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Full QCD hadron spectroscopy with two flavors of dynamical Kogut-Susskind quarks on the lattice
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A full lattice QCD simulation is carried out with two flavors of Kogut-Susskind staggered dynamical
quarks using lattices of a size ranging from 4 to 20 at the gauge coupling constant P=6/ g'= 57 with
the quark mass of m~ =0.01 and 0.02 in lattice units. Primary emphasis is given to the study of finite-
lattice-size effects in the hadron mass spectrum. It is found that hadron masses suffer from substantial
finite-size effects even for a lattice size of the order of 2 fm, showing the importance of a quantitative
control of the effect for a comparison with the experimental spectrum at the accuracy of a few percent
level. The finite-size correction is found to be well described by a power law in the lattice size, rather
than an exponential form predicted by analytic formulas derived for point particles. It is suggested that
the effect arises from the size of hadrons squeezed on a finite lattice. Finite-size effects on the realization
of chiral symmetry are also studied. The behavior of the pion mass, the chiral condensate, and the mass
splitting between parity partners all support a spontaneous breakdown of chiral symmetry for a large lat-
tice size. Prediction from chiral Lagrangians on the size dependence of the chiral condensate does not
describe the simulation results well, however, at least for the quark mass employed for the present study.
Calculation of the pion decay constant with various relations derived from current algebra and partial
conservation of axial-vector current gives f =94(8)—105(9) MeV, with a method-dependent uncertainty
contained within 10%. An examination is also made of the question of the dependence of hadron masses
on hadron operators. Meson masses are basically operator independent, while baryon masses exhibit
some operator dependence, necessitating further studies to resolve systematic uncertainties of this origin
in the determination of the hadron mass spectrum.

PACS number(s): 12.38.Gc, 11.15.Ha

I. INTRODUCTION

The ultimate goal of numerical studies of QCD on a
lattice is a quantitative understanding of the dynamics of
strong interactions from first principles. Calculation of
the hadron mass spectrum is a basic step toward this
goal ~ Indeed, agreement of the calculated spectrum with
experiment will provide an important verification of the
correctness of QCD at low energies where nonperturba-
tive dynamics dominate. At the same time, these calcula-
tions allow a determination of the physical scale which is
needed to evaluate other physical quantities such as the
transition temperature to the quark-gluon plasma phase
and various weak matrix elements of phenomenological
importance. For these reasons a large number of spec-
trum calculations have been attempted over the past de-
cade, including full quark loop effects [1—7].

There are two sources of systematic errors inherent in
lattice calculations of the hadron mass spectrum: the er-
ror arising from a finite lattice spacing and that due to a
finite extent of the lattice. The importance has been
widely realized for the first, and a lot of effort has been
made toward a yet weaker coupling, examining the scal-
ing behavior needed to take the continuum limit. The
question of finite-size effect is also important since an ex-
amination of finite lattice spacing effect necessarily re-
quires precise hadron mass data valid for infinite spatial
volume. The recent quenched simulations [8—11] made
some investigation of this problem. Typically employing
two sets of lattice sizes, these simulations did not report a
clear size-dependent shift in hadron masses for a physical
lattice size of order 2 fm. For full QCD including
dynamical quarks we started a systematic study of finite-
size effects a few years ago. After the first report of the
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work [12] the MILC Collaboration undertook a similar
study at a larger lattice spacing [13]. Since finite-size
effects should be more complex in the presence of dynam-
ical sea quarks than in the quenched approximation, a de-
tailed examination of the problem is an important step
before a full QCD calculation of the hadron mass spec-
trum with a realistic predictive power can be realized.

Finite-lattice-size effects on hadron masses arise from
various sources in QCD. The first source is whether the
physical size of the lattice is large enough to contain had-
rons, so that the hadron wave function is not artificially
distorted. For a lattice size much larger than the hadron
radius, we still expect finite-size effects arising from loops
of virtual pions which wind around the lattice in the spa-
tial direction [14,15]. An estimation using the general
formula derived for point particles [14] or chiral pertur-
bation theory [15] has been available, suggesting that this
effect gives rise to a mass shift of the form exp( —cm L )

with m the pion mass and L the spatial lattice size. The
estimated magnitude of the shift is small for hadrons, and
of the order of 1 —2% for a lattice size of L =2 fm, rapid-
ly diminishing for larger L.

There is yet another source of finite-size effects for
small spatial sizes. It is well known that a spontaneous
breakdown of symmetry does not occur at a finite
volume. We expect that chiral symmetry, spontaneously
broken for infinite volume, becomes restored as the lattice
size diminishes [16,17]. This restoration is connected
with a change of the nature of fluctuations of quark and
gluon fields, which in turn affects hadron masses in a
significant way. In particular one expects the pion to be-
come heavier since its mass is no longer constrained by
the Nambu-Goldstone theorem in the absence of spon-
taneous breakdown. Hadron masses other than that of
the pion are also affected; the restoration of chiral sym-
metry causes a degeneracy of hadron masses of parity
partners.

We have carried out a hadron mass spectrum calcula-
tion with two fiavors of Kogut-Susskind (KS) staggered
dynamical quarks with the primary purpose of studying
finite-size effects. Our calculations have been made at the
inverse coupling constant f3= 6/g = 5 7using two .values
of the quark mass m =0.01 and 0.02 in lattice units and
employing lattices ranging from 4 to 20 . Generation of
gauge configurations was made by the hybrid R algo-
rithm [18]. Hadron propagators were calculated using
the hadron operators constructed in Refs. [19,20] using
the technique of wall sources [21,10]. A brief description
of our chief findings has already been published [12,22].
We have since augmented the statistics for a 20 lattice
and we report in this article the full details of our simula-
tions and results of analyses.

This paper is organized as follows. In Sec. II we de-
scribe the details of our simulation, including the choice
of parameters for the hybrid R fermion algorithm, discus-
sions of systematic errors of the algorithm and the ques-
tion of autocorrelation among generated configurations.
The list of runs we made and the average values of Wil-
son loops and the chiral order parameter are given. A
brief description of the construction of hadron operators
for Kogut-Susskind fermions and wall sources is also

made. In Sec. III we present our data for hadron masses,
following a description of the fitting procedure of hadron
propagators and the method of error analyses. The
dependence of masses on hadron operators is discussed,
and the physical scale of the lattice spacing and the quark
mass are examined. In Sec. IV we make a detailed study
of finite-size effects for hadron masses and mass ratios.
We present our results related to chiral symmetry in Sec.
V. These include size effects in the chiral order parame-
ter, the PCAC (partial conservation of axial-vector
current) relation for the pion mass, and the pion decay
constant. Our conclusions are summarized in Sec. VI.

II. FORMULATION AND METHOD
OF MEASUREMENTS

A. Partition function

We study lattice QCD with two fiavors of light dynam-
ical quarks using the Kogut-Susskind fermion formalism.
The Kogut-Susskind quark action is defined by

S = g g(n)D(U)„„g(n')
n, n'

with

(2.1)

where m is the quark mass in lattice units,
tl i + 112 + ' ' ' + 7l

r)„(n)=(—1) is the staggered sign factor,
and U„(n) is the SU(3) link variable. Since this action is
expected to describe four degenerate flavors of quarks in
the continuum limit, we employ the conventional pro-
cedure of taking the square root of the quark determinant
in the partition function to reduce the effective number of
flavors to 2. We also use the well-known property of
D( U) that the product D ( U)D( U) splits into two sub-
matrices for even and odd sites. The system we study is
thus defined by the partition function

Z= f +dU„(n)e ' det[D (U)D(U)] ~, (2.3)

where the determinant is taken only over the subspace of
even sites and the number of flavors N& is set equal to 2.
For the gauge action Sg we employ the single plaquette
form given by

S =P g tr[U„(n)U (n+p)U„(n +v)U, (n)], (2.4)
n, p, v

where /3=6/g is the inverse gauge coupling constant
squared.

B. Dynamical fermion algorithm and systematic errors

We employ the hybrid R algorithm [18] for generating
an ensemble of gauge configurations including the effects
of dynamical quarks. Our implementation of the algo-
rithm follows that of Ref. [18]. The normalization of the

D( U)„„.=m 5„„+—,
' g g„(n)[U„(n)5„„.

P

—Ut (n —p)5„„.+„],
(2.2)
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discretization time step 6~ for molecular dynamics evolu-
tion is the same as in this reference, and integer and half-
odd integer time steps are assigned to the link variables
and the conjugate momenta, respectively, in the leapfrog
integration of the molecular dynamics equations.

We use the conjugate gradient algorithm to invert the
quark matrix needed in the molecular dynamics evolu-
tion. The equation to be solved is given by

D (U)D(U)x =P,D "(U')g, (2.5)

where x is defined only on even sites, P, is the projection
onto even sites, g is a Gaussian random vector normal-
ized as P g„.=5' 5„„,with a and b the color indices, and
U is the link variable at the time Nf5r—/8 relative to
that of U. To specify the stopping condition of the conju-
gate gradient iteration we define

iiD ( U)D( U)x P, D —
( U')pi[r:—

3V
(2.6)

with V the space-time lattice volume. The denominator
equals the average of the norm squared of' the source vec-
tor ~~P, D (U')g~ over the Gaussian random vector g for
zero quark mass.

The hybrid R algorithm suffers from systematic errors
of order 5H arising from a finite time-step size 5r as well
as from the choice of the stopping condition of the conju-
gate gradient iteration. For all of our runs we use
5~=0.01 for the quark mass I =0.01 and 5~=0.02 for
m =0.02 with the stopping condition r &10 for both
cases.

In order to examine whether our parameter choices are
sufhcient to avoid systematic errors several tests are car-
ried on a 20 lattice at mq =0.01 and P=5.7. We made a
run of length ~=200 with an increased step size
5r= 1/70-0. 01&2 starting from the configuration of the
run with 6~=0.01 at ~=500. The time histories of the

~ixi
~2x2
~3x3
~4x~
~sxs

0.01
10-4

0.577 272(96)
0.174 67( 13 )

0.040 993(72)
0.008 514(28)
0.001 618( 13)

1/70
10-4

0.577 247( 35 )
0.174 624(72)
0.040 994(42)
0.008 529( 30)
0.001 627( 14)

0.01
10-'

0.577 292(98)
0.174 67( 14)
0.040 997( 84)
0.008 480(42 )

0.001 622(26)

0.027 41(18) 0.026 94(20) 0.027 43(25)

1X1 Wilson loop and the chiral order parameter (gy}
(see Sec. II C below for our normalization and the
method of computation) for the two runs are compared in
Figs. 1(a) and 1(b), and their average values are given in
Table I. Analytical results predicting the sign and mag-
nitude of finite step size errors are not available. An

I 1 I I i 5 0 1 t 5 t I 1 I t I 5 I l

0.0

—2.0
r= 10 r= 10

I i « I i i i I « i I

200 400 600 800 1000

TABLE I. Comparison of Wilson loops and chiral order pa-
rameter for various choices of the step size 5~ and the conjugate
gradient stopping condition r in hybrid R runs on a 20 lattice at
P=5.7 and m =0.01. All three runs start from the same
configuration and averages are taken over the next 200 time
units with errors estimated by the jack-knife method with a bin
size of ~b;„=50.

(a) 5~ = 0.01, r & & 0
0.580

(b) 5~=1/70, r& lO (c) 5x = 0 01, r & 10
CG iteration

0.578
10

0.576
10

0.574
500 700 0 100 200 0

0.035 I I

I

600 700 0 100 100 200200 0

10

10

10

200 400 600 800 1000

FIG. I. Time histories of the 1 X 1 Wilson loop and chiral or-
der parameter for several choices of the step size 5~ and the
stopping condition r for the conjugate gradient inversion of the
quark operator on a 20 lattice at @=5.7 and m~=0. 01 with
two dynamical flavors of KS fermions. (a) 6~=0.01, r (10
(b) 5~=1/70, r &10, (c) 5~=0.01, r &10 . The runs in (b)
and (c) are started from the configuration of (a) at ~= 500.

CG iteration

FICx. 2. (a) Convergence of the solution vector x for
D "D( U)x =P,Dt( U')g as a function of the number of conjugate
gradient iterations on a 20 lattice at P=5.7 and m =0.01.
Ten elements randomly chosen are shown. (b) Norm
r= ~~D Dx —P,D g~~/&3V as a function of the number of con-
jugate gradient iterations.
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empirical study [23] shows, however, that the Wilson
loops decrease and the chiral order parameter increases
for a larger step size. Such deviations are not apparent in
the time histories in Fig. 1 and average values in Table I.
Indeed the average values of the two runs are consistent
[24].

In Fig. 2 we show several elements of the solution vec-
tor x of (2.5) and the normalized residual r defined by
(2.6) as a function of the number of conjugate gradient
iterations from a configuration of the run with 6~=0.01.
We observe a slight change for some elements beyond
r=10 used for our runs. The possible significance of
these changes is tested by a run of length ~=200 with
6~=0.01 using a more strict stopping condition r (10
which is started from the configuration of the run with
5&=0.01 at &=500. As is seen in Figs. 1(a) and 1(c) and
Table I we do not observe a clear deviation of average
values from the case of the stopping condition r ( 10

We conclude that our choice of the step size and the
stopping condition are probably sufhcient, at least at the
level of statistics we could generate with our present corn-
puter resources.

C. Runs

ties at P= 5.4, 5.5, and 5.6 for a preliminary study of lat-
tice spacing dependence of local observables.

In the course of runs we measured Wilson loops and
the chiral order parameter (gg) at every r= 1. Our nor-
malization of (gy) is given by

1 1 mq
(XX)=—tr —= ' tr

3 D 3
(2.7)

We used the noisy estimator tr(1/D D )

=el (D D) 'g/(3V/2) with g a Gaussian noise vector
(g'„g„.=5' 5„„.) for even sites, evaluating (D D)
with the conjugate gradient method with the stopping
condition ~~D Dx —g~~/&3 V ( 10

In Table II we summarize the length of runs and the
interval used for calculating averages in time units. Since
the publication of our brief report [22] we have added 300
time units for a 20 lattice at m =0.02 and 50 time units
at m =0.01. The choice of the averaging interval in

q
Table II will be discussed in Sec. II E. Hadron propaga-
tors are evaluated at every 5 time units except for the
runs on a 16 lattice at P=5.7 and those for P( 5.7. The
number of gauge configurations used for hadron propaga-
tor calculations are also listed in Table II.

We have generated ensembles of gauge configurations
at P=5.7 with the quark mass of m =0.01 and 0.02 for
various lattice sizes ranging from 4 to 20 . The periodic
boundary condition is taken in all directions for both
gauge and quark fields. For all of our runs we used the
step size of 6~=0.01 for m =0.01 and 5~=0.02 for
m =0.02 with one trajectory corresponding to ~=1, and
the stopping condition for inverting the fermion matrix is
taken to be r(10 . Most of our computing time was
devoted to the runs on a 20 lattice. Simulations for
smaller lattice sizes 4, 6, 8 X 16, 12, and 16 were made
for a finite-size study of hadron masses and chiral symme-
try. We did not pursue a long run on a 16 lattice be-
cause high statistics data on a 16 X32 lattice became
available from the Columbia group [4] in the course of
our studies. We also made simulations of limited statis-

D. Hadron propagators

1. Hadron operators

For Kogut-Susskind fermions the construction of had-
ron operators with definite spin-flavor quantum numbers
is complicated due to the embedding of Aavor and spin
degrees of freedom onto lattice sites. This problem was
studied in detail by Golterman and Smit some time ago
[19,20] (see also Ref. [25]), and we follow their method
and notations in this work.

Hadronic states at zero spatial momentum made out of
Kogut-Susskind quarks can be classified by the irreduc-
ible representations of the group of transformations that
commute with the transfer matrix T for Kogut-Susskind
fermions, the rest-frame group [19,20]. The irreducible
representations are labeled by their dimension r, parity

TABLE II. Length of runs in time units carried out for the present work. The first number denotes the number of time units dis-
carded for thermalization, and the second number represent time unit intervals used for taking averages. Number of configurations
used for hadron propagator calculations are given in parentheses.

44

64

84

8'X 16

104

124

164

204

5.7
0.01

100+900
100+900

200+800
(160)

300+700
(140)

250+250
{25)

250+750
(150)

0.02

200+800
(160)

300+700
(140)

200+300
(30)

200+800
(160)

5.6
0.01

100+900

100+200
(20)

100+200
(20)

0.02

100+ 100
(10)

5.5
0.01

100+900

100+200
(20)

100+ 100
(10)

0.02

100+ 100
(10)

5.4
0.01

100+900
100+900

100+ 1000

100+200
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o., under the space inversion and another parity 0., for
the transformation =4=S4T ' with S4 the unit shift in
the time direction and T=S4 the transfer matrix. The
parity P in the continuum is identified with the product
P =o.,o., Mesonic states fall into 1, 2, 3, and 6 represen-
tations (there are two inequivalent 1's and six 3's), while
baryonic states form 8, 8', and 16. The assignment of
spin-Aavor quantum number. to these irreducible repre-
sentations is made through their decomposition in terms
of those of the SU(4)s,„„XSU(2), ;„group in the continu-
um, of which the rest-frame group is a subgroup. Based
on this analysis the lowest state that couples to the
baryonic 8 and 16 is considered to be the nucleon and
that for 8' the 6 baryon.

Hadron operators for Kogut-Susskind quarks con-
structed in Refs. [19,20] are generally extended over a
four-dimensional hypercube. In our work we use only
those operators which are local in time. In this case it is
not possible to construct operators that carry a definite
o., parity because of the nonlocal factor T ' in the =4
transformation. These operators therefore create both
positive and negative continuum parity states in general.
There are 8 X 8 =64 meson operators and 8H3 = 120
baryon operators belonging to this class. The meson
operators, consisting of 20 irreducible representations,
take the form

g s(n, 5)g(n )y(n+5), (2.8)

Ok '= — g g y(n)y(n+5)y(n+5),(2)
2

ne(2Z} 5=+k

Ok '= — g g y(n)g(n+5)y(n+5),1

4
ne(2Z) 5=+I+I3 A A

(4}
8

n&(2Z) 5&
= k, 52= l, 53=+m

+y( +5n, )y( +5n, +52)y(n+5, +53),
0' '= g y(n)y(n)y(n+1+2+3),

nE (2Z)

(2.9)

0 (6)
8

nE (2Z) 5) =+k, 5~ =+l+mA A

0' '=g(n+1)g(n+2)y(n+3),

+y(n)y(n +5& )g(n +52),

where s(n, 5) is a sign factor which is tabulated in Table
2a of Ref. [19]. The spin-flavor content of (2.8) is most
easily found by transforming the KS fermion bilinear in
(2.8) into Dirac bilinears of the form qy, gfq where y,
and gf represent spinor and flavor y matrices. The result
is given in Table 5 of Ref. [19].

The 120 baryon operators fall into five 8's, four 16's,
and two 8"s. A representative of each of these eleven
representations (two for each 16's) is explicitly given in
Table 3 of Ref. [20], while the rest of the operators can be
generated from these 15 operators by application of spa-
tial rotations and translations. The 15 operators are
given by linear combinations of the operators 0",
0"'= g y(n)y(n)y(n),

nG (2Z)

where (k, l, m ) is a cyclic permutation of (1,2,3) with k
the unit vector in the spatial direction k, and + in the
operators 0' ' and 0' ~ means that y(n+1+3) should be
multiplied by —1 [20].

We calculate hadron propagators using the 64 meson
operators and the 15 baryon operators as sink. A techni-
cal complication here is that clear signals can be seen
only when a source suitable for individual operators is
selected. With our choice of source, to be described
below, we expect a good signal-to-noise ratio for the
propagators of 11 meson operators and 11 baryon ones.
The explicit form of these operators and the representa-
tion labels of hadronic states (r, o.„o,) that couple to
them are listed in Table III using the notation of (2.8) and
(2.9) (for mesons the parity o,z3 under =,=&=3 is also at-
tached where = =S T ' with S the unit translation

~
P P P

in the direction p, ). In this table our convention for the
naming of operators is as follows: we use roman
numerals to number the 20 meson irreducible representa-
tions according to the order with which they are listed in
Table 5 of Ref. [19] and similarly for the 11 baryon irre-
ducible representations in Table 3 of Ref. [20]. Sub-
scripts of roman numerals in Table III distinguish
members within an irreducible representation. Each
operator couples to two states having an opposite contin-
uum parity P=o.,o, For mesonic states the spin-flavor
content in terms of the spin-flavor Dirac matrices y, sgf
and the name of particles are given. The conventional
notation of Ref. [26] for local meson operators
M(I) M(IV) is —also attached.

The particle states in Table III include the Nambu-
Cxoldstone pion m(yg5) associated with the U(1) chiral
symmetry of the Kogut-Susskind fermion action and two
other members of the pion multiplet m.(y4y5(~$5) and

m(y5$3(5). The parity partners of m(y5$5) and m(y5$3$5)
have the quantum number J =0 which is not al-
lowed in quark models. There are eight p mesons with
various Aavor quantum numbers. The nucleon appears in
a number of channels B(I)—B(IV) and B(VII)—B(X).
Among them the operator B(I) is the conventional local
nucleon operator. The 6 baryon is expected to be the
lowest state that couples to the operators B(VI) and B(XI)
[20]. The states ~(yg~), p(ykgk), and the nucleon creat-
ed by the conventional local nucleon operator B(I) will be
denoted as ~, p, and X.

2. $Vall sources

Hadron masses are extracted from the exponential de-
cay of the two-point function of a hadronic source and a
sink at a large time separation. In order to enhance sig-
nals of the lightest states that contribute to the hadron
propagators we employ the technique of wall sources
[21,10]. In this method one uses a quark source of the
form g~(n;t =0)W(n) with W(n) the amplitude of the
source, which is extended over the t =0 time slice. Had-
ron propagator s are constructed by substituting the
quark propagator G (n ) =D„„'.W„for the source W'

into g(n) and e(n)G *(n) with e(n)=( —1) '

for g(n) in the hadron operators of Table III.
Improvement of signals with wall sources arises from
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the fact that hadrons are emitted from each site on the
t=O time slice, and therefore the weight of the zero-
momentum component is enhanced. In principle one can
further improve the signal by an appropriate choice of
the wall source so that only states carrying the same
quantum numbers as that of the operator at the sink are
created [27]. To see this let a' (i = 1, . . . , 8) be the vector
corresponding to the 8 vertices of a unit spatial cube and
define 8 types of wall sources by

W;(n)=
mE (2Z)

(2.10)

n, l

0„",",„.„= g g (n;t =0)I(l;t =0)g(m;t =0)
n, l, m

X W;(n) W (I ) Wg(m) .

(2.11)

In practice, however, this procedure requires much com-
puter time since 8 quark propagators have to be comput-
ed for each gauge configuration. In this work we there-

Clearly any basis of the irreducible representations of
operators local in time can be constructed by an ap-
propriate linear combination of hadronic source opera-
tors given by

O'J„,„=gg(n;t=0)y(l;t=0)W, (n)W (1)e(1),

fore use only two types of wall source.
The wall sources we use are defined by

W'(n) =1,
1 for n,. =O mod 2,

W'n ='
0 otherwise .

(2.12)

It is straightforward to find the hadronic states created
by these wall sources by inspecting the overlap of the
source operator (2.11) with W= W' or W' with the had-
ron operators discussed in Sec. IID 1. The result is
shown in the last column of Table III. The a source em-
its mesons corresponding to the operators with the sign
factor e(n). All local mesons are emitted by the e source.
The Nambu-Goldstone Pion sr(r sos) is observed for both
sources. We adopted the a source for this channel be-
cause we obtained better signals than for the e source.
For baryons 4 operators out of the 15 we study have no
overlap with neither of our source, and we observed sig-
nals for the remaining 11 operators listed in Table III.
The e source has an overlap only with the local nucleon
operator B(I), while the a source create signals for all the
operators in Table III. The local nucleon can be ob-
served for both sources, and we adopted the e source for
the better quality of signals.

TABLE III. Kogut-Susskind hadron operators used for the present work. Representation labels [19,20] and particles that couple
to the operators are listed. See the text for the convention for names of operators and the meaning of symbols. For local meson
operators M(I) —2M(IV) the conventional notation of Ref. [26] is also given. The last column gives the type of wall source used for cal-
culating the corresponding hadron propagator.

M(I) (SC)
M(II) (PS)
M(III) (PV)

M(IV) (VT)
M(VI)
M(VII)
M(x)
M(xv, )

M(XV )

M(XVI)
M(xx)

0
1

3
2
2+3
1+2
3+1
1+2+3

s(n, 5)

1

e(n)
( —1)
( 1) ~(n)
e(n)
e(n)
e(n)
~(n)
e(n)
e(n)
e(n)

(a) Mesons
123

1 +

1

3t tll

3II tl +

3
3 +

6+
6+
6+
6

3lltl +

+1
+1
+1
+1
—1

—1
—1

+1
+1
+1
—1

0., =+1
++(1)

(re)
a1(rkrsk1, ks)

b1(rir-kk )

p(r 1r414)

~(rs(345)
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3. Hadron propagator calculations

Fc = gtr[U;(n)+U; (n)] .
n, i

(2.14)

The maximization of Fl and F& is carried out by the
naive steepest-descent method. For the Landau-gauge
fixing 5000 iterations are made, which roughly corre-
spond to the condition

A reliable extraction of masses of lowest hadronic
states requires a large temporal separation between a
source and a sink. Since most of our gauge
configurations are generated on space-time symmetric
lattices, we periodically duplicate or triplicate gauge
configurations in the time direction so that the temporal
lattice size is 32 or larger.

Hadron operators and wall sources described above are
generally not gauge invariant. We therefore fix link vari-
ables to a gauge. We choose a hybrid gauge in which all
the links on the original lattice is fixed to the Landau
gauge through a maximization of

FI =g tr[U„(n)+ U„(n)] (2.13)
n, p

and, after multiplication of the lattice in the temporal
direction, the spatial links on the t =0 time slice at the
wall is further fixed to the Coulomb gauge by maximizing

tion hadron propagators are calculated at the accuracy of
0.001% for all the elements. As an illustration we show
in Fig. 3 the propagator of the Nambu-Goldstone pion at
several time separations and the norm of the residual vec-
tor r~ as a function of the number of conjugate-gradient
iterations on a 20 X (20X2) configuration at P=5.7 andI =0.01.

q

K. Thermalixation and autocorrelation

Error estimation requires a study of initial thermaliza-
tion and autocorrelation in the set of generated gauge
configurations. For our runs on a 20" lattice at P=5.7
with m =0.01 and 0.02 we show the time histories of
l XI Wilson loops for l=1—5, chiral order parameter
(gy), and rr, p, and nucleon propagators at t =10 in Fig.
4. These runs are started from a completely ordered
configuration. The Wilson loops and the chiral order pa-
rameter approach thermalized values quickly after about
100 to 150 time units for both m =0.01 and 0.02.
Thermalization is about a factor of 2 slower for hadron
propagators, taking about 250 to 300 time units for
m =0.01 and 150 to 200 units for I =0.02. From
these observations we choose to discard the initial 250
time units for I =0.01 and 200 units for m =0.02.
The number of discarded initial time intervals for other

8—:—g tr[A(n)b, t(n)] (10
V

where Vis the space-time lattice volume and

b(n)= g [U„(n —P) —U„(n) —H. c.—trace] .
P

(2.15)

(2.16)

1
10 1 I I I I I I I i

(a) ~(t) 20 x(20x2)

10

P = 5.7 m = 0.01
0

t=5
t=10

We also made 5000 iterations for the Coulomb-gauge
fixing of the t =0 time slice.

A potential difficulty with calculations of gauge non-
invariant operators on gauge fixed configurations is the
problem of Gribov copies [28]. To examine this problem
we repeated maximization of FI and Fz after random
gauge transformations of link variables. We found that
the presence of more than one local maximum is not a
rare occurrence for many of the gauge configurations in
our ensemble (see Ref. [29] for reports of a similar
finding). In our preliminary investigation we found that
the variation of hadron propagators for different maxima
is within statistical Auctuations and that a systematic
shift of hadron masses is not apparent. We therefore do
not pursue this problem in the present work.

Quark propagator G for a wall source W'is evaluated
by writing 6 =D~x and solving

10

10

10
0

10

10

10

t=15

r. =20

I I I I I I I I I I I I I I I

500 1000 1500 2000
CG iteration

I I I I I
I I I I

I
I I I I

I
I I I f

DD x =8' (2.17)

by the conjugate gradient algorithm for the subspaces of
even and odd sites separately. We used the stopping con-
dition

(2.18)

with V~ the number of source points, i.e., V~=I /2 for
the a source and L, /8 for the e source. With this condi-

500 1000
CG iteration

1500 2000

FIG. 3. (a) Convergence of the propagator m{t) for local pion
rr(y5(5) with the a wall source on a 203X(20X2) lattice at
f(=5.7 and m =0.01 as a function of the number of conjugate
gradient iterations. Curves for several values of t are shown. (b)
Norm r~=~I'DD "x —W~~/3Vs as a function of the number of
conjugate gradient iterations.
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lattice sizes and parameters are chosen by similar analy-
ses (see Table II).

One can study the magnitude of correlation between
successive configurations through the autocorrelation
function defined by

of zb;„ through

Eo(rb;„)=, (Xb,„—1) O2
Nbin i

2 1/2

O(r)O(r+r, ) —O(r) O(r+r, )
Ao(r, )=

O(r) O(—r)
(2.19)

QO,
bin i

(2.20)

for an observable 0 where the bars denote average over ~
from ~;„to ~ „—~, with ~;„the discarded time inter-
val and ~,„ the total simulation time. In Fig. 5 we plot
the autocorrelation functions at rn =0.01 for various
quantities whose time histories are shown in Fig. 4. We
observe that the autocorrelation for the 1 X 1 Wilson loop
decays quickly, becoming consistent with zero around
~, =20. For the chiral order parameter the correlation
persists longer till ~, =50—100. A similar range of corre-
lation is seen for the pion propagator. The autocorrela-
tion functions for other hadron correlators decay more
quickly, reflecting their noisier time histories.

The range of autocorrelation can also be analyzed by
the jack-knife error analysis [30]. We divide the ensem-
ble of configurations into Nb;„bins with each bin extend-
ed over a time interval ~b;„and define the error as a func-

where 0; denotes the average obtained without the ith
bin. One expects Eo(rb;„) to reach a plateau when the
bin size ~b;„becomes comparable to or larger than the au-
tocorrelation time. The height of the plateau provides an
estimate of the error for the given ensemble taking into
account autocorrelation. The bin size dependence of
Eo(rb;„) for various quantities for the run on a 20 lattice
at P=5.7 and I =0.01 is plotted in Fig. 6. The results
are in accord with those of the autocorrelation function
analysis in that the errors are almost saturated for the bin
size ~b;„=50. Based on these analyses we employed the
jack-knife formula (2.20) with the bin size of rb;„=50 for
estimating errors of our data including those of hadron
propagators. For short runs at /3(5. 7 with the simula-
tion length ~(500 we took the bin size ~b;„=20, howev-
er.

(a) m, = 0.01 (b) m„= 0.02
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FICx. 4. Time histories of Wilson loops, chiral order parameter gy, and vr(y, g, ), p() „ga, ), and local nucleon (N) propagators at
t =10 on a 20 lattice with @=5.7. (a) m, =0.01, (b) m =0.02.



47 FULL @CD HADRON SPECTROSCOPY WITH TWO FLAVORS OF. . . 4747

W
0.2

0 P ~ ~N ~M 4,~ ~ ~ ~~ ~
1e %a ~ V% ~

P 2 I I l I I I I l I I I I I I I I l l I

0.2 XX

~ ++ o\ A+jgQ ~L 4 1E- a ~ o~p y ~g g QP'~yo

p ') I I I I I I I I I I I l I I I I I I I

Tt (t =10)
0.2 — ~

~ ~
0.0

~ ~
~ 0 ~ ~

I I ~ I I—0.2
~ w y

~ 0 ~ 0 ~ ~ ~ 0
~ ~ ~ 0

I I l I l I

0.2

0.0

—0.2

p (t=10)
~ 0 ~ ~

~ ~
~ 0 ~ 0 ~ ~

I I I I I I I

0 ~0 ~ a~ 0 ~ a 0 ~ a~ 0 0 ~ e 0 e
~ ~ '~ ~

I l l l l I

0.2

0.0
—0.2

N (t =10)
~ 0

~ 0 ~ 0 ~ 0 ~ ~ ~ ~

I « l l I

~ 0 ~ 0 0 ~ aae e —ey000
I I I I I I I 1

50 100 150 200

FIG. 5. Autocorrelation functions for 1X 1 Wilson loop,
chiral order parameter gy, and lr(yg, ), p() krak ), and local nu-
cleon (X) propagators at t = 10 on a 20 lattice with P= 5.7 and
mq =0.01.
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FIG. 6. Bin-size dependence of jack-knife error for the 1 X 1

Wilson loop, chiral order parameter gy, and lr(y5(5), p(ykg„),
and local nucleon (X) propagators at t = 10 on a 20 lattice with
P=5.7 and m~ =0.01.

In Table IV we summarize the average values and er-
rors of Wilson loops and the chiral order parameter for
all of our runs.

III. HADRON MASS MEASUREMKNT

A. Effective mass analysis

The hadron operators which are local in time carry a
definite o., parity but create both o., = +1 and —1 states.
The coupling of o, = —1 states has a sign factor (

—1)'
where t is the temporal separation between the source
and the sink. We therefore expect hadron propagators to
have the form

P(t)= 2+ Iexp( —m+t)+( —1) ' exp[ —m+(T t)]]—
+ ( —I )'A

I exp( —m t )

+ (
—1) ' exp[ —m ( T t ) ]I, —

(3.1)

where I+ and m denote the masses of states with the
parity P =+o., and —o.„and the second and the fourth
terms represent contributions due to the periodic bound-
ary condition with T the temporal lattice size and o b =0
and 1 for mesons and baryons.

Examples of our propagator data are shown in Fig. 7
for a 20 X(20X2) lattice at P=5.7 with m =0.01. In
these figures absolute values of propagators are plotted
with positive and negative values distinguished by solid
and open symbols. Solid curves represent the results of
the fits to be described below. The oscillatory behavior in
t expected from (3.1) is clearly observed. We also note
that the contribution of the P = + 1 state appears absent
in the pion channel (cr, =+ 1) shown in Fig. 7(a).

Extraction of hadron masses through fits of propagator
data with the function (3.1) requires a careful choice of
the fitting range to avoid contamination from higher ex-
cited states. In order to examine this problem we use the
distance dependent effective mass m, ft(t), which is ob-
tained by fitting four consecutive values of propagators at
t +i and their periodic reflections at T—t —i for
i =0, 1,2, 3 with (3.1). For the channels vr(y g~) and
rr( 7 5(3/5 ) where we do not observe parity partners we ex-
tract m, a(t) using a single hyperbolic cosine form.

The behavior of the effective mass m, a(t) for some typ-
ical hadron states for a 20 X(20X2) lattice at 13=5.7
with m =0.01 are shown in Fig. 8. The errors are es-
timated by the jack-knife method (rb;„=50). We observe
that the effective mass for the pion vr(yg, ) [Fig. 8(a)]
reaches a plateau starting at t =8. A systematic wiggle as
reported in Ref. [3], possibly due to a periodic multiplica-
tion of gauge configurations [31], is not apparent at least
within our error of typically 1 —2 %. This is illustrated in
Fig. 9 where we replot Fig. 8(a) for the pion effective
mass on an enlarged scale together with that of Ref. [3].
Compared to a 5% drop of the latter from t =6 to 10
which amounts to four standard deviations, we only ob-
serve a 1.4%%uo decrease from t =10 to 14 which, further-
more, is comparable with the statistical error of 1 —2 go.
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O0

00

Similar plateaus are observed from t =4 for p [Figs. 8(b)
and 8(c)] and t =6 for the nucleon N [Fig. 8(e)]. For the
particles 0(J =0++), a, (1++), b, (1+ ), and 5, the
quality of data is worse, especially for b

&
and 5 for which

we cannot see a plateau due to poor statistics. Combin-
ing these results with those of a similar analyses for other
lattice sizes and parameters, we choose T—t;„~t ~ t;„
with t;„=8 for the fitting range for the n(y&g&) channel
and with t;„=6for other channels.

O0
B. Fitting procedure

For extraction of hadron masses we make a global fit of
propagator data to the function (3.1). For a 203 X (20 X 2)
lattice we minimize g defined by

~ &o
lgj m 0

0
0
00

00000

0
000

[p(t) —p(~')](C ');, [p(j)—p(j)], (3.2)

O0
where P(i) denotes a measured hadron propagator and
the full covariance matrix C is given by

C;, =P(OP (j ) P(0 P (—j ) (3.3)
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with the overline representing the ensemble average. For
other cases the statistical quality of the covariance matrix
is not sufFicient and we evaluate y ignoring the off-
diagonal elements of C.

Typical examples of fits with the full covariance matrix
are illustrated in Fig. 7 for a 20 X(20X2) lattice at
/3=5. 7 with m =0.01 together with the fitted values of
hadron masses and y per degree of freedom (the errors
quoted are obtained by the jack-knife procedure as de-
scribed below). Solid curves represent the absolute value
of the functions given by

P+ (t) = 3 + I exp( —m+ t ) +(+1) exp[ —m+ ( T t ) ]]—
+3 [exp( —m t)

+(+1) 'exp[ —m (T t)]], —(3.4)
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with 3+ and m+ determined by the g fit. These curves
should go through data points at even or odd values of t.
We observe that the data are fitted nicely with reasonable
values of g per degree of freedom. The relative magni-
tude of the two masses m+ and m and the sign of the
propagators are consistent with the particle assignment
given in Table III.

We now consider the question of estimating errors of
hadron masses. A standard procedure would be to study
variations of fitted parameters under a unit increase of y
from its minimum value. This requires reliable values for
the covariance matrix C, which may be obtained by
blocking the whole ensemble of configurations into sta-
tistically independent bins and taking averages in (3.3)
over bin-averaged values of propagators. A practical
problem with this procedure is that the number of bins
has to be large, at least larger than the number of data
points in order to make the covariance matrix nonsingu-
lar. For our 20 X (20 X 2) lattice there are 40 data
points, while our ensemble at 13=5.7 with m =0.01 is di-
vided into only 15 bins if we take the autocorrelation
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FIG. 7. Hadron propagators on a 20 X(20X2) lattice with P=5.7 and m =0.01. See Table III for notation of operators. Abso-
lute values of propagators are normalized to unity at t =0 or 1 for convenience. Solid and open symbols denote positive and negative
values. Solid lines represent fits as described in text. The fitted values of masses and g per degree of freedom are also listed. Errors
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N

time ~b;„=50 as estimated in Sec. IIE. Because of the
severe demand of full QCD simulations on computing
power, we cannot increase the number of bins easily. We
therefore take an alternative approach: we remove
configurations in one bin from the ensemble, construct
hadron propagators and the covariance matrix using the
remaining configurations, and make g fits. Repeating
this procedure for each bin of the ensemble generates a
set of masses which gives an estimate of error according
to (2.20). A similar procedure is taken for lattices smaller
than 20 X(20X2) for which only diagonal elements of
the covariance matrix are used for y fits [32].

The errors of hadron masses estimated in this way are
shown in Fig. 10 as a function of the bin size ~b;„ for m, p,
and nucleon X. The magnitude of errors are almost sa-
turated at ~b;„=50. This is consistent with our estimate
of the autocorrelation time for propagators made in Sec.
II E.

C. Summary of mass results

Our results for hadron masses at P=5.7 for various
lattice sizes are compiled in Table V (corresponding to
the assignment in Table III). Errors are estimated by the
jack-knife method with bin size ~b;„=50. For the chan-
nels corresponding to p(y„g&) and p(yzy4$k$4), propa-
gators are averaged over k=1 —3 before making global
fits. For the number of configurations used see Table II.

The results for a 20 X (20 X 2) lattice at @=5.7 are also
shown in Fig. 11 where roman numerals below data
points denote the operator names in Table III. Among
the three pions m.(yg5), vr(y4y g4$~), and ~(y5('3/5) the
one corresponding to the Nambu-Goldstone pion n(y5(5)
that couples to the operator M(II) is somewhat lighter
( —13%%uo) than the two other pions (I and VII), which
themselves are degenerate within errors. There are eight

p mesons; two of them (XVI and XV2) are members of the

p ppp I I I I I I I I

0 50 100

Tb

150 200

FIG. 10. Bin size dependence of jack-knife errors for ~(y, g, ),

p(yzgk ), and local nucleon (N) masses on a 20' X (20X2) lattice
with P=5.7 at (a) m~ =0.01 and (b) m =0.02.

same 6+(o, =+1) representation, and the remaining six

belong to different representations. All p masses are de-
generate within errors of 1 —2 %, showing a good restora-
tion of Aavor symmetry for this channel. The errors are
quite large for ai(1+ ) and bi(1 ). No systematic de-

viation depending on the operators used is apparent
beyond statistics, however.

For 11 baryon operators discussed in Sec. IID 1, 9
operators are assigned to the nucleon. The masses ex-
tracted from these operators are presented in Fig. 11(a)
for m =0.01 and 11(b) for m~ =0.02. We observe that
the masses for B(II), B(IV), 8(VII, ), B(VIII), B(IX), and

8(Xz) are consistent with the mass from the local nucleon
operator B(I). We also expect that 8(VII2) has a mass de-

generate with 8(VII, ) as they are in the same 16 multiplet
and 8(X,) with B(X2) for the same reason. We see, how-

ever, that the masses of 8(VII2) and B(X,) are
significantly ( —10%%uo) higher than those for the corre-
sponding multiplet partners. The remaining two opera-
tors 8(VI) and B(XI) belong to g' and are supposed to be
b [20]. These masses are in fact about 10%%uo larger than
those for nucleons (ma/m& =1.12 for m =0.01; =1.08
for m =0.02) in our simulation, supporting the assign-
ment. It is interesting to note that the masses for 8(VII2)
and B(X,) are essentially those of h. It has been suggest-
ed that the first excited state which couples to operators
in the 16 representation is the b, baryon [20]. Our result

may be understood if we assume that our wall sources
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emit 5 much more efhciently than the nucleon state for
these operators [33].

At a fine level we also note that the central values of
the nucleon masses differ appreciably more than for the
case of the p meson. The fact that the pattern of varia-
tion is similar for m =0.01 and 0.02 suggests that this
may not be merely due to statistics [34], but may rather
be taken to be an operator dependence. The N-6 mass
splitting is an interesting quantity. The errors of the 6
mass, however, are sizable, and we need much more
statistics for a quantitative estimate of the N-6 mass
splitting.

We have only limited statistics for P(5.7. For com-
pleteness we list the results for hadron masses obtained
for local operators in Table VI. The bin size for jack-
knife error analyses is wb;„=20 for this table due to the
shortness of runs.
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at p= 1 GeV is estimated as m ()M=1 GeV)=2.2 MeV.
(The results for other determinations of a ' are similar.
See Table VIII.) This value is quite small compared to
the estimate (m„+md)/2=6 —7 MeV (p, = 1 GeV) de-
duced by QCD sum rules and current algebra (see, e.g. ,
Ref. [37]).

In Fig. 14(a) we have compiled the renormalized quark
mass at 1 GeV in the MS scheme obtained in the
quenched and two-fiavor full QCD simulations with the
Kogut-Susskind fermion action using p(yi, gk ) to fix the
scale. We see that a reasonable agreement between the
quark mass derived from two-fiavor simulations (m =7

q
MeV) and its empirical value, as observed at P= 5.25, is
lost as P increases; the quark mass from the simulations
decreases rapidly with an increasing f3. The same trend is
also seen for the quenched (Nf =0) case. In fact a shift
of 5P=0.3, which roughly matches the lattice spacing for
Nf =0 and for Nf =2 cases, makes the quark mass for the
two cases almost identical.

For comparison we present in Fig. 14(b) the renormal-

ized quark mass with the Wilson action. We used the
definition m~(a ) =(K ' —K, ')/2a for the bare quark
mass and the one-loop correction is given by [38]

2

m ()Lt)=m (a) 1 —
(inane

—2. 15) (3.8)

We see that the quark mass for Nf =2 exhibits only a
small change as 13 increases and stays for P=5.4—5. 6 at
m =2 MeV, a value a factor of 3 smaller than is inferred
phenomenologically. In contrast with the case for the
Kogut-Susskind action, the quark mass from the
quenched simulations is about a factor 2 larger than the
full QCD value even after the shift of the coupling con-
stant 5P=0. 3 that matches the lattice spacing of the two
cases.

It has often been stated that the Kogut-Susskind and
Wilson formalisms yield consistent results for observable
quantities. This statement does not seem to apply to the
case with the mass of quarks, at least so far as we take the
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FIG. 14. Renormalized quark mass at p= 1 GeV in full QCD
with two flavors of dynamical quarks (solid symbols) and in the
quenched approximation (open symbols). (a) KS fermion ac-
tion, (b) Wilson action.

FIG. 15. Dependence of n(yg, ), p() k/1, ), and local nucleon
(N) masses on the spatial lattice size L. Solid lines are predic-
tions of analytic formula for the size e6'ect due to virtual pion
emission [see (4.2)—(4.3)]. Open symbols at L =16 are the data
of the Columbia group [4]. (a) m~ =0.01, (b) m, =0.02.
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conventional definition of the quark mass for the two ac-
tions.

IV. FINITE-SIZE EFFECTS IN HADRON MASSES

A. Lattice-size dependence of hadron mass data

1.2

~ & + L = 20 This work
1.0

L = 16 Columbia

0.8
mN

Finite-lattice-size effects are one of the main sources of
systematic errors in a numerical determination of the
hadron mass spectrum. In order to study this problem in
detail we have carried out mass measurements for the
spatial lattice sizes L =8, 12, 16, and 20 at P=5.7. We
concentrate on the size dependence of n(y~g5), p(@kg&)
and nucleon masses extracted from local operators since
they have the best statistical quality in our mass data.
For the spatial lattice size L = 16 we adopt the data of the
Columbia group [4] which are based on ten times more
statistics than our short runs.

In Fig. 15 m, m, and m~ at 13=5.7 are plotted as a
function of the spatial lattice size L for m =0.01 and
0.02. We see a steep decrease of all these masses for the
lattice sizes L =8 —16. For m =0.01 the size dependence
is quite significant even from L =16 to L =20; the pion
mass drops by 2.7% (three standard deviations), the p
mass by 8% (five standard deviations), and more conspi-
cuously the nucleon mass decrease by 11% which
amounts to seven standard deviations. The magnitude of
the size-dependent shift is smaller for a heavier quark
mass of m =0.02: the difference between L =16 and 20
is 2.5% for m, 2% for m, and the decrease of m&
reduces to a leve1 of 6%.

An increase of the size effect for smaller quark masses
can be seen in a different way. Figure 16 compares the
quark mass dependence of m, m, and m& obtained for
L =16 [4] and 20 spatial sizes. The discrepancy between
the data for L = 16 and those for L =20 is apparent for
small quark mass, especially for p and the nucleon. It
should be noted that the masses for L =16 at m =0.01
are shifted significantly upwards compared to the linear
extrapolation of data for higher quark masses, whereas
those for L =20 are consistent with the extrapolation.

0.6

04

0.2 2m

0.01 0.02 0.03 m

FIG. 16. Comparison of hadron masses for spatial size
L =16 [4] (open symbols) and L =20 (solid symbols) as func-
tions of the quark mass.

B. Origin of size effects

We may think of three possible sources of finite-size
effects observed in Fig. 15: propagation of virtual pions
around the lattice, extent of hadron wave functions rela-
tive to the lattice size, and restoration of chiral symmetry
for small lattice volumes.

The effect of virtual particles on particle masses in a
finite spatial box has been extensively studied by analytic
methods [14,15]. In a P scalar field theory, for example,
the one-loop perturbative contribution to mass renormal-
ization is proportional to b, (0,0) where b, (x, t ) is the free
propagator. On a finite spatial box of a size L with the
periodic boundary condition this expression is modified
to gt ~z36( lL, 0) where the terms with l&0 represent the

effect of a virtual particle propagating around the box.
These terms give rise to an L-dependent shift in the mass
of the form exp( cmL ). Generaliz—ation to all orders of
perturbation theory leads to the asymptotic formula [14]
for the mass m (L) on a box of a size L

m(L) —m =—
16~m L

v'3 —V'm'+ 'I.
k exp — mL + dy e +~ F(iy )+O(e™)

2 00

(4.1)

where m =m( ac ), k denotes the three-point coupling constant and F(v) is the forward elastic scattering amplitude with

v=(s —u )I4m the crossing variable. The last term O(e™)damps faster than the other terms (e.g., m ~ &3I2m).
Applying the general formula (4.1) one can estimate the sign and magnitude of the finite-size shift for hadrons [14].

For the pion the three-point coupling is absent. Substituting the current algebra result F(v)= —m If +O(v, m ),
one finds

m (L)—m„ 3 m~ 1
2

3 m~ 1
2

K, (m L) e
8 2 f2 m L I 8v/2 3/2 f2 ( L)3/2

(4 2)

where X, (z) is the modified Bessel function. The positive sign of the size effect predicted by (4.2) is consistent with our

numerical result. However, the magnitude is far too small, as illustrated by the solid line in Fig. 15, for which we used

the measured value of the pion mass obtained on a 20 X(20X2) lattice for m and f =0.0421 for the pion decay con-

stant (see Sec. VC). To quote numerical values, (4.2) gives [m (L)—m ]Im =1.9% (L =12) and 0.45% (L =16) at

mq =0.01 as compared to 21% (L = 12) and 2.8% (L =16) for the simulation data.
A similar analysis can be carried out for the nucleon mass. In this case the three-point coupling is given by X=sg &&
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j'"dp e

with g &&/4' = 14.3 the pion nucleon coupling constant, and one finds that [14]
3 2 t 2

mN(L ) mN 9 mar g nN1v . 1 —Ql —v&/m m L 3

m 4 m 4w m I. 16~ mN

—m L "tr 1+p F z(im p), (4.3)

6g 7fNNF ~(v)=, +F ~(v),
1 —(v/v~ )

and use the parametrization

(4.4)

F ~(v)= g rq(v/m ) ", lvl (m
k=0

(4.5)

where v~ = m /2m~ and F ~(v) =6m~[ A '+'(v)
+vB'+'(v)] with 3'+' and 8'+' the conventional
crossing-even pion-nucleon forward scattering ampli-
tudes. To estimate the magnitude of (4.3) it is convenient
to separate out the nucleon pole contribution to F ~(v),

the size of hadrons squeezed on the finite lattice used for
simulations. The fact that the size effect is larger for the
nucleon than for ~ and p also supports this view.

We may understand the power behavior in the follow-
ing simple argument. Let us suppose that quarks are
bound by some confining potential and let r0 be the
length scale characterizing the decrease of the wave func-
tion g(r) for large r. One may mimic the squeezing of the
wave function due to a finite lattice size by a replacement
r0~r0~L. A sharper variation of the squeezed wave
function leads to an increase of the kinetic energy of the
ground state as I. . The detail of the index of power de-
pends upon an adopted model and assumptions, but the

with 7"0= 60.7 I.
&
=45.3, and F2=8. 1 determined from

the ~X dispersion analyses [39]. Substituting the values
m& =0.614 and m =0.2451 found on a 20 X (20 X 2)
lattice and integrating the nonpole term (4.5) over

l vl (m one obtains the curve in Fig. 15. The size effect
is positive also for the nucleon mass, but the magnitude is
quite small, comparable to that for the pion. This is quite
different from the pattern observed in Fig. 15 which
shows a much larger size effect for the nucleon than for
the pion. Numerically we find [m&(L ) mz ] /m~-
= 1.5% (L = 12) and 0.47% (L = 16) from (4.3) for
m =0.01 while the data in Fig. 15 give 31% (L =12)
and 13% (L =16).

Let us remark that the positive sign as well as the
smallness of the size effect for the nucleon predicted by
(4.3) is not an obvious result. In fact the positive contri-
bution to the three-point coupling term is almost com-
pensated by the integral of the pole contribution in E N.
The integral of the nonpole part comes out positive be-
cause the integrand F N is negative for small values of p
which dominate the integral. The smallness of the mag-
nitude of the size effect originates from the cancellation
above and also from the presence of powers of m /mN,
while the corresponding factor m /f leads to an
enhancement for the pion case.

We have seen that the mass shift predicted by (4.1) is
obviously far too small to account for the size depen-
dence observed in Fig. 15. In fact the size dependence is
well described by a power law of the form

1.6
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mN

20

m~(L) =m~( oo )+ I A
(4.6) 0.4

with a=2 —3 rather than an exponential [40]. This is il-
lustrated in Fig. 17 where we plot the masses of m, p, and
X as a function of 1/L together with the fit (4.6) with
a=3. The fit is excellent, especially for p and N. We
should remark that other types of power behaviors such
as mH(L) =mH(oc) +c/L (a=2—3) also fit data.
This indicates that the conspicuous size dependence is
not due to propagation of pions around the lattice as
summarized in the formula (4.1), but rather arises from

I I I I I I I I I I I I I I I I I I I

(20/L)
12 16

Flax. 17. Masses of vr(y, g, ), p(y„g&) and local nucleon (X)
plotted as a function of 1/L and their linear fits (solid lines).
Open symbols are the data of the Columbia group for L =16.
(a) m~ =0.01, (b) m~ =0.02.
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power behavior is generally expected from such a simple
nonrelativistic quark model picture.

We should remark that the argument above assumes a
Dirichlet-type boundary condition in which the wave
function at the boundary is kept small. In lattice QCD
this would happen if the amplitude of a quark propagat-
ing around the lattice cancels that in which the quark
does not go through the boundary, and this appears to
correspond to the periodic boundary condition for quark
fields. On the other hand, if one changes the quark
boundary condition to antiperiodic, the two types of am-
plitudes would contribute additively. The wave function
becomes smoother in this case, leading to a decrease of
meson masses [41]. (This situation resembles the case for
the nonrelativistic quark model solved with the periodic
boundary condition in a finite box. ) To check this point
we recalculated the meson spectrum for the L =8 lattice
at m =0.01 with the antiperiodic boundary condition.
We then found that the pion mass takes a value 0.221(6)
and the p mass a value 0.248(37), both of which drastical-
ly difFer from the values m„=0.581(22) and
m =0.711(42) obtained with the periodic boundary con-
dition, and are also substantially smaller than the corre-
sponding masses on an L =20 lattice; m =0.2451(23)
and m =0.4184(70).

One should note that there is another important source
of size effects for small lattice sizes, arising from the fact
that the U(1) chiral symmetry of the Kogut-Susskind fer-
mion action cannot be spontaneously broken for small
spatial volumes. A rough estimate of the size L, at which
this type of size effect becomes important may be made
by regarding one of the spatial axes as time and consider-
ing the system to be at an effective temperature
T,fr= 1/La. From the fact that chiral symmetry becomes
restored above a critical temperature T, one expects a
significant effect in hadron masses for lattice sizes smaller
than L, = 1/T, a. Using the recent estimate T, =150
MeV for two light-quark flavors [42] and a '=2. 23
GeV, we obtain L, =15. The absence of spontaneous
breakdown of chiral symmetry leads us to expect a num-
ber of consequences. The mass of the pion will increase
for a smaller L since it is no longer constrained to vanish
at m& =0 by the Nambu-Goldstone theorem. In the sym-
metric phase chiral symmetry should be satisfied by the
degeneracy of ~ and o., p and a„and of nucleon X and
its negative parity partner X . In Fig. 15 we observe an
increase of the pion mass. In addition Fig. 18 indeed
shows the expected degeneracy between parity partners
as chiral symmetry restores for a small L, similar to the
behavior observed in the high-temperature phase of QCD
[43].

We may conclude that, while an overall decrease of
hadron mass with an increasing L is to be ascribed to a
hadron size effect, lifting of the degeneracy is accounted
for by a gradual spontaneous breakdown of chiral sym-
metry as L increases.
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L =20 and m~ =0.01 and 0.02 (solid circles; see Table IX
for numerical values). The data of the Columbia group
[4] for L =16 (open circles) are taken for m =0.01,
0.015, 0.02, and 0.025 from left to right in the figure. The
curves for an empirical quark-model mass formula [44]
and that of the chiral perturbation theory are also shown.

C. Hadron mass ratio

We plot in Fig. 19 the mass ratios m& /m vs

(m. /mp)2 at /3=5 7 using the data for the spatial size

FIG-. 18. Spatial size dependence of masses of parity partners

rr(y, g, ) —o(l), p(y&gz )
—a, (sky, g„g, ), and N N[8(I)—

operator] for (a) m~ =0.01 and (b) m~ =0.02. Triangles are data
of Ref. [4].
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FIG. 19. Comparison of L =16 [4] (open symbols) and L =20
(solid symbols) data for the mass ratios mdiv/mp vs (t7l /M p) at
@=5.7 for two flavors of dynamical KS fermions. Data for the
operators vr(y, g, ), p(y„g„) and local nucleon are used. Solid
lines represent the behavior expected from chiral perturbation
theory and a quark model [44].

At m =0.01 a downward shift of m~/m is seen as the
lattice size is increased from I =16 to L =20. This is
due to a larger finite size shift for the nucleon mass than
for the p meson mass. Consequently the value of m&/m
for L =20 is closer to the prediction of the empirical
quark-model mass formula than for L = 16. A downward
shift of m&/m is also observed for m =0.02. For this
case, however, an irregular behavior of the Columbia
data for m =0.025 —0.015 has to be resolved to conclude
that the discrepancy is a real finite-size effect.

We attempt to estimate the value of the ratio m&/m
in the infinite volume limit from the available data. If we
use the linear extrapolation (4.6) of m~ and m in 1/L
we obtain m&/m =1.424(40) at L = ~ for m =0.01 as
compared to the value m~/m&=1. 468(15) for L =20.
Alternatively one may extrapolate m&/m linearly in
1/L3, which gives mx/m P=1.452(17) at L = m. If we
use the form m&/mP = I'0+ r

&
/L, we would find

m&/m = 1.386(14) instead. While there is a significant
ambiguity in these extrapolations these analyses clearly
indicate that the value of m&/m measured on a lattice

with a spatial size of the order of 2 fm suffers from sub-
stantial finite-size efFects for full QCD.

Let us compare our results at P=5.7 for m =0.01 and
0.02 with those of the HEMCGC Collaboration at P=5.6
with m =0.01 and 0.025 [3]. At the quark mass of
m =0.01 the HEMCGC Collaboration reported results
for L =12 and L =16 lattice sizes. As is seen in Fig. 20
their ratio m~/m decreases over these lattice sizes, ex-
hibiting a finite-size effect similar in magnitude to what
we found for 11=5.7 between L =16 to 20. In addition
their data are relatively higher and shifted left compared
to our data. The leftward shift can be naturally under-
stood; with m =0.01 fixed in lattice units the quark mass
in physical units increases with P and therefore the ratio
m /m should also increase. In order to understand the
downward shift we recall that the lattice spacing at
P = 5.7 estimated from the p meson mass is equal to
a =(2.23 GeV) '=0.089 fm. A similar estimation at
@=5.6 for the data of HEMCGC Collaboration gives
a =(1.81 GeV) '=0. 11 fm. The physical lattice size
used at the two values of P is comparable; La =1.77 fm
for HEMCGC on a 16 lattice at @=5.6 and 1.78 fm for
our data on a 20 lattice at P= 5.7. Therefore we expect
the magnitude of finite-size effects to be similar for the
two simulations. We then conclude that the decrease of
m&/m should be attributed to the finite-lattice-spacing

P
effect. In quenched hadron mass calculations a decrease
of mz/m with an increasing P has previously been seen
[45].

V. CHIRAL SYMMETRY

A. Chiral order parameter

The Kogut-Susskind fermion formulation retains a
U(l) subgroup of chiral symmetry. The order parameter
of this symmetry is the chiral condensate (gy ). In Table
IV we have listed the values of (jy) measured at P=5.7
on an L" lattice for L =8—20 as a function of the quark
mass m . The values at m =0 obtained by a linear ex-q' q

trapolation (gg) = Am +B are plotted in Fig. 21 (see
Table VII for numerical values of 3 and B). A nonzero
value of (gy) at m~ =0 for large L (e.g. , L =20) shows
that chiral symmetry is spontaneously broken. We also
observe that the magnitude of (gy) decreases for a
smaller L and drops rather abruptly between L = 12 and
L =8 with the m =0 extrapolation becoming consistent

TABLE IX. Mass ratios for full QCD with two dynamical flavors of KS fermions at P=5.7 obtained with vr(), g, ), local nucleon
N, and p(y&gl, ) or p(y„y~g„g~). Errors are estimated by the jack-knife method with the bin size Tb; =50. '

mq

20 X(20X2)
0.01 0.02

16'x(16x2)
0.01 0.02

12 X(12X3)
0.01 0.02

8 X(16X2)
0.01 0.02

m„/m (r

m~/mp(y g )

0.5858( 64)

1.468( 15 )

0.6923( 50)

1.497( 11)
0.612( 17 )

1.558(97)

0.685( 14)

1.512(22)

0.593(31)
1.609(92)

0.746(22 )

1.685(48)

0.817(31)
1.91(11)

0.789(29 )

1.814(61)

Pl~/Alp(y y g g )

~p(r/, y4(k g4)

0.590( 12 )

1.479(26)

0.6819(50)

1.474( 11)

0.581( 19)

1.478( 77 )

0.6856( 79 )

1.514( 15)

0.609( 19 )

1.65(12)

0.775( 19)
1.751(40)

0.860( 60)

2.01(19)
0.806( 31)
1.852( 61 )
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1.7

1.6
m jm

P

data with analytic predictions one may therefore use the
results obtained for the O(n)-invariant nonlinear o model
as an effective Lagrangian.

For the chiral order parameter X= (fy) the analytic
result for a box of a size L is given by [15,17]

1.5

1.4

y(L) Y„'(pz (f Im ) )

&(~) Y„(pz (f Im )') 'P (5.1)

1.3

where m and f are the infinite volume values of the
pion mass and the pion decay constant, z =I„L,
Y„(x)=(x/2) '" ' I(„z)&2( x) with Ik(x) the
modified Bessel function, and

1.2

0.2 0.4 0.6
(m /m)

0.8 1.0

2
n —1~~ 1p=1-

f2 z2
G(z)

with

(5.2)

FICr. 20. Comparison of mass ratios for P= 5.6 (open
squares) and P=5.7 (solid circles). Meaning of solid lines are
the same as in Fig. 19.

16~2 0 t'
n Ez —IOI

e
—n /4t

Z2
(5.3)

with zero for L =8. These results reAect the fact that a
spontaneous breakdown of symmetry does not occur for
small volumes.

There have been analytical studies of finite-size effects
on the dynamics of a spontaneously broken phase in the
context of scalar field theories and chiral Lagrangians
[15—17]. In these theories Nambu-Goldstone bosons
start propagating around the lattice as the lattice size de-
creases from infinity. This effect becomes significant for a
size L —1/mN~ with mN~ the Nambu-Goldstone boson
mass. For a yet smaller size of order L —/QmNo the
zero mode of the order-parameter field starts to Auctuate
largely, resulting in a decrease of its expectation value
and the restoration of the symmetry. In our case of QCD
with two Aavors of Kogut-Susskind quarks the system
has U(1)—:O(2) chiral symmetry at a finite lattice spacing
which is expected to be enhanced to SU(2)II SU(2) —=O(4)
symmetry in the continuum limit. For a comparison of

This formula smoothly interpolates the two regions
L —1/m and L —I /Qm discussed above. For L large
with L —1/m a straightforward expansion of (5.1) in in-
verse powers of L gives

2
X(L) n —1 m~ 2=1-
&(~) 2 f'

1/2

e '+O(e ') .
z 3/2

(5.4)

0.06

The second term represents the one-pion loop finite-size
correction similar to those given in (4.1). For
L —I/Qm the variable z=m L =m L /L should be
regarded as small. Replacing G(z) by G(0) = —

P&= —0. 140461 in (5.2) the right-hand side of (5.1) coin-
cides with the formula given in Ref. [17].

In Fig. 22 the value of (gy) at )33=5.7 is plotted as a

0.010

0.008
&Xg) at m =0

q

0.04

O(2) m = 0.02
q

0.01

0.006 0.02

0.004

0.002
12
L

16 20

L
16 20 24

FIG. 21. Lattice size dependence of chiral order parameter at
P= 5.7 linearly extrapolated to m~ =0.

FIG. 22. Lattice size dependence of chiral order parameter
for P=5.7 at m, =0.01 (circles) and m, =0.02 (triangles). Open
symbols are data of Ref. [4]. Solid lines are prediction of chiral
perturbation theory [see (5.1) of text] for O(2) and O(4) sym-
metries.
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function of L for m =0.01 and 0.02. The solid curves
are obtained from (5.1) where we substituted the values
measured on a 20" lattice for X(~ ) and m and used

f =0.0421 of (5.13) below. The curves for O(2) as well
as for O(4) symmetry are drawn since identification of the
symmetry group is ambiguous at a finite lattice spacing.
We observe that neither of these curves lend good fit to
data, especially for the lattice size below L = 10—12.

There are several possible reasons for the discrepancy.
A basic assumption for the validity of the use of the
effective chiral Lagrangian is that states other than the
pion have masses much larger than m . This is not quite
satisfied in our case (e.g. , m /m =1.71 for m~=0. 01).
Second, the description in terms of chiral Lagrangians
may not be applicable for lattice sizes so small that the
system is effectively in the high-temperature phase. To il-
lustrate this point we note that the value of the chiral or-
der parameter (gy ) becomes small for each gauge
configuration for such lattice sizes, while in the chiral La-
grangian approach the smallness of (fy) is a conse-
quence of large Auctuations of the order parameter.

B. PCAC relation for the pion mass

The argument based on current algebra and PCAC
predicts that the Nambu-Goldstone pion mass should
behave as

m ~m
q

(5.5)

for small quark masses. Whether simulation data satisfy
this relation provides an important check on the spon-
taneous breakdown of chiral symmetry. In the Kogut-
Susskind fermion formalism there are 15 flavor nonsin-
glet pseudoscalar particles. Only one of them is associat-
ed with the U(1) chiral symmetry and hence is expected
to satisfy (5.5) at a finite lattice spacing. The remaining
14 particles may generally have a nonvanishing mass at
m =0. They, however, should tend to zero toward the
continuum limit where a restoration of full flavor symme-
try is expected.

Our wall source enables us to measure the masses of
three pions vr(ysgs), ~(y~y5$4$, ) and ~(ys/3gs) of which
vr(y~g~) is the Nambu-Goldstone pion corresponding to
U(1) chiral symmetry. Figure 23 shows the lattice size
dependence of the Nambu-Goldstone pion mass squared
at m =0 estimated by a linear extrapolation
m „~r & )

= A m~+B (see Table VII for numerical
~5 5

values of A and B ) We observe . that quite a large
value of B for L =8 drops abruptly between L =8 and
12. This behavior is consistent with that of (gy)
shown in Fig. 21 in that they both indicate that the res-
toration of U(1) chiral symmetry occurs at L —10 in a
fairly abrupt manner. We add in this connection that a
recent finite-temperature simulation with eight time slices
I46] found a crossover from the low to the high tempera-
ture phase at P =5. 5 —5.6. This is below the value f3= 5.7
for our simulation, and hence consistent with these
findings. The exact correspondence between the finite-
temperature transition and the restoration of chiral sym-
metry for small spatial volumes is a little obscure, howev-

0.4

0.3 m at m =02

0.2

0.1

0

-0.1

12
L

16 20

FICz. 23. Nambu-Croldstone pion mass squared at m~ =0 as a
function of the spatial lattice size L. The open symbol at L = 16
is obtained from the data of Ref. [4] at m, =0.01 and 0.02.

m
( ~ )

=0.0043(25)+5.57(16)m (5.6)

In Fig. 24 we compare the masses of the three pions
7r( y sos ), vr( y 4y sfgs ), and ~(y 5(3/5 ) obtained on an
L =20 lattice. The fits for the last two pions are given by

m & & & )
=0.0090(67)+6.99(38)m

m
~ & & )

=0.0151(39)+6.55(24)m
(5.7)
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FIG. 24. Quark mass dependence of m, ~ & ), m',
~ ~ & t ),55 4 545

and m
~ & & )

on a 20 X (20 X 2) lattice at P = 5.7.535

er, since the geometry of the lattice and the boundary
condition for quark fields (we use the periodic boundary
condition in all four directions) are dift'erent.

It should be noted that the intercept B does not quite
vanish for L ~ 12, which may be ascribed to finite-size
effects. The rate of decrease of B from L =12 to L =20
seems slow compared to the behavior m —1/f L at
m =0 expected from chiral Lagrangians [16]. For
L =20 we have
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The masses of ~(y4y5$4$&) and m(ygg5) are about 15%
higher than that of the Nambu-Goldstone pion at
m =0.01 and 0.02 reflecting the breaking of flavor sym-
metry. They, however, extrapolate to fairly small values
at I =0 supporting that they would become massless in
the limit of continuous space-time.

C. Pion decay constant [47]

The definition of the pion decay constant in the contin-
uum is given by

v'2f „m = (Olu y&y5d n+(p=0} ) .

Using PCAC this equation may be rewritten as

&2f m„=(m, +m d)(OI uy d5l~+(p=O) &

and an application of current algebra leads to

f m„=(m„+md )( —,'(uu+dd ) ) .

(5.8)

(5.9)

(5.10)

(5.1 1)

These relations provide three ways of estimating the pion
decay constant.

A lattice transcription of the condensate ( uu ) is given
by —(gg) since a Kogut-Susskind fermion field gives rise
to four continuum flavors (the factor 3 is due to our nor-
malization of ( gy ) ). For the case of two degenerate
flavors m„=md =m the relation (5.10) becomes

1/2

gauge invariant. Since we fix link variables to a gauge we
also used the operator without the factor U,

A„'(n)= ,'E—(n)g„(n)[g(n+p)y(n) —H. c. ] . (5.16)

For the gauge invariant current 2„the PCAC relation

V'„A„(n) =2m P(n) (5.17)

C (t)=( W(0)P(t))

&ol wl~) &~IPIO)
e

2m V,

C~n, (t) = ( W(0) W(t) )

&o wl~)(~l w o)
2m V,

(5.18)

holds due to U(1) chiral symmetry of the Kogut-Susskind
fermion action. The two equations in (5.14) therefore
should yield identical values for f, which provides a
check on the reliability of numerical results. On the oth-
t:r hand, the gauge noninvariant current 2„' requires a
finite renormalization as we shall discuss below.

The matrix elements appearing in (5.14) are extracted
from the large-time behavior of the correlation functions
at zero spatial momentum:

Cn g(t)=( W(0)A(t) )

&ol wl~) &~l A lo) --.& +ii»
e

2m V,

(gg) =0.006 58(30)+2.097(19)m (5.12)

We note that this method yields f„only at zero quark
mass; for m WO quadratically divergent short-distance
contributions have to be removed from (fg) to all or-
ders of perturbation theory [25].

We evaluate the left hand side of (5.11) using (5.6) and

where V, is the spatial lattice volume, 3 = A4 or A 4 and
W'(t) is a wall source for the Nambu-Goldstone pion.—1/2m
The factor e in C~z takes into account the fact
that the operator 2 is extended over a timelike link and
hence it is natural to measure the temporal separation
from its midpoint.

For the wall source we use the operator

obtained on a 20 lattice, and find
W(t)= g g [e( n) +e( n)]g( nt)y(n', t) .

n n'
(5.19)

f =0.0421(11)(16), (5.13)

v'2f m =(0 A/I7r),

&2f m' =2m, & olP I~),
(5.14)

with the lattice axial-vector current A„and the pseudo-
scalar density P defined by

A„(n) =
—,'e( )gn„(n )[g(n +P)U„(n ) y(n) —H. c.],

(5.15)
P(n)=e(n)g( )yn(n) .

The link variable U„ is inserted to make the operator 3„

where the second error accounts for systematic errors
arising from the nonvanishing of m„at m =0. With
a '=2. 23(9) GeV this value translates into 94(5)(4) MeV
in physical units, which is in a good agreement with the
experimental value 93 MeV.

Let us now turn to an extraction of f from (5.8) and
(5.9). For Kogut-Susskind fermions these relations may
be replaced by

This wall creates only the Nambu-Goldstone pion among
15 pions. (It couples to various p mesons, however,
which contaminate signals for small t.) A practical com-
plication in the use of (5.18) is that the hybrid gauge we
used for the spectrum calculation is not suitable for an
extraction of (OIWIrr). This is because the coupling of
the wall to the pion at time t&0 where links are fixed to
the Landau gauge is different from that at time t =0 with
the Coulomb gauge fixing. We have therefore recalculat-
ed the correlation functions (5.18) using the Coulomb and
the Landau gauge fixings for the entire lattice. For this
calculation we used 26 configurations separated by 25
time units for a 20 X(20X2) lattice at P=5.7 and
m =0.01 and 20 configurations for I =0.02 with the
same time separation.

For C~~ and C~z we observed a plateau in the
effective mass for t ~ 10 and the residues are estimated by
a single hyperbolic cosine fit for 30 ~ t ~ 10. The statisti-
cal quality of signals is poorer for C~~. We estimate the
matrix element (ol Wlm ) by fitting C~n over 22 ~ t ~ 18
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using I determined from Cz,& as input. Typical propa-
gators and effective masses are shown in Figs. 25 and 26.
The results for the pion mass and the pion decay constant
are summarized in Table X. We note that the values of
the pion mass extracted from C~~ and C~z are con-
sistent with those obtained from the full set of
configurations (see Table V).

Lattice results for the decay constant generally have to
be corrected by a wave function renormalization factor Z
relating the lattice and continuum operators
O' """""=ZG'"'"'. An exception is the gauge invariant
axial-vector current A„which corresponds to the axial
U(1) symmetry of the Kogut-Susskind fermion formalism
and hence Z = 1. For the gauge-noninvariant current A '

P
a one-loop calculation [48,49] in the Landau gauge [49]
gives

0.25

0.20 «

0.15

0.10

0.25

0.20

0.15
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0.20

(a) CWA

(b) C „

(c) Cwp

~ ~ ~ ~ ~ ~

I I I I I I

Z = 1 g zoooo+O(g ) (5.20)
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FIG. 26. Effective masses for the propagators of Fig. 25.
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FIG. 25. Propagators (a) C~& (t), (b) C, (t), (c) C~p(t),

and (d) C~~(t) in the Landau gauge for mq =0.01 normalized
to unity at t =0 ( t = 1 for C~~). Open circles mean negative
values. Solid lines are fits over 30~ t ~10 for (a)—(c) and
22 ~ t ~ 18 for (d) [with m taken from the fit of (c)] as described
in text.

with zpppp=0. 154933 39. . . . Numerically the correc-
tion factor for A' is —8.2% at P=5.7. The one-loop

p
corrected values of the decay constant are also listed in
Table X. The Z factor for the pseudoscalar density P is
logarithmically divergent. The divergence, however, is
canceled by that of the quark mass. Explicit calculations
[48,49] show that finite renormalizations also cancel for
Kogut-Susskind fermions up to possible corrections of or-
der mrna. Thus f extracted from the pseudoscalar densi-

ty does not require renormalizations to this accuracy.
We see in Table X that the values of f obtained from

the pseudoscalar density P agrees with those from the
gauge invariant current A4 within each type of gauge
fixing as is expected from (5.17). There is a trend that the
Landau gauge results for the operators P and A4 are
smaller than those for the Coulomb gauge. We consider
that this is due to low statistics, especially in the Czz
propagator, the signal of which is rather poor. We also
note that the uncorrected values for the gauge non-
invariant current A 4 in the Landau gauge are systemati-
cally larger than those from the gauge invariant current
A4. It is interesting to observe that the one-loop correc-
tion (5.20) reduces these values significantly, making the
corrected values quite consistent with the other estimates
in the Landau gauge.

The quark mass dependence of the decay constant,
one-loop corrected by (5.20) for the gauge noninvariant
current A 4, is plotted in Fig. 27 where the leftmost point
is the estimate (5.13) based on (5.11). The value of f
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TABLE X. Pion decay constant f and pion mass m in lat-
tice units extracted from correlation functions of several opera-
tors in Landau and Coulomb gauges with two flavors of KS fer-
mions at P= 5.7 for m =0.01 and 0.02. For the gauge-
noninvariant operator 2 ' in the Landau gauge one-loop-
corrected values are also listed.

Operator Gauge f (lattice units) f (MeV)

TABLE XI. Pion decay constant f at m =0 obtained by a
linear extrapolation of data in Table X. Values in the first
column are in lattice units and those in the second column in
physical units using a '=2.23(9) GeV. The last row gives the
value obtained with Eq. (5.11)of the text.

Operator Gauge

Landau

m =0.01
f~

mq =0.02
m f

0.2465 0.0498 0.3417 0.0554
+0.0050 +0.0016 +0.0024 +0.0017

Landau

Coulomb

0.0442
+0.0036

0.0473
+0.0038

99
+9

105
+9

Coulomb

Landau

0.2498 0.0542 0.3443 0.0611
+0.0028 +0.0017 +0.0027 +0.0017

0.2467 0.0572 0.3421 0.0628
+0.0052 +0.0019 +0.0023 +0.0020

Landau (corr. )

Landau

0.0473
+0.0038

0.0415
+0.0031

105
+9

93
+8

Landau (corr. ) 0.0525
+0.0017

0.0577
+0.0018

Coulomb 0.0433
+0.0025

97
+7

P Landau

Coulomb

0.2451 0.0490 0.3431 0.0565
+0.0037 +0.0011 +0.0028 +0.0022

0.2461 0.0521 0.3438 0.0609
+0.0031 +0.0009 +0.0029 +0.0018

0.0421
+0.0011+0.0016

94
+5+4

linearly extrapolated to m =0 is given in Table XI. We
find that f at m =0 from the correlation functions
takes values in the range 93(8)—105(9) MeV, which is
consistent with the value 94(5)(4) MeV obtained with
(5.11) within 10%.

D. Mass splitting between parity partners

The mass splitting of the nucleon X and its negative
parity partner X arises from spontaneous breakdown of
chiral symmetry. Therefore one expects the mass split-

ting to become smaller for a smaller lattice size. As
shown in Fig. 18 this behavior is clearly seen in our data,
with the splitting becoming apparent only for L + 16. A
similar behavior is also observed for the masses of parity
partners rr and o, and p and ai (see Fig. 18). We also
note that the almost complete degeneracy of the masses
of parity partners for L = 8 seen in Fig. 18 is consistent
with the behavior of the chiral order parameter (gy)
and the pion mass m„at m~ =0 (see Figs. 21 and 23)
which show a complete restoration of chiral symmetry at
this lattice size. These results are reminiscent of the res-
toration of chiral symmetry and the degeneracy of parity
partners in the high-temperature phase of QCD first dis-
cussed in Ref. [43].

0.07 VI. CONCLUSION
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FIG. 27. Pion decay constant in lattice units as a function of
m for full QCD with two fiavors of KS quarks at p=5. 7. For
the gauge noninvariant current 2& one-loop-corrected values
are plotted. The left-most cross is the estimate at mq =0 based
on (5.11) of text.

In this work we have carried out an extensive analysis
for the hadron mass spectrum at P=5.7 for two-fiavor
full QCD with the Kogut-Susskind fermion action. Our
main emphasis is given to demonstrate that the full QCD
hadron mass spectrum suffers from a significant lattice-
size dependence even when the physical size of the lattice
is of the order of 2 fm, for which size clear lattice-size
dependence has not been reported from quenched spec-
troscopy. We have shown that the finite-lattice-size
corrections for hadron masses are described well by a
power law L with +=2—3, rather than an exponential
e as predicted by analytic work for the virtual pion
emission. We have suggested that the effect arises from
an artificial squeezing of the spatial extent of hadrons.
We have also shown that both the finite-size and the
finite-lattice-spacing corrections bring the nucleon to p
mass ratio in a better agreement with the experiment.
This shows that finite-lattice-size effect must be taken
into account, should one attempt to extract the hadron
masses within an error of 2 —3 %%uo.
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We have also studied the operator dependence of the
hadron mass spectrum using the formalism of Golterman
and Smit [19,20]. We have found that the result is basi-
cally operator-independent for the meson masses. For
the nucleon, however, the mass depends on operators
used up to 4%%uo. In addition several nucleon operators
yielded unexpectedly large masses which are close to the
masses obtained from the operators which are assigned to
the 6 baryon. Such operator-dependent results would be
an origin of systematic errors for lattice hadron spectros-
copy, and more extensive study for this aspect is desirable
[27].

The chiral aspect of the full QCD hadron spectroscopy
is also explored in some detail. It was found that the
quark mass dependence of the pion mass is consistent
with the relation predicted by PCAC m ~ m . We have
also shown that the pion decay constant S consistently
determined within an accuracy of 10'f/o with the aid of
PCAC and from various correlators including the axial-
vector current and the pseudoscalar density. The mass
degeneracy between chiral partners is also lifted for a
large spatial extent of the lattice, as anticipated. On the
other hand, the quark mass extracted from the simulation

does not agree with what we expect from the empirical
studies using current algebra. Further exploration is
needed in this respect to establish full consistency with
the phenomenological theory of current algebra and
PCAC.

For the simulation presented in this article we used
about 5000 hours of CPU time on HITAC S820/80 at
KEK with a sustained computing speed estimated to be
1.2 GFlops for our code for the hybrid R algorithm.
About 75% of the CPU time is used to generate
configurations for m =0.01 and 0.02 on a 20 lattice for
our final spectroscopic result reported here.
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