
3. It is associated with the anomalous diffusion which
generates the second term on the right-hand side of (39).
The sign of this term changes with time as the two pack-
ets rotate thus inducing the oscillations.

It is important to stress that, according to our previous
discussion, one expects this environment to be unable to
produce irreversible effects since in the long-time regime
there is no dissipation nor a normal diffusion. However,
in Fig. 8(a) we observe an irreversible loss of coherence
that in the high-temperature case seems to be very impor-
tant. In fact, even in the low-temperature regime there is
an irreversible loss of coherence since, despite having a
nonmonotonic behavior, A;„, never goes back to zero but
returns to A;„,(0+). This effect cannot be explained us-
ing the local approximation or the long-time values of the
diffusion coefficients since it is entirely due to the short-
time response of the environment. In fact, the irreversi-
ble loss of quantum coherence takes place on a time scale
of the order of vz=A '. As was noted in Ref. [19], the
diffusion coefficient has a strong peak on a time scale of
the order of v~ and reaches a value that is universal and
essentially fixed by the cutoff h (t~ ) =2yDA. After this in-
itial cutoff dominated regime, the diffusion coefficient
evolves in an environment dependent way towards some
asymptotic value. Our results show that for the supra-

Ohmic environment all the decoherence is produced by
this initial peak in diffusion. In contrast, for an Ohmic
environment the effect of the initial peak in diffusion can
be important but it is always followed by the effect pro-
duced by normal diffusion in the stationary regime (it is
worth noticing that the effect of the initial jolt can be
made arbitrarily small in the low damping limit, as illus-
trated by the second example discussed in Sec. III 8, see
Figs. 6 and 7). The above property of the supra-Ohmic
environment allows us to present arguments against the
physical relevance of the initial jolt. It can be argued
that the transient behavior, which is caused by the initial
peaks in the diffusion coefficients, is strongly related to
the initial condition we used (no correlations between the
system and the environment at the initial time). Initial
correlations are likely to wash out the initial peaks in the
diffusion coefficients. However, the physical irrelevance
of the initial jolt is better illustrated in Fig. 8(a') where
we observe that for the initial condition A no irreversi-
ble loss of coherence is achieved. The initial jolt is com-
pletely innocuous and the reason for this is clear: the jolt
becomes irrelevant because the initial condition A' is
such that the interaction with the environment is initially
very inefficient. The centers of the two wave packets
have to become spatially separated but by the time this
happens the environment is incapable of producing ir-
reversible behavior.

IV. DISCUSSION

The purpose of this paper was to present a detailed
study of the process of decoherence in an exactly solvable
case —a double-slit inspired situation —where the state
vector is initially a coherent superposition of two wave
packets which are separately localized in both position
and momentum and therefore can be regarded as poten-
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tial candidates for the classical "points in the phase
space. " We have found that the rate of loss of quantum
coherence between such minimum uncertainty states is
indeed correlated with the spatial correlation between
them and, as originally estimated in Ref. [15], that the
characteristic decoherence time scale is quite well ap-
proximated by the simple formula (2) whenever the high-
temperature approximation is valid. Moreover, even out-
side the range of validity of the high-temperature approx-
imation a natural extrapolation of (2) given by (42) ap-
plies.

The preferred role of the observable which couples the
system to the environment is apparent in our results. In
particular, the rate of coherence loss is much faster when
the wave packets are initially separated in position.
Moreover, a superposition of two wave packets which
differ in momentum, but have identical positions,
decoheres solely because the initial difference in momen-
tum translates into a subsequent difference of positions,
which allows for the "monitoring by the environment, "
which, in turn, leads to decoherence. In fact, (39) tells us
that 2;„„which is a measure of the effectiveness of
decoherence, does not grow when the centers of the two
wave packets have the same position [for weakly damped
systems a~ ~ x, (t)].

The goal of these considerations is a better understand-
ing of the mechanisms which precipitate the transition
from quantum to classical. In this context the important
characteristic of the decoherence process we have studied
is not the fact that the off-diagonal terms of the density
matrix are negligible in some basis —there is always a
basis in which they are exactly zero, simply because the
density matrix is a Hermitian operator, and, therefore,
will be diagonalized by its eigenstates. Rather, one
should focus on the invariance of the basis which will al-
ways nearly diagonalize the reduced density matrix after
the decoherence time, regardless of what was its initial
form. Thus, the emergence of classical states of the sys-
tems (which are localized in both position and momen-
tum) can be seen as a consequence of the ability of the
decoherence process to differentiate between the rates
with which different pure states in the Hilbert states de-
cay into mixtures.

While we have focused on a rather limited set of initial
conditions (superpositions of Gaussians) one could argue
that our results strongly suggest that the preferred basis
must consist of states very similar (if not necessarily iden-
tical) to the localized Cxaussian wave packets. This is
simply because minimum uncertainty wave packets con-
stitute a basis in the Hilbert space. Therefore, any state
can be expressed in terms of their superpositions. But
any superposition can be regarded as a sum over pairs of
such Gaussians. Moreover, any superposition which is
substantially nonlocal in either x or p will decohere on a
time scale which can be deduced from the above con-
siderations (and which is considerably shorter than the
time scale over which individual localized Gaussians
decohere). Therefore, it follows that the set of preferred
"pointer" states singled out by the evolution of open sys-
tems has an appealing feature of being close to what one
would want to associate with points in the classical phase

space.
Given that we have apparently extracted from the

quantum substrate some of the elements useful in estab-
lishing the connection between the quantum and the clas-
sical, it is now useful to look again at our assumptions.
The model we have used is clearly selected according to
the criteria of calculational convenience rather than be-
cause it is realistic. One can nevertheless expect that
even in the situations where the linearity of the model is
an approximate, rather than exact, feature, the rapid rate
of decoherence (which for macroscopic systems at "room
temperatures" occurs on a time scale very much more
rapid than the dynamics) will force any initial state into a
mixture of localized wave packets. Thus, in order to in-
vestigate the process of decoherence experimentally in
the transition region where the ability of the environment
to enforce the environment-induced superselection is no-
ticeable but not overwhelming, one must consider either
extremely well-isolated classical systems (such as a cryo-
genic Weber bar) or, quantum systems prepared in very
nonclassical states.

Initial conditions used in the model were also idealized.
Nevertheless, one could argue that the only truly unphys-
ical consequence of the assumed initial product structure
of the joint state of the system and of the environment is
the initial non-Markovian evolution on time scales of the
order of the upper frequency cutoff. We illustrated the
unphysical nature of the effect produced by the initial
transient (that produces a strong initial peak in the
diffusion coefficient) by using a supra-Ohmic environment
where the effect of the initial diffusion peak can be made
innocuous by choosing appropriate initial conditions [26].
Moreover, while the dependence of the process on the
spectral density of the environment leads to interesting
questions about the nature of decoherence and its relation
to the definition of what is "the system" at sufficiently
low temperatures (that is, how to treat vacuum modes
which can be adiabatically dragged with the observables
of interest, and, therefore, should not be regarded as the
part of the decoherence-causing environment, as appears
to be the case in the supra-Ohmic example described
above) it is unlikely to make a major difference in the
context usually regarded as classical. And, last but not
least, the nature of the interaction Hamiltonian which
"decided" the form of the preferred observable, the one
which decoheres most rapidly, is again motivated by
physics: Interaction potentials usually depend on posi-
tion [7,9,15]. Therefore, choosing an H;„, which com-
mutes with x was rather natural. Moreover, coupling
terms higher order in x would have changed the nature of
the diffusion process, but not the preferred observable.

Thus, while our model was rather special, one can hope
that the results we have obtained should be qualitatively
applicable to a broader range of conditions and can be a
basis for discussion of the transition from quantum to
classical in a much more general context. In this paper
we have not compared our approach with the "consistent
histories" formulation of Griffiths, Omnes, and Gell-
Mann and Hartle (we refer the reader to Ref. [27] for an
introduction to recent developments). There, the focus of
attention is on the additivity of probabilities for
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histories —time-ordered sequences of events represented
by projection operators. The corresponding "consistency
conditions" which assure such additivity are rather easy
to satisfy allowing for many sets of consistent histories
most of which are flagrantly nonclassical [27,13,29].
Thus, additional constraints on the allowed histories have
to be introduced to define the quasiclassical domain.
Such conditions have not yet been proposed in a manner
which would allow a rigorous investigation. On the other
hand, environment-induced superselection is expected to

yield consistent histories whenever the projection opera-
tor employed to represent events are constructed out of
the pointer eigenspaces [13,29]: successful decoherence is
then expected to be a guarantee of consistency. These
and other conceptual connections between the two for-
malisms, which were discussed in Ref. [13], will be ana-
lyzed elsewhere [29]. A first analysis of the consistent
histories approach to the Caldeira-Leggett model (focus-
ing on a single Gaussian initial state and for the high-
temperature regime) can be found in Ref. [28].
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