PHYSICAL REVIEW D

VOLUME 47, NUMBER 10

15 MAY 1993

Quantization of massive chiral electrodynamics reexamined

C. Fosco and R. Montemayor
Centro Atomico Bariloche, Comisién Nacional de Energia Atdmica and Instituto Balseiro, Universidad Nacional de Cuyo,
8400 San Carlos de Bariloche, Rio Negro, Argentina
(Received 31 March 1992)

We show that the models considered by Andrianov et al. [Phys. Rev. Lett. 63, 1554 (1989); and
Phys. Rev. D 44, 2602 (1991)] are equivalent to other models where it is easily proved that the
anomaly decouples and consequently the value of the chiral triangle amplitude is irrelevant for the

unitarity of the S matrix.

PACS number(s): 11.10.Ef, 11.10.Gh, 11.15.—q, 11.30.Rd

Recently Andrianov et al. [1,2] have criticized models
for chiral fermions coupled to a massive vector field based
on different mechanisms for the anomaly cancellation.
In particular, they mentioned the models presented in
Refs. [3, 4], where the functional integral is either defined
by constraining the vector field to be transversal [3] or
based on a gauge group functional integration [4]. They
assert that in these models unitarity is jeopardized by
the radiative corrections.

In Ref. [1] they introduce what they claim is a new
model which gives place to an unusual Becchi-Rouet-
Stora-Tyutin (BRST) symmetry, with a charge @ sat-
isfying Q3 = 0 instead of Q? = 0. They refer to the
BRST procedure to prove the unitarity of the S matrix,
but in such a case this is not possible in a direct way. The
order-three nilpotency of Q implies that there is not only
a quartet but also a sextet of nonphysical states. This
spoils the usual proof of unitarity, and its discussion fol-
lowing this line becomes very cumbersome. In fact, they
do not prove unitarity in a convincing way.

In Ref. [2] they propose an alternative model, and on
its basis they reexamine unitarity. They claim that it
is corrupt because of the chiral triangle amplitude, when
computed with standard ultraviolet regulators. This mis-
leading interpretation is induced because they are using
the propagator for the transverse vector field, although
the expression they consider for the triangle amplitude
actually corresponds to the vertex for the interaction
with the complete vector field. As we will discuss later,
the actual value of the triangle is irrelevant for the proof
of unitarity.

The aim of this Comment is to clarify the subject. The
starting classical Lagrangian is

Lo=—%F,F" + (P +ie APL)Y + im24,4% | (1)

where P, = (1 + 75). Introducing the decomposition
of the vector field in transversal and longitudinal compo-
nents,

A = AL+ AY = Al + 84O, (2)
where
0-Ar =0, 006=9 -4, (3)

we can write

Lo = —L1Fr,, Fr* + P[§ + ie( Ap+ #O)PLly

+%m2ATMAT“ + émza,,ea“e . (4)

The equations of motion are
OuFr* + m?Ap¥ = —Jy , (5)
(# +ie(Ar+ @O)PLlY =0, (6)
m?00 = -8,Jr, (1)

where J{ = iey* Pry. The coupling of the physically
interesting sector (A, 1, %) with the anomaly is through
the scalar field ©.

The key of the proposed approach is to introduce an
additional scalar ghost field n whose role is to decouple
the anomaly from the sector of fermions and transversal
vector fields. To obtain such an effect they use two con-
structions, which give place to exactly the same S matrix
for the fields (Ar, v, ), as we will show in the following.

In Ref. [1] they add to £ the Lagrangian

Ly =—3m?(@n) +nd-Jr, (8)
and in Ref. [2] they use, instead,
184 2 _ 2
L, = -m*n0O = m*(dn) - (90) . 9)

Both Lagrangians, up to a divergence, are members of
the single-parameter family

L= Lo+ 3im?[(b® —1)(0n)* + 2b(dn) - (90)]
+(1=b)8-Jg . (10)

The model considered in Ref. [1] corresponds to b = 0,
and the one of Ref. [2] to b = 1. In every case the trans-
formation ©® — XA — by leads to the Lagrangian

L = Lo(Ar) + 3m?[(8N)? = ()] + (n = M@ - Jr

(11)
or introducing o = A+ nand ¢ = A — 7 [2], to

L = Lo(Ar) + 3m?[(80) - (Bp) — 98- Ju) . (12)

It is easy to see what happens to the anomaly at the
level of the equations of motion:

OuFr* + m2AY. = —J¥ , (13)
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(P +ie(Ar+ Pp)PLly =0, (14)
m?0p =0, (15)
m200 = —28 - J, . (16)

It only acts as a source for the scalar field o, which is
decoupled from the remaining fields.

They have not realized that both versions of the model
are equivalent to the one discussed in Ref. 3], as is ap-
parent from the Lagrangian (1) in Ref. [2]. Further-
more, when they assert in this paper that the theory
is nonunitary their argument is based on a inconsistent
treatment of the model. They are using the propagators
J
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corresponding to the transversal vector field, but the ex-
pression for the triangle anomaly is calculated using the
complete vector field [5].

Turning now to quantum theory, Demarco et al. [6]
proved that in the theory defined by the Lagrangian (12)
the anomaly is also decoupled from the physical fields.
Moreover, because of the BRST treatment the equations
of motion in the physical subspace are manifestly stable
under renormalization. In addition, we can easily prove
that this Lagrangian is equivalent to the nonlocal model
proposed by Thompson et al. [4], as we show in the
following.

The generating functional for Green’s functions is

Z[5*,n,7] =/DA Dy Dy Dnexp{i/d4x(ﬁ+j~A+ﬁ¢+1/777)} : (17)

Decomposing the vector field in longitudinal and transversal components, where

AL"-—-B“%G-A, AT"=A"—6“é6~A, (18)

we have
_ - 1 -
Z[j*,&,€) = /DAT DO Dy Dy Dn exp{i/d4z[ Lo(AT) + §m2(86)2 +mnO0O — Ye FOPLY
+j-AT+j‘86+E¢+zIJ£]}- (19)
[

If we now use §(06) = det™ 'O 6(©) and perform the 1 1
integration over ©, only Lo(Ar) remains, which is the 9: ']Ea rA— G(A)Ea 4, (24)

Lagrangian considered by Thompson and Zhang [4]. As
they demonstrated, it has the gauge symmetry

§A, =0w, =0, Ap=0. (20)

This is a manifestation of the fact quoted by Konopleva
and Popov [7]: if the Lorentz condition is satisfied the
massive theory has a gauge invariance (even if it is a
non-Abelian one).

Although it is possible to compute the propagator

dik e~ ik(z—v) kuk,
<9uv - ::_2> , o (21)

—i |

(2m)* k2 —m?
it is rather difficult to prove the unitarity of the theory,
because there is a nonlocal interaction involving the time
coordinate [8]:

(AuAV> =

Lo =—eJ-Ap=—eJ-A—ed-J20-A.  (22)

When we have a nonanomalous theory the nonlocal term
is irrelevant. We can always perform a fermion transfor-
mation

i — B Py et (23)

with a Jacobian one, which cancels this term. In our case
this transformation induces an anomalous Jacobian and
the nonlinearity persists. Its only effect is to replace

where G(A) x €, F°7 F* is the anomalous divergence
of the chiral current Jr. This last nonlocal form of the
theory has a gauge symmetry defined by the transforma-
tions

A, — AL+ 0w, Y — e~ WPLy  oh — pewFL | (25)

To analyze the unitarity of the theory it is convenient
to use a local version for £. This can be achieved in
several ways. For example we can use

L= Lo+ —;-mz[((?@)Q _A.00] +a(d- A—00)

b2 (26)
~€OG(A) + oy +b0 - A —id,ed e,

which corresponds to the Faddeev-Popov construction,
or alternately

L=Co— %(a A2 +0(8-A—D0¢) —edG(A),  (27)
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which reproduces the nonlocal term when we integrate
with respect to © and ¢, and generates a Stueckelberg-
type term. For both versions a BRST treatment exists
that proves the unitarity of the theory (see Refs. [9] and
(6], respectively).
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