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Analytic structure of the self-energy for massive gauge bosons at finite temperature
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We show that the one-loop self-energy at finite temperature has a unique limit as the external momen-

tum p„~o if the loop involves propagators with distinct masses. This naturally arises in theories involv-

ing particles with different masses as is demonstrated for a toy model of two scalars as well as in a U(1)
Higgs theory. We show that, in spontaneously broken gauge theories, this observation nonetheless does
not affect the difference between the Debye and plasmon masses, which are often thought of as the

(po =O, p —+0) and (po —+O, p =0) limits of the self-energy.

PACS number(s): 11.15.Ex, 52.60.+h

I. INTRODUCTION

In finite temperature field theory, the existence of an
additional four-vector, namely, the four-velocity of the
plasma, allows one to construct two independent Lorentz
scalars on which the Green's functions can depend:

different masses. Finally, we conclude with comments on
the physical interpretation of our results in Sec. IV. For
pedagogical completeness, we include, in the appendix,
the derivation of the vector polarization tensor. In that
calculation, we employ Feynman parametrization and e
regularization in the real-time formalism, paying particu-
lar attention to the subtleties of Feynman parametriza-
tion pointed out by Weldon [4].
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II. THE SCALAR CASE

Consider a toy model described by the Lagrangian den-
sity

where u" is the four-velocity of the plasma and
P"=(p, p) is the four-momentum of any particle. In the
rest frame of the Quid, these scalars reduce to p and
p = ~p, respectively.

In particular, this separate dependence of polarization
tensors and self-energies allows one to take the limits
p ~0 and p —+0 in different orders and, in general, one
expects that the limits need not commute. In fact, it has
been shown that in the case of hot QCD [1] and self-
interacting scalars [2,3] the two limits indeed do not com-
mute. In this paper, however, we will show that there ex-
ist contributions to the one-loop self-energy of a massive
gauge boson in a spontaneously broken gauge theory
which possess a unique limit as p and p tend to zero, as
long as the particles propagating in the loop have
different masses. As we shall show, however, for the pur-
pose of computing physical quantities, such as poles of
particle propagators, the usual approximation which uses
the noncommuting limits is perfectly adequate.

The outline of the paper is as follows. In Sec. II, we
study the contribution to the self-energy of a scalar field

through its coupling to another scalar Pz,
Xt= —(A, /2)P&$2, where the two fields have different
masses. In Sec. III, we analyze the polarization tensor of
the massive photon in a spontaneously broken U(1)
theory, where the Higgs boson and the photon have

&=&o(0i)+&o(A)——0i0z
2 (2.1)

where

2

(2.2)

k—p

FIG. 1. The one-loop contribution to the P, self-energy.

with i = 1,2 (no summation). We ignore the fact that the
potential for this theory is unbounded from below, and
compute the one-loop contribution to the self-energy of
tI)& to demonstrate its analytic structure. The only contri-
bution to the self-energy at one loop comes from the dia-
gram in Fig. 1. One obtains the temperature-dependent
part of the self-energy in the usual fashion [5]:
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where co; =k +m;, for i =1,2, hm, 2 =m, —m 2, and n (x) is the Bose-Einstein distribution.
The angular integration yields

Re X~(po, p) =— n(co, ) n (co&)
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This limit clearly is independent of a, and therefore takes
on a unique value showing that the self-energy is analytic
at P"=0. This is also the value that one would have ob-
tained for the self-energy by setting P"=0 inside the in-
tegrand in Eq. (2.3). In such a case, it is clear from (2.3)
that Am, 2 has to be nonzero for a well-behaved result.

At high temperature, the leading contribution to this
double limit can be shown to be

lim ReX (po,p)=p A T
p —+Q 4m m&+m2
po~Q

(2.7)

It is worth noting that Eq. (2.6) gives a finite result in
the degenerate mass limit, Am &2

—+0, which turns out to
be the same as the pQ=O, p~0 limit of the equal mass
case Am &2

=0.
Next, let us turn out attention to a spontaneously bro-

ken U(1) gauge theory.

In order to analyze the behavior of the self-energy close
to P"=0, let us assume po =ap in (2.4) and take the limit

p —+0. If the result is a dependent, then the value of the
double limit will depend on the way P" approaches zero
and, therefore, will correspond to a nonanalytic structure
at P"=0. It is easy to establish that (2.4) in this limit be-
comes

lim Re%~(ap, p)
p —+Q

+ g pg ~2+e2UQ pg ~ QU~3 ~4
P 4

(3.1)

where rl is the Higgs field, A„ is the U(1) gauge field, and
the vacuum expectation value U =m /&2A. . In this
gauge, the only one-loop, momentum-dependent correc-
tion to the photon propagator is given by the diagram in
Fig. 2, which we denote by H„. This diagram gives

d'k n (~k ) M' —(po —~j, )'
ReII~QQ =4e

(2') 2cok (po ~k ) &k+q

kn(0 ) M —Q

(po &u) ~k+,

+(po —po) . (3.2)

Here we have defined M = eU, cok =V k +m, and
IIk =V k +M . [The expression (3.2) is easily obtained
by standard techniques. However, because confusion in
the literature about the P"~0 limit is often tied to par-
ticular techniques for computing finite-temperature dia-
grams, and since the use of Feynman parametrization in
the real-time formalism is a particularly good example of
this, we show explicitly in the appendix how to perform
such a calculation using this technique, together with
regularization of the real-time propagators. For routine
calculations, however, Feynman parametrization is im-
practical. ] After doing the angular integration, one ob-
tains

grams makes its use preferable for our purposes.
The Lagrangian for the Abelian Higgs model in uni-

tary gauge is given by

1 e U 1 m+ a~a +—a~&a qpv P 2 P

III. ABELIAN HIGGS MODEL

For simplicity, we will perform the calculation of the
polarization tensor for the massive vector boson in the
Abelian Higgs model in unitary gauge. Unitary gauge is
infamous for complications in the Higgs sector at finite
temperature [6]. In the gauge sector, however, these
complications are absent and the smaller number of dia-

FIG. 2. The only one-loop, momentum-dependent contribu-
tion to the vector self-energy, in unitary gauge.
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where S, are given in (2.5) with m& =m and mz =M.
Let us analyze the small-p, small-p behavior of (3.3). For that purpose, let us set, as before,

p =&p.
Then, for nonzero values of Am &2

=m —M, it is clear that

(3.4)

4e z "(~k) k
lim ReIIoo(ap, p) = — f dk k +
p~0 ~ 0 2~k m 2 M2

n (cok)

2Q) k

n (Qk)

20k
(3.5)

In particular, this limit is finite, a independent and hence
independent of the ratio p0/p as p0 and p approach zero.
Alternatively, this may be obtained by simply putting
P"=0 in (3.2). So, the double limit is unique, as prom-
ised. Furthermore, it is easy to establish that ReII~ has a
unique double limit as well.

The high-temperature limit of (3.5) can be easily ob-
tained to be

ImX~~ (u,p) = ImX~(u, p) tanh

ReX~~(u, p)= ReX~(u, p) .
(4.2)

As pointed out by Weldon [3], ImX~z(u, p) is nonzero
only for some values of u —p . The imaginary part of
the self-energy is expressed in terms of the discontinuity
of Xg (po,p) along these cuts on the real axis:

lim ReIIoo(po, p)= —,'e T
p —+0
pa~0

(3.6) lim [Xg(po+ie, p) X~~(p—o ie,p)]—= 2i ImX—~z(po, p),
+v~0

(4.3)
which turns out to be the same as the p0=0, p~O limit
of the equal mass case b,m, z =0. [In fact, we note that
even though the expression (3.5) appears to be singular
when m =M, it indeed has a finite limit as the two masses
become degenerate and corresponds to the p0=0, p~O
limit of the degenerate case. One can, therefore, even
foresee using such a mass-splitting regularization in such
calculations for the equal mass case. ]

IV. SUMMARY AND PHYSICAL IMPLICATIONS

ImX~ (u, p)P duu
7T 0 0 P0

(4.1)

The last equality follows from the fact that ImX~~ (po,p) is
an odd function of po [7]. Here X~+ is the retarded two-
point function related to X~ by

We have shown, both in the context of a scalar toy
model as well as for a spontaneously broken Abelian
gauge theory, that the finite-temperature one-loop self-
energy and/or polarization tensor at finite temperature
has a unique limit as the external four-momentum goes to
zero. The absence of the usual noncommuting double
limits is traced to the fact that there is (generically) a
finite mass difference among the particles propagating in
the loop. One can understand this result in the following
way. The real part of the one-loop self-energy is related
to the imaginary part through the dispersion relation [4]

ImX~R (u, p)
ReX~z (po,p) = Pf du—

7T P0

for real p0. For fixed m, and m2, these cuts exist for

u —p ~(m, +mz)

u —p ~(m, —mz)

(4.4a)

(4.4b)

The first cut is the usual zero-temperature cut corre-
sponding to the decay of the incoming particle, whereas
the second appears only at TAO and represents absorp-
tion of a particle from the medium. The first cut does not
lend itself to noncommuting double limits, so the only
suspect is the second cut. In fact, it is this cut which is
responsible for the noncommuting double limits in the
case m, =mz [4]. In our case however, the contribution
of this cut is perfectly well behaved as P"~0. In fact, if
we denote this contribution by Cz(po, p), we then obtain

ReX~(po p) &Cz(po p)

[p +(m& —m2) ] Imp& g p=—p dQ 0
0 Q P0

Performing the change of variables

u —+u/Qp +(m, —mz)
we obtain

ReXz (po p) & Cz(po p)

] ImXg(u~p +(m] —mz), p)
P duu

u —po/[p +(m, —mz) ]

(4.5)

(4.6)
As long as the masses are different, the zero-momentum
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limit of Cz(po, p) is well defined and given by

ImXii (u, O)
C2(0, 0)=- dQ

7T 0 Q
(4.7) (eT)

3

rr00(0 P)

This limit, however, is not well defined if the masses are
equal. Note that (4.7) is well behaved, given that
ImX~(u, O) is odd in u, and goes as u for small u.

The results of the previous section might, at first, ap-
pear to have far-reaching consequences in the study of
finite-temperature field theory, where it has always been
assumed that aO one-loop self-energies exhibit a nonana-
lytic behavior at vanishing external four-momentum.
One may naturally wonder whether our observation has
any effect on standard computations of physical quanti-
ties, such as the difference between Debye and plasmon
masses in the standard electroweak theory, and whether
there could be any effect on studies of the electroweak
phase transition

I 8]. In fact, it does not, as can be argued
in the following way. Our result (3.6) for the P"~0 limit
depends on assuming po, p «

I
Am

I /T in (3.2), since (3.2)
is dominated by k —T. However, the region of interest
for self-consistently finding the Debye or plasmon poles
of the vector propagator is when p0 or p take values of
order m; &) Ibm I/T. In that regime, Am iz can be ig-
nored in (3.3), in which case one recovers the usual non-
commuting double limits. The qualitative features of our
results are shown in Fig. 3. For p0 and p small compared
to Ibm I/T, the functions Ilo~o(po, O) and Ilo~o(O, p) tend
to the same limit. However, at order m, the functions
take on different values. As the mass difference goes to
zero, it is clear that the unique limit disappears, as well.

-Qm/p2

00 P0'

(P0, P)
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APPENDIX:
POLARIZATION TENSOR CALCULATION

FICx. 3. For po and p small compared to Ib,m'I/T, the func-
tions II~«(p0, 0) and H~(O, p) tend to the same limit. However,
at order m, the functions take on different values. As the mass
difference goes to zero, it is clear that the unique limit disap-
pears, as well.
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In unitary gauge, the only one-loop momentum-
dependent correction to the photon propagator is given
by Fig. 2. We denote this II„. We will compute this
contribution in the real-time formalism, using Feynman
parametrization, and e regularization of the propagators.
We obtain a regulated expression

d4k k„k
II„(po,p) =4ie M f g„—

(2~) " M
1

E D
1

2~i n ( I

k—o I
)+—5,(D, )

1

X P, 1

2

2~i n ( po—+koI)+ —5,(D2)
1

where D, =K —M and D2=(K+P) m, while the re—gulated principal value and 5 function are defined by

15,(x)=-
~X +E

(A2a)

X

X

X +6
(A2b)

The real part of the TWO contribution is

4
~P 4 ~ k k +k g P+~ 2 2

(2'�) " ' K —M

+P. . . n(Ik, I)5,(re' —M')
(P+K) —m

(A3)
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case, however, where M=m, the conventional calcula-
tion becomes ambiguous at P"=0. So we will perform
the calculation for an arbitrary infinitesimal e and we will
let e go to zero at the end.

Define

h„= J dkokon(~ko~)P, 5,(K —M2)
(P +K) —m

(A4)

and

h„=f dkokon (
~ ko ~ )P, 5,(K2 —m 2) .

(P+K) M—
(A5)

In terms of these functions, the polarization tensor be-
comes

FIG. 4. Contour in the complex k plane used in the integra-
tion. The limit e'~0 is implied.

d k
ReHpp=4e

3
M hp h2+M hp h2

(2m. )'

There is an implicit limit of e~O in all the above expres-
sions. This limit is to be taken at the end, after all
relevant integrations.

Let us note that the e regularization is superAuous for
generic values of the vector and scalar masses. In the

—2pph, —pphp (A6)

The other components have similar expressions. Our
task is to compute the functions h„. Let us rewrite (A4)
as

kp E' (Po+ ko)' —~,'+k
h„=— dkp-

Pko (k2 ~2 )2+ 2 [( +k )2 2 ]2+ 2

dkpkp (po+ko)' —~,'+k
+( —l )"(po~ —po)

o /3ko (k2 ~2 )2+~2 [( +k )2 2 ]2+~2

H„(p op) +( ——1 )"H„(—po, p) . (A7)

These integrals can now be calculated using the contour shown in Fig. 4. Clearly, the integrals vanish along the arc.
However, since the Bose-Einstein distribution has a series of poles along the imaginary axis, the integration along this
axis would appear to give a nonvanishing contribution. It is easy to establish, however, that in the limit e~O, the term
6, would regulate this contribution to zero. We proceed by expressing each fraction in the integrand as the sum or
difference of propagators with different analytic properties (i.e., differing in their i@ prescriptions) to obtain

i dkpkp 1 1
H. (po p») = ~k X b

2 2 2 24n o e o l, b=+i (Po+ko) co k+ai—e ko —Ok+biz
(A8)

Next, we combine denominators using Feynman parametrization, appropriately modified by Weldon [4], and Bedaque
and Das [9]:

1 1 =P dx + 27Tl
. (a —P)5(PA aB)—

4 +iae B+i/3F. o [x (A +iae}+(1—x)(B +ipe)] ~ B+i (a 8)&
(A9)

We shall denote the contribution to H„ from the integral over the Feynman parameter by H„and the contribution from
the 6 function by H„:
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kn
H„(p0,p) = f dk0

&k g b f dx' —1,b=+) o [(k0+xp0) —Qk+[xa+(1 —x)b]iE]

a - ko i 1

4~ Be 0 iko 1,b +, 0 y k0+xp0 pk—+y (i e/2/k )

where

Pk = [
—x (1—x)p0+(1 —x)Ak+xco +k ]'i

X
k 0 +xp 0 +4' k y ( ~ ~ /2 4k )

(A10)

(A 1 1)

y =x(a b)+b—.

We are now able to do the ko integration by picking the poles in the first quadrant:

(A12)

H„"(p0,p) = —— f dx
i
2 BF 0

l 6'
xP0+

2 k

l6 lE'
24k + exp P Pk

—xp0+
2/k

n

Pk
—xp0+ (1—2x)

kdx 1

0 1 2x lE2/k+(1 —2x) exp P Pk
—xp0+(1 —2x)k 0

'n

xp0 (1 2x)
kdx 1

&/2 1 —2x l E'

2/k —(1 —2x) exp p p
—xp —(1—2x)k 0

'n

e=o

(A13)

Upon defining a new variable

zk(~) = [ —x (1—x)p0+(1 —x)0k+xi+k+~]', ~k(0) =Pk,

Eq. (A13) reduces to

(A14)

1 B & I2 dx (~k xpo)H"(, )=-
n pOt&p 2 B f p(z„—xp )a o zk e k 0 1 a=0

(A15)

The term involving the 5 function in the Feynman parametrization formula can be easily computed to contribute

( —p0/2+R)" 1

P{— /2+R) 2 ~2e ' —1 ~p+k I Po

where

(A16)

2

R = — +—(co +k+Ak)
Po 1 2

2

' 1/2

(A17)

The function h„, defined by (A5) can be calculated in the same fashion. Recalling (A6), and collecting only the Feyn-
man parameter-dependent terms, we obtain
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d'k n (zk+xpo)
Relly &2e I f dx [M (—zk+xpo)']

t)a (2~) o zk

n (z„—xpo)+ [M —[zk+(1—x)po] ]
zk a=o

+( o
—Po» (A18)

where zk+ zk as I~M. The x integration can be performed after a change of variables

x~1 x

k~ —k —p,
in the second term, and

N =zk +xPO

(A19)

(A20)

in the resulting integrand. All the dependence on u resides now in the limits of integration. Taking the derivative with
respect to e and the limit +~0 yields

d k n (cok) M (po cok) n (~Ik) M +k
ReHoo &Ze +

Po ~k k+p k 5 0 +k ~k+p

1

P(p, yz+R)

M —
—,'(0 +kpco+)kPoR-

+
R ~p+k —Qk+2POR

1

p( —
po /2+ R)

e
+(Po —Po» (A21)

where R is given by Eq. (A17). If the 5-function contribution to the Feynman parametrization formula (A9) were in-
correctly left out, then (A21) would be the complete expression for ReIIoo. It is interesting to note that in such a case
(A21) would agree with the expression derived within the imaginary-time formalism for po =2rrilT, since then the third
term would vanish identically. However, (A21) as it stands is the wrong analytic continuation of the Euclidean expres-
sion. Indeed, the contribution of the 5 function (A16) exactly cancels the third term in (A21) and, therefore, the com-
plete expression is

Rerro~o =4e d k
(2m)'

n (cok ) M —(po —
cok )

(P'o ~k )' &k+J—
M —Qk(nQ )k+ 2 220k (po &k ) cok+q

+(Po —Po» (A22)

which agrees with the imaginary-time expression for real po.
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