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Model of random surfaces with long-distance order
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We describe a theory of a rigid string with long-distance order induced by a constrained Wess-Zumino

term. The renormalization group analysis shows the existence of a nontrivial fixed point. The corre-
sponding surface has a finite fractal dimension.

PACS number(s): 11.17.+y, 68.10.Cr, 68.10.Et

The inclusion of extrinsic curvature-dependent terms
into the string action is necessary for the description of
flux tubes in gauge theories [1—3] and of certain biologi-
cal and/or chemical membranes [4,S] (see [6] for a review
and references on the membrane line of development).
For the membranes it has been demonstrated experimen-
tally that the curvature energy dominates over that of the
surface tension. In gauge theories such as QCD' or the
three-dimensional Ising model, to have a scaling of string
tension near the critical point is necessary for obtaining,
in the continuum limit, smooth surfaces with finite ten-
sion (a proof of this statement was presented in [8]).

The action of the rigid string theory proposed in [2—4]
reads (modulo the total derivative)

1S =pong + — &g g ~V' t) x V' t) i'x
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(n, P, y=-1, 2) and contains, in addition to the Nambu
term, also a term equal to the square of the extrinsic cur-
vature tensor of the surface. In the limit no~ ~, it
reduces to a Nambu action so that the system is governed
by "conformal matter + Liouville" —type dynamics [9]
and for physical dimensions 1 & d (25 is known to be in a
strong-coupling phase [10] with infinite fractal dimension
of the corresponding geometrical object. In the limit

@OHIO, the action is given purely by a curvature term.
However, it was shown in Refs. [2,3, 11—13] that the cou-
pling ao turns out to be asymptotically free. As discussed
by Polyakov [2], this most probably means that in the in-
frared jkimit the Lagrange multiplier field develops a
nonzero expectation value, thus generating a mass gap
and driving the theory to a Nambu phase with the ten-
sion completely determined by radiative corrections.
Such a scenario is confirmed by subsequent analysis (see
[14] for the list of references known to the author).
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A recent review of various ideas of' the possible equivalence of
the large-% QCD to a string theory can be found in [7].

This picture would change drastically if there were
another critical point at a nonzero value of ao. This
point would be infrared stable and would correspond to
an ordered phase with smooth surfaces of finite fractal di-
mension. Indeed, some numerical evidence was found in
favor of the existence of such a point, but the data do not
exclude other interpretations (see the recent works
[15,16] and references therein). These numerical results
seem to contradict present analytic knowledge, most of
which is, however, either of perturbative or of large-d na-
ture [2,3,6, 11—14].

In the present work, a modification of the action (1)
leading to the existence of a nontrivial fixed point is con-
sidered. The main result is expressed by the formulas for
the one-loop P function and fractal dimension [Eqs. (9)
and (10)], which show that in the infrared limit 'he
modified theory describes smooth objects with finite frac-
tal dimension. For the simplest case of three-dimensional
space, the existence of the fixed point has already been
demonstrated in [17], but the method used there made
the investigation of the general case very complicated
(though a corresponding conjecture was made). In the
present work, we prove, using the Monge form for
almost-planar surfaces, the general result and calculate
one of the scaling exponents. The theory discussed below
differs from the only previous construction known to the
author (see [18,19]). The hexatic membrane action con-
sidered in this work is obtained by adding to the action
(1) that of the XI' model on the surface. In our construc-
tion no new degrees of freedom are necessary.

Before proceeding to the description of the modified
action, let us make a remark concerning the possible
relevance of the rigid string actions to gauge theories. In
a recent work [20], Polchinski and Yang have calculated
the high-temperature and high-energy behavior of the
partition function of the rigid string (1) and found that it
is given by the same power of the temperature as expect-
ed for QCD [21], but the sign and, moreover, the phase
are different. This raises the problems of unitary on the
world sheet [28], expected on general grounds for a
theory with a higher-derivative kinetic term. If contin-
ued to the space-time amplitudes, this unitary problem
will provide a strong argument against the rigid string
theories in Minkowski space. This, of course, does not
apply to their relevance for the statistical mechanics of
membranes [7].
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e, V, eb =0,
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with the covariant derivative and the complex structure
taken compatible to the metric. A symmetry with
respect to the holomorphic SO(2) X SO(2 —d) transforma-
tions will remain a symmetry of the action. It will be also
independent of the choice of the reference frame x ' '.

Another comment is that for the surfaces embedded
with an open line of self-intersection the field A is singu-
lar. For d ~4 these singularities are unstable, but for
d =3 they are stable and play an important role in the
string representation of the three-dimensional Ising mod-
el described in [22]. For the present local consideration,
they can be ignored.

Let me note also that 0 can be taken in any representa-
tion of SO(d). The one relevant for the three-dimensional
Ising model is the spinor one. Here we will take A to be
a d X d matrix.

A basic object of our model is a composite matrix field
A. To construct it, let us denote the tangent vectors of
the (closed, orientable) Riemann surfaces X embedded in
R by x"=(~3/BP)x" (a=1,2, @=1, . . . , d). Introduc-
ing the zweibeins e, (a = 1,2) such that e,
e,&=x x&=h &, one can orthonormalize them by writ-
ing x, =e,x; adding also d —2 orthonormal vectors
normal to the surface, x, (i =3, . . . , d), one obtains a set
of d orthonormal vectors xi' = [X,",XI"] (m =1, . . . , d).
The matrix Q is a representation of the SO(d) rotation,
taking this basis to some arbitrary fixed orthonormal
basis x'~'. It is defined, clearly, only up to an arbitrary
rotation belonging to the subgroup SO(2) X SO(d —2), so
that any action depending on 0 must have a correspond-
ing gauge symmetry. In our case this symmetry can be
ensured covariantly in a way which we will not describe
here; instead, let us accept as a definition that 0 must
satisfy the additional constraints

+O(x'), (6)

where the fields cp &
and cp, parametrize the

SO(2) XSO(d —2) transformation and depend on x via
the equations

where in the last term an integration over an arbitrary
three-dimensional manifold with a boundary coinciding
with the Riemann surface X is understood and 0, now
denotes an arbitrary extension of the field (3) on this rnan-
ifold. Let me stress once more that the constraints (2)
which have to be added to the action arise as a result of
the gauge fixing in the SO(2) X SO(d —2)-invariant
theory.

Once guessed from the simple observation described
above, the action (5) is very natural. The matrix SI as an
object describing the embedding was used in Ref. [22],
where, following an idea by Polyakov [23] and Dotsenko
[23], a possible description of the three-dimensional Ising
model in terms of a fermionic string was presented. In
the subsequent works [24] and [25], a Wess-Zumino term
of the type present in (5) arose as a result of integration
over the fermionic variables in the induced Dirac action,
describing a gauge-fixed Green-Schwarz superstring
theory [26], and has been conjectured to be connected to
the density of Hopf's topological invariant [24]. Ideas
similar in spirit are developed in detail in Ref. [27].

To determine a scale dependence of the couplings in
the one-loop approximation, it is sufhcient to keep in the
action the terms up to the fourth order in the fields.
Choosing a ghost-free gauge x"=

[ g', g, x ']
(i =3, . . . , d), one finds (we put below yo=0)
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With all this in mind, let us write down the simplest pos-
sible action depending on 0, namely, that of the non-
linear o. model:

4a(P=&h h PtrB II Bpfl (4)

Substituting for 6 the expansion (3) and using (2), one
can show easily that when rewritten in terms of the field
x the action (4) coincides with (1).

This fact is just a manifestation of the analogy between
(1) and a nonlinear cr model noted by Polyakov in [2]. It
suggests generalizing (1) by adding a Wess-Zumino term
to it. Namely, consider the action

S=l,&h+ v'h h pV.a XV@&x
2uo

+ tr(A 'd Q)',
24~

~These singular configurations can be excluded by allowing for

a nonconstant reference frame x' '.

B y,, =
—,'[x' 0 x' —x' ~) x' ] .

Now it is quite straightforward to split the field x' into
slow (~p~ & A) and fast (A & ~p~ & A) components and per-
form a Gaussian integration over the fast ones. The non-
locality present in (7) gets canceled in a final expression,
and one obtains, with logarithmic accuracy, the following
renormalization of eo..

d neo1+ ln
eo 4 8

There is also a generation of the surface energy

Jdg

From (8) we read o(f a f3 function:

dao neo
P(ao) = — 1+

4~ 8~

The theory has an infrared-stable fixed point at
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d, =22" '+0 " '
n n

(10)

The exact formula for dF is, most probably,

ao = —8rrln (n (0). To get an idea of the phase de-
scribed by o.o, consider an expectation value of an area of
the surface of linear length scale R. Calculation gives

GF
( A (R) ) =R, with the fractal dimension

Let us note finally that, as discussed by Polyakov in [2],
the change of the usual coefficient in the P function of the
cr model, d —2, into d /2 in (9) is due to the restriction of
the field 0, by the integrability condition stating that 0
must be obtainable from a surface. Formula (9) shows
that imposing such a restriction does not spoil the confor-
mal invariance of the Wess-Zumino-Novikov-Wit ten
model, so that the model [Eqs. (5) and (2)] can be regard-
ed as some reduction of it.

GF =2 1+

A more detailed investigation of the phase corresponding
to o.o will be presented elsewhere.

The author benefited, on different stages of this work,
from conversations with C. Bachas, A. Belavin, An. Ka-
valov, A. Marshakov, A. Mironov, R. Mkrtchyan, J.
Petersen, J. Polchinski, and A. Sedrakyan.
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