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Taub numbers are studied on asymptotically Bat backgrounds with Killing symmetries. When the
field equations and the linearized field equations for a metric perturbation are solved, such perturbed
space-times admit zeroth-, first-, and second-order Taub numbers. Zeroth-order Taub numbers are Ko-
mar constants of the background. For each Killing symmetry of the background, first-order Taub num-
bers give the contribution of the perturbation to the associated Komar constant, such as the perturbing
mass. Second-order Taub numbers give the rate of gravitational radiative loss of the background con-
served quantity.

PACS number(s): 04.20.Me, 04.30.+x

I. INTRODUCTION

In stationary asymptotically Hat space-times, the sym-
metry generated by the timelike Killing vector k" has an
associated conserved integral for the mass of the source:

f U;t'.PS. , (1)

where Ug~ = (
—g )

' 2V( k ~ is the Komar [1] superpo-
tential, and dS is the three-volume tensor density of the
spacelike or null hypersurface o.. For asymptotically Aat
space-times defined by the properties of null infinity,
another type of conserved integral, arising from a gen-
eralization of Green's identity, has been shown [2] to
yield asymptotic in variants which are the Newman-
Penrose constants [3,4]. The generalization of Green's
identity is derived from the field equations and the linear-
ized field equations for a metric perturbation. Addition-
ally, for asymptotically Oat space-times, a modification of
the Komar superpotential, the Winicour-Tamburino [5]
superpotential which uses the generators of asymptotic
symmetries, yields the Bondi [6] mass when integrated
over a cross section of null infinity. The Bondi mass is an
asymptotic invariant which is not generally conserved.

The purpose of this work is to explore a method for
calculating asymptotic invariants in stationary asymptot-
ically fIat space-times: the method of Taub numbers at
future null infinity. This method blends elements from
the concepts described above. It uses a metric perturba-
tion and Killing symmetries of the background. We will
use this method to calculate the background mass and
angular momentum, perturbing mass and angular
momentum, and mass loss. Taub numbers ~„are defined
in Sec. II. Since we are mainly concerned here with solu-
tions of two sets of equations, the background field equa-
tions, and the linearized field equations (i.e., the first
functional derivative of the background field equations),
only three Taub numbers ~p, ~&, and ~2 are defined. Su-
perpotentials for the Taub numbers are developed and
discussed in Sec. III. Results for simple perturbations of
well-known solutions (Schwarzschild and Kerr) are given
by ~p and ~, in Sec. IV. 7 p has the same value as the Ko-
mar constant for each Killing vector on the background

II. TAUB NUMBERS

Taub numbers [10,11] are defined in the context of a
space-time (M, g„,) which admits a Killing vector k and
a metric perturbation. Consider a space-time with
sources in an interior region which is bounded by vacu-
um. In the exterior vacuum region, we examine a curve
of solutions g. .. to the vacuum field equations

G~ (g)=0,
of the form

gp~ g +A.gp~+ ~
A, gp~+ (3)

where g„with n overdots denotes [(d "/dA, ")g„(A,)]i
One obtains a sequence of perturbation equations from
Eq. (2) by expanding G„(g ) in powers of A. :

G„(g ) =0,
p

G„(g,g)=0,
1

(4)

space-time. ~, is the contribution the perturbation makes
to each Komar constant. In Sec. V, the Geroch-
Xanthopoulos [7] theorem is given wherein any solution
h„of the linearized field equations preserves the asymp-
totic simplicity of the vacuum background. ~2 is evalu-
ated in Sec. VI for nonstationary axial perturbations of
Schwarzschild [8]. Working in the conformal manifold
which contains future null infinity, Habisohn [9] has
proved that ~2 gives the Bondi mass loss rate due to h„.
Here ~2 is evaluated in the physical space-time and
Habisohn's interpretation verified. The interpretation of
~& is confirmed by additional calculations in Sec. VII.

To make the body of this work more readable and
reasonably self-contained, we have collected all the
lengthy perturbation equations in Appendix A, the de-
tails of the Kerr and Schwarzschild metrics in Appendix
B, and explicit perturbations of Schwarzschild in Appen-
dix C. The sign conventions used here are
2A .

~ &~
= A„R", &, R„=R „, and signature
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G„(g,g, g )+G„(g,g ) =0, Q P.,= —25, kP)+2(5, ( gP))*, (13)

6„(g g g g)+36„(g g g)+6 (g g')=03" (7)

etc. , where G„represents the nth functional derivative of
n

G„evaluated at g„. When the first j perturbation equa-
tions above are satisfied there are j+1 divergence-free
terms:

where k = ,'Q —Pp, P.
=

—,'*Q P.p. When Q P satisfies (12)
and (13) then k and P are Killing vector fields in vacu-
um, e is the dual operator, and P~ p)=P p=0. Gold-
berg [17] has generalized Penrose's linearized analysis to
curved space. Starting (essentially) with

GP& gR iN:P&
ap ap

V 6"'(g,g, . . . , g)=0, n =0, 1, ...j,j~2 . (8) =R" p+25 )
"R pj+2G"[ 5 pj,

(Here, we will generally consider solutions of
G =G =0, which implies that V G" =V G"o" 0 1

=V„G" =0.) G" is of nth order in g, and both V and
n

semicolons denote covariant derivatives with respect to
the unperturbed g„„. Field equations (4) establish the un-
perturbed vacuum region and (5) are the linearized field
equations on a curved background for the metric pertur-
bation h„where, henceforth, h„=g„and h =h„g" .
When the first two perturbation equations are satisfied, a
Killing vector k" of the background space-time and (8)
yield three conserved vector densities:

(9)

where

t„=(—g)' G pkP, n =0, 1,2 . (10)

III. SUP ERPOTENTIAI. S

Penrose, in his treatment of conserved quantities in
linearized general relativity [15,16], made use of the Kil-
ling potential Q P, a real antisymmetric tensor field, satis-
fying

P" P=2(V' Q 'P —V' QP' +g QP . )=0 . (12)

Equivalently,

The t„are nonzero because of the presence of sources in
the interior region.

An nth-order Taub number is defined as [12]

r„=—2f t„dS = —2J (
—g)'/ G PkpdS, (11)

CT 0 n

where a is an initial data surface (null or spacelike). ro is
well understood and here we are concerned with ~, and 72
at future null infinity.

Taub numbers have been studied in the context of
linearization stability, where there are global results for
two cases. If the background space-time describes an iso-
lated asymptotically Aat system, as is done here, then
linearization stability holds in general [13]. If the back-
ground describes a closed cosmology foliated by compact
Cauchy surfaces without boundary then the Einstein field
equations are linearization stable about (M, g p) if and
only if the background has no Killing vector fields. If the
closed cosmology has a Killing symmetry then Taub
numbers which vanish provide constraints [14] that ex-
clude any spurious solutions of the linearized Einstein
equations.

where G" P.p=0, Goldberg obtains

—,'V (G" pQ P)= ,'(R" —p+5"R„p 5"pR—)P' P

+2G" k (14)

Maintaining k and Q p as objects on the background
which satisfy P P=O on the background, Goldberg's
equation (14) has perturbation values

g )1/2V Qv, v QaP ( g )1/2' ka (15)
n

The left-hand side of (15) contains —,'( —g)' 6"' pQ
p as

n

a superpotential for the Taub numbers. It has been
shown [14,18] that the Taub numbers are perturbation-
gauge invariant and are zero when cr in Eq. (11) is a com-
pact spacelike hypersurface without boundary. The su-
perpotential in Eq. (15) makes the zero result manifest
[only heuristically, since the closed three-form
( —g )' 6 pk pdS~ is integrated over a three-surface

n

without boundary]. Direct calculation yields

( g )1/26~ kP —
( g )1/2V k [a;P) ( g )1/2 & kaR

p p (16)

and

ta = ——'Uap ta = Uap
0 2 0 ;P ~ 1 1 ;P ~

where Uop is the Komar superpotential and

U =( — )' (k h '"—k h' +—'hkg P 2

+k"h( 'P)+k"'( hP) ) .
p p

(18)

(19)

It is clear from Eqs. (4)—(7) why only ro and r, have sim-

ple forms for their superpotentials. Suppose one writes
U2p with a finite number of terms, quadratic in h, of the
form given in Eq. (19) for U, P. Then Eq. (6) implies
U2p. p would have to yield

G p(h, h )kP= —6 p(g)kP+f(h )G p(h )kP
2 1

after vacuum is imposed for the background. h satisfies
G p(h ) =0, but g is known only in principle. Presumably

1

one could obtain it by inverting (6) and expressing g as a
Green's function with source G p(h, h ). Thus, a simple

2

(
—g)' '6 kP=V U P+( —g)' 'kP h~ R —hR~-

p p & I op op
(17)

Thus, the zeroth- and first-order numbers have simpler
potentials in vacuum:
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form of the U, ~ kind, for U„~ n ) 1, is not possible. The
superpotential in Eq. (15) can be useful in calculation if a
general solution for the Killing potential Q ~, indepen-
dent of symmetry gauge freedom, can be found.

VI. RADIATIVE RESULTS

The nonstationary axial perturbations of
Schwarzschild constructed by Vishveshwara [8] and
given in Appendix C will be used to evaluate rz at J+.
We start with

IV. FIRST RESULTS
r2(k„)= f T(r, 8)dr d8dp,

JV 2
(20)

(A) We evaluate the zeroth Taub number for the vacu-
um Schwarzschild metric,

ds =(1—2m Ir)du +2dudr rdQ~—,

given in a standard outgoing nu11 coordinate system. It is
assumed that a source is contained in a sphere of radius)2m interior to the vacuum region. The timelike Killing
vector is k„B =8„. Integrate 8 t 0

=0 over a four-
dimensional region bounded by two three-surfaces which
meet at future null infinity J+. The first surface is a
u =const surface in the vacuum region which smoothly
becomes spacelike in the interior. The second surface, ly-
ing to the future of the first, is spacelike in the interior
and exterior, becoming asymptotically null as it joins the
first surface in the same cut of J+. Gauss's theorem casts
the integration onto the bounding three-surfaces. The 70
superpotential Uo~ (the Komar superpotential) gives rise
to an integral [19]over an 5 cross section of J+ with re-
sult ro(k„)= 8vrm.

(B) The zeroth Taub number for the vacuum Kerr solu-
tion, given in Eq. (B3), yields the angular momentum re-
sult ro(k ) = —16m.ma.

(C) The first-order Taub number is evaluated for
Schwarzschild viewed as a perturbation of Minkowski
space-time with h„=—(2m lr)l„l, where t„dx"=du
The superpotential U, ~ yields r, ( k„)= —16am.

T(r 8)=( —g)' G k~l
2

where k~= n ~+ —,'(1 —2m Ir )1~=5„~. The four-
dimensional region containing the Schwarzschild source
is bounded by two three-surfaces which meet at J'+. As
in the calculation of ro(k„) above, the first surface is a
u =const surface JV (with du =1 dx ) in the vacuum re-
gion which smoothly becomes spacelike in the interior.
The second surface, lying to the future of the first, is
spacelike in the interior and exterior, becoming asymp-
totically null as it joins the first surface in the same cut of
J'+. lt is a lengthy exercise to evaluate T(r, 8) since there

2

is no simple superpotential for ~2. From the relatively
simple asymptotic form of h„

+ 8
n ~ 2&2e '"'"+ "' P(co—s8) 7

it is clear that r2 at J+ depends on the spin coefficients of
the Schwarzschild tetrad and their derivatives, and
coescients which arise from products of associated
Legendre functions such as P &P &.. It emerges that
T(r, 8) has three kinds of terms: (1) terms of O(r ) and
2

higher which ~0 as r —+ ~', (2) terms which integrate to
zero on the sphere at any r; (3) terms of the form

a.~ + f=(fl ). =—(2fl( np)). lp .

V. NULL INFINITY

Since this work studies Taub numbers at t+, wiH all
perturbation solutions h„of the linearized field equa-
tions fall off fast enough to maintain J ? Here we state
the Geroch-Xanthopoulos [7] (GX) result wherein J+ is
preserved. Before presenting the GX theorem, asymptot-
ic simplicity is defined.

A space-time (M, g ) is asymptotically simple [20] if
there exists a space (M,g„,), M =M U 2, where M is em-

bedded in M with boundary J such that (1) there is a
smooth scalar field 0 on M with conformal map
g„=A g„, (2) on boundary J, 0=0, n„=V„OWO, and

n„ is null, and (3) every maximally extended null geodesic
in M has two end points on 2. The boundary 7 consists
of two disjoint parts J+ (future null infinity) and J (past
null infinity).

GX theorem. In an asymptotically simple space-time,
when g„solves G„=O and h„solves G =0, asymptot-

0 1

ic simplicity is preserved and h„satisfies three condi-
tions on J (here we only need J+). For h =0 h„
smoothly extending from M to M, on J+: (1) h„~&+ =0;
(2) 0 'h~ n'~&+=0; (3) fI h„n~n "~&+=0.

where

2

~~ lim 4 dQ,
r ~ 4~/

(21)

e
—ik(u+2r) y & l(8) +g1 1

r

For the perturbation given in (C2) with l ) 1 and associat-
ed Legendre functions Pi, Eq. (21) has the value

1 fPi (cos8)Pi (cos8)d Q .
4n

(22)

The results of Eqs. (20) and (21) agree and, since (21) is
the Bondi mass loss rate [22] at J+ due to h „
Habisohn s interpretation of r~(k„) is verified. Note that
the GX theorem, in which the unphysical h„peels on

, implies that the perturbed Newman-Penrose Weyl
tensor components P„(n =0, . . . , 4) peel in the physical

1

space-time.

It is terms of the third kind which yield ~2 since they re-
sult in [19] g &Q

—g )
' f d 8 d @ at J+. In order to

check this calculation and verify the interpretation of
r2(k„) we compute
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VII. FURTHER RESULTS

From Eqs. (16) and (17) it is clear that r, is a perturba-
tion of the Komar constants. It follows that ~, represents
the additional energy and angular momentum contribut-
ed by the perturbation. To validate our interpretation of
r), we evaluate r)(k„) and ri(k ) for a Kerr-type station-
ary perturbation of Schwarzschild. Use of h„given in
(C5) and superpotential (19) results in r)(k„)=0 and
r)(k ) = —16rrma. Since ro(k ) is zero for
Schwarzschild, the perturbation adds precisely the
"Kerr" amount of angular momentum.

is given by (V —V )Ap=Q p(A, )A with expansion

Q" p(A)=AQ p+ —,)X Q p+ (Al)

The functional derivatives of the connection tensor are
given recursively by

where Q p= —,'(h .p+h p.
—h p' ). The Riemann ten-

sor for g is given by

R" p(g)=R" p(g) —2Q"
(

.p)0

(A2)

VIII. CONCLUSION Q" p= nh—" Q p, n=2, 3, . . . ,
n n —1

(A3)

We have used a well known time-dependent perturba-
tion h„of Schwarzschild to evaluate r2(k„) and verify
its value as the Bondi mass loss due to h„,. This was first
proved by Habisohn working directly on the conformal
boundary J'+. Here we work in the physical space-time.
Further understanding of the purely gravitational nature
of ~2 comes from a time-dependent perturbation of
Schwarzschild of the form g „=g„',"+2[M(u )/r]l„l„.
We find G„=—(dM/du)r I„l, and, though this is a

1

nonvacuum result, it is true that V G",=0 [only true for
1

f(u )r "when n =2]. r)(k„) is defined and has the value
~1=—16aM. The usual interpretation of G„ is of energy

1

loss to 2+ by means of "geometrical optics" photons.
Here we find G„=—8M r I„l, where V"G" WO.2" 2

Thus, ~2 is undefined and, while one can interpret this
kind of perturbation as resulting in energy loss to 2+, the
mechanism is nongravitational.

ri(k„) clearly provides a measure of the energy contri-
bution of the perturbation and r)(k ) a similar measure
of the angular momentum contribution. ~, can be used to
provide an estimate of the energy and angular momen-
tum contributions of any candidate h„which satisfies
the GX conditions (before solving G„=O). A candidate

1

h„cannot cause gravitational radiation if G is not
2

divergence free.
A forthcoming work will provide a simpler method of

computing ~2 and will examine other interesting pertur-
bations. The formulation of Taub numbers at 2+ will be
extended to the open Friedmann cosmology. (This back-
ground has dust rather than vacuum and is not asyrnptot-
ically simple, but has a well defined J .)
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2n Q—
„( V)h, n=2, 3, . . . ,

n —1

(A4)

where Rp„=—2Qp„( . ). The functional derivatives of

the Ricci and Einstein tensors are

G„„=R„,'h„(g P—R—p) ,'g„(h P—R—p)

R.p»
1

G„,=R„, h„,(h pR—p) h„(g pR —p)

(A5)

—g„(h PR p)
—

—,'g„„(g PR p),

R„=—,'(E3h„, +h.„,—h„. —h ~.„), (A7)

R„=h (h „p+h~ „p h. p „, h. „~
—~p)—. .aP

+h 'P(h„p. —h„.p)

+(h P. —
—,'h' P)(hp„. +hp . —h„.p)

1 a(8—
—,h p.„h

When R„=O one can obtain the compact expression
0

G„=,'V Vp[y„~ P+y—Pg„,—2y („5P,)],
1

(A8)

(A9)

where y„=h„——,'hg„. For G„, with R„=R„=O,2" 0 1

there is the longer expression

G„„=h [2h („. )p
—h p.„—h„. p]

a/3

+ Q [2h p(„. )
—h„.p]

—2h„,ph

—
—,'h~p. „h .~—,g„, Q Qp

—
—,'h ' h~p. ~

where P p= Q p, and functional derivatives of the

Ricci tensor can be obtained from the recursion relation
[21]

R„= nh p
—R „+2n Q

n n —1 n —1

APPENDIX A: PERTURBATION EQUATIONS

For derivative operators V and V' obeying
V g„(k)=V g„=O, the connection tensor field Q „(k)

+ —,'h *~h p.

where QP=QP ~" =h P. ——'h' P.
p 'a

(A10)
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APPENDIX B: THE KERR
AND SCH%'ARZSCHILD SOLUTIONS

dinates (t,x,y, z):
2 dt2 dz 2 dy2 dz2

—sin 8[X+(2—%)a sin 8]dy (B1)

(1) The Kerr metric in Boyer-Lindquist coordinates
(t, r, O, g) is given by

ds ='Iidt +(1—%)2a sin Odt dq (X—/b, )dr X—dO

All a

r4+a'z'a

r, (xdx +ydy ) +a (ydx —xdy )

r +aa
'2

+'d'+dt
ra

(B7)

where b, =r 2mr+—a, X=r +a cos 8, 4=1 2mr—/
X. Perturbations of the Kerr metric are discussed by
Teukolsky [22) and its stability is treated by Press and
Teukolsky [23]. Perturbations viewed at J+ are de-
scribed more conveniently in Kerr-Newman coordinates
(u, r, O, q&) where the u =const spacelike surfaces are
asymptotically null:

du =dt (r +a—)6 'dr, d(p=dy ab, 'dr —(B2)

relates Boyer-Lindquist and outgoing Kerr-Newman
coordinates;

where r, (x +y—+z a)r, —az =—0 determines r,
in terms ofx,y, z up to a sign,

gp =g„—2nN„N (B8)

where g" N„N =q" N„N =0 .

In the Kerr-Schild coordinate frame the null vector N„
has components

N~ =(No N& N2, N3 )

No=r, /(r, +a z ), N, =NO(r, x+ay)/(r, +a ), (B9)

ds ='Pdu +2du dr+(1 —4)2a sin Odu dp
—2a sin28dr dy —Xd02

—sin 8[2+(2—0')a sin 8]dq

The two principal null vectors are

(B3)

N2 =No(r, y —ax )/(r, +a ), N3=Noz/r, .

(2) The Schwarzschild metric in outgoing null coordi-
nates (u, r, O, q&) is given by

ds =(1—2m /r)du +2du dr r(dO—+sin Ody~) .

(B10)

and

a.

(r +a )d„——,'bB„+aB„.
(B4)

A Newman-Penrose tetrad for (B10) is

Ia ga ~ g u
r ~ a a

n =5 „——,'(1 —2m/r)5 „,
A Newman-Penrose tetrad (I,n, m, m ) for metric
(B3) is given by

n =5 "+—,'(1 —2m/r)5~",
(B1 1)

I a $a
r

n ——5 —-'0 6

la slI18 (5z 5z }+ 1 5z + t

v'2R " " &2R

(B5) 2r slnO

(5 +i sin85 P),
2

with nonzero spin coe%cients

p = —1/R,
a = —cotO/(2+2R ),
P=cot8/( 2&2R ),
p=( —1+2mr/R )/(2R ),
y =m /(2R },
v=ima sinO/(&2XR ) .

(B6)

The only nonzero Weyl tensor component is
$2= —m /R . To view the Kerr solution as a perturba-
tion of Oat space we give the metric in Kerr-Schild coor-

where R =r —ia coso. The coordinate r is an affine pa-
rameter along the outgoing null geodesic I . The
nonzero spin coefficients for tetrad (B5) are

p = —1/r,
a = —cotO/(2&2r ),
P=cotO/(2&2r ),
p = —( 1 —2m /r ) /( 2r ),
y=m/(2r ) .

(B12}

APPENDIX C: SCHWARZSCHILD PERTURBATIONS

where, using the coordinates and tetrad of Eqs. (B10) and
(Bl 1),

We follow Vishveshwara's [8] treatment of axial (odd-
parity} Schwarzschild perturbations:

g —g +Ah

h„=(1&y,+l„y )[Ho H&(1 —2m/r)]/(2&2r sin—O)+(n„y +n y„)[HO(1—2m/r) '+H&]/(&2r sinO) .
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Here y„=i(m„—m„) is a real spacelike vector with
dtp=y„dx "/(&2r sin8). The perturbation functions Ho
and H, are given by

V,s.=(1 2m—/r )[l(l+1)r —6mr ] .

As r ~ ~, and with I ) 1, both Ho and H
&

approach

H, =h, (r)e '"'" " 'sin8 Pt(cos8), a=0, 1,a
(C2)

a
re '"'"+ "'sin8 P (cos8) .

oo
(C4)

ho(r) =(i /k )d(rQ )/dr

h i(r ) =(1—2m /r ) '(rQ ),
r*=r+2m ln(r/2m —1) .

(C3)

where stability requires the frequency k to be real, and P&

is the Legendre polynomial with angular momentum I:
A Kerr-type stationary Schwarzschild perturbation can
be obtained from Vishveshwara's perturbation (Cl) with
k=0 and l =1, where ho=co/r and h, =0. We choose
co=2ma to obtain the Kerr angular momentum. The
Schwarzschild metric (B10) is perturbed by [24]

h„,=&2mar sin8I ~~ ~

For l ) 1, Q satisfies the Sturm-Liouville-type equation

d Q/dr' +(k —V,s)Q=0,

+2t 2mar (1—2m /r ) 'sin8n ~~ ~,

where y is given in (Cl).

(C5)

[1]A. Komar, Phys. Rev. 113,934 (1959).
[2] E. Glass and J. Goldberg, J. Math. Phys. 11, 3400 (1970).
[3] E. T. Newman and R. Penrose, Phys. Rev. Lett. 15, 231

(1965).
[4] E. T. Newman and R. Penrose, Proc. R. Soc. London

A305, 175 (1968).
[5] L. Tamburino and J. Winicour, Phys. Rev. 150, 1039

(1966).
[6] H. Bondi, M. van der Berg, and A. Metzner, Proc. R. Soc.

London A269, 21 (1962).
[7] R. Geroch and B. C. Xanthopoulos, J. Math. Phys. 19,

714 (1978).
[8] C. V. Vishveshwara, Phys. Rev. D 1, 2879 (1970).
[9] C. X. Habisohn, J. Math. Phys. 27, 2758 (1986).

[10]A. Taub, J. Math. Phys. 2, 787 (1961).
[11]A. Taub, in Relatiuistic Fluid Dynamics, edited by C. Cat-

taneo, Proceedings of the Lectures at the Centro Interna-
zionale Matematico Estivo, Bressanone, 1970 (Edizioni
Cremonese, Rome, 1971).

[12] For clarity of notation an additional label for r„, which
would distinguish among different Killing vectors, is
suppressed. A multiplier —2 is included so that ~o has the
same value as the Komar constant. Higher-order Taub
numbers can be defined but are less useful. For instance,
V„[G "(g,g, g )+3G""(g,g )]=0 since V„G""(g')=0

3 2 1

for any symmetric g. The vector density
t3 =( —g)' [G s+3G P]ks is thus conserved Calculat-.

3 2

ing w3 as a three-surface integral of t3 would require g

which can be found as a Green's function.
[13]D. Brill, O. Reula, and B. Schmidt, J. Math. Phys. 28,

1844 (1987).
[14]V. Moncrief, J. Math. Phys. 17, 1893 (1976).
[15]R. Penrose and W. Rindler, Spinors and Space time (Ca-m-

bridge University Press, London, 1986), Vol. 2.
[16]Linearized general relativity or "linearized gravity" has

the conventional meaning of linerization about a Aat back-
ground.

[17]J. N. Goldberg, Phys. Rev. D 41, 410 (1990).
[18]J. Arms and I. Anderson, Ann. Phys. (N.Y.) 167, 354

(1986).
[19]We use the covariant Stokes theorem in the form

f U P Pl d'x = t.t)s~U sl
~

n&jd x, where U P is an an-

tisymmetric tensor density, JV is an x =const three-
surface with I =x and n&=x' &. The boundary of JV is

an (x,x') two-surface.
[20] S. W. Hawking and G. F. R. Ellis, The Large Scale Struc

ture of Space time (Cambrid-ge University Press, London,
1973), p. 221.

[21] M. Naber, "The Xanthopoulos Theorem, " University of
Windsor report, 1992 (unpublished).

[22] S. A. Teukolsky, Astrophys. J. 185, 635 (1973).
[23] W. H. Press and S. A. Teukolsky, Astrophys. J. 185, 649

(1973).
[24] With the choice co =2ma, Vishveshwara's perturbation is

identical with one obtained from the Kerr metric (B3) by
setting a =0. The remaining terms in (B3) of order a
yield h


