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Asymptotic fermion propagator in massless three-dimensional QED

B.J. Hand
Department ofPhysics, University of Toronto, Toronto, Ontario, Canada M5S 1A 7

(Received 14 July 1992)

Massless quantum electrodynamics in two spatial and one time dimensions has a logarithmically
confining static Coulomb potential, and thus nontrivial infrared behavior. We apply a technique
developed for ordinary four-dimensional quantum electrodynamics in which the charged asymptotic
states in the theory are dressed with soft vector bosons, in order to improve the representation of the in-

frared dynamics in perturbation theory. The resulting modification to the mass-shell behavior of the fer-
mion propagator is determined, with the result that the propagator no longer possesses a mass-shell

singularity.

PACS number(s): 11.10.Jj, 11.15.Tk, 12.20.Ds

I. INTRODUCTION

Quantum electrodynamics in 2+ 1 dimensions has been
investigated from several different viewpoints over the
past 15 years. Perhaps the form of most current interest
is the one that contains a Chem-Simons term
pc" I'„A, which results in a vector field mass that
does not violate gauge invariance [1]. It is hoped that
this form of three-dimensional QED (QED3) will be a use-
ful tool in the understanding of certain exotic phenomena
such as the quantum Hall effect [2].

QED3 with massless vector and fermion fields has also
been of interest to several authors [3—5]. Since the static
Coulomb potential is log arithmically confining, the
theory provides a useful framework in which to study
field-theoretical techniques dealing with confinement [3].
One immediate consequence of the confining nature of
the massless theory is that conventional perturbation
theory [6] results in severe infrared divergences at two
loops [4]. For example, when the internal vector line of
the one-loop fermion self-energy graph is corrected by a
fermion loop (vacuum polarization), the resulting expres-
sion contains a Feynman parameter integral that is loga-
rithmically divergent, even before any mass-shell condi-
tion is enforced. Jackiw and Templeton [4] have shown,
however, that by considering the full inverse propagators
of the theory instead of the individual perturbative con-
tributions, the infrared divergences are removed in a nat-
ural way. The full fermion propagator contains a loga-
rithm of the (dimensionful) coupling over the external
momentum, and thus becomes a nonanalytic function.
Their result is valid when the ratio of the coupling over
the off-shell external momentum is small.

Another approach to understanding the infrared sector
of QED3 that we suggest here is to make use of the un-
derstanding of the infrared sector in ordinary (3+1)-
dimensional quantum electrodynamics (QED&). Here it is
well known that graphs containing one or more loops can
encounter infrared divergences when mass-shell condi-
tions are enforced. For any physical cross section, the in-
frared divergences are canceled when soft bremsstrahlung
processes are taken into account [7,8]. The origin of the

infrared divergences lies in the unsuitable nature of stan-
dard perturbation theory when an infinite range interac-
tion, the electromagnetic interaction, is present. In stan-
dard perturbation theory, incoming or outgoing fermion
states are created by free-field operators, in contra-
diction to the fact that a physical fermion carries charge
and is thus coupled to the electromagnetic field. The
infinite range of the electromagnetic field invalidates the
assumption that at asymptotic times the charge may be
"switched off." The problem of formulating more physi-
cally suitable asymptotic states for electrodynamics was
first addressed by Dollard [9] in the context of nonrela-
tivistic quantum mechanics; the field theoretical exten-
sion has been addressed by several authors [10—15]. The
more recent approaches are based on work by Kulish and
Faddeev, who dress free-field states with a pseudounitary
transformation derived from a Hamiltonian containing
the infrared dynamics of the theory. The result is that at
asymptotic times a charged fermion is surrounded by an
infinite number of soft photons, and acquires a phase fac-
tor that represents the Coulombic interaction with the
other charged fermions in the asymptotic state. Refer-
ence [16]contains a good summary of their approach and
its problems.

With an understanding of the origin of infrared diver-
gences in QED4, it is not surprising that in QED3, where
the Coulomb potential is confining and thus the assump-
tion of free fields asymptotically is even more unphysical,
the infrared divergences encountered in standard pertur-
bation theory are more severe. In this paper we attempt
to improve the representation of the infrared dynamics of
massless QED3 in perturbation theory by employing
asymptotic fermion states constructed with the tech-
niques of Kulish and Faddeev. We shall determine the
effect of using asymptotic states on the mass-shell
behavior of the fermion propagator. The result may be
considered as a supplement to the elegant nonperturba-
tive off-shell result of Jackiw and Templeton, although it
is obtained by a completely different approach. A secon-
dary motivation is that the result may provide some gui-
dance for the formidable task of applying the Kulish-
Faddeev technique to QCD&, which has been undertaken
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by several authors [17]. We begin in Sec. II by reviewing
the canonical quantization of the free fermion and vector
field in 2+ 1 dimensions. In Sec. III the asymptotic fields
and states are developed. Section IV contains the deriva-
tion of the asymptotically modified fermion propagator,
and Sec. V contains a discussion and our conclusions.

II. CANONICAL QUANTIZATION

We begin by quantizing the free Dirac field. In 2+1
dimensions the massless Dirac equation describes a fer-
mion with no spin, possessing two degrees of freedom
[18]. We realize the algebra as in Ref. [1]:

We turn now to the quantization of the free vector
field, which will be done in the manifestly covariant
Feynman gauge. The free vector field satisfies the equa-
tion of motion

a "(x)=0

and may be given the mode decomposition

d k 1a„(x)=f, g E (k, A, )[a(k, A, )e
(2~vi, ) x=0

+a (k, A, )e'" "],
(12)

—0, P —lCT, f =lO'

y"y'=g" iE4 —y, g~ =diag(1, —1, —1) .

The two-component free spinor field P solves the equa-
tion

where real polarization vectors are used, and
k =tv& = ~k~. The creation and annihilation operators
are given the commutation relations

[a(k, X),a (k', A, ')]=—g 6 (k —k') (13)

i((IQ(x) =0 .

Positive and negative energy solutions are

from which the field commutator may be evaluated:
(2)

[a„(x),a, (y) ]= ig„—h(x —y) . (14)

IP 'X 1

&Ze
p

elP X— 1

v'2e
p

p
IP 'X

lpga

p2

lp i +p2
1P X

Ep

(3) iD (x,x')„„=(O~T[ a(x)a (x')]l0&

~ ~ —ik. (X —X')=l~ ~

~3
e(2'�) k +is (15)

The Gupta-Bleuler subsidiary condition [20] will be dis-
cussed in the next section. The Feynman propagator is

where e =Qp ) +p z . These solutions have the normali-
zations [19]

Q 'll =V U =1
p p p p

The Lagrangian for the coupled theory is

L = ,'F„(x)F"—'(x—)+if(x)j3$(x)

+eg(x) g (x)g(x) —
—,'(8 A (x) ) (16)

Qp Qp
=

Up Up
=0

QPQ p =Qpv p
=0

(4)

For future use we state a (2+1)-dimensional Gordan
identity

Qp f kQP =p k /Ep

The quantization of the coupled theory proceeds in a
manner completely similar to the (3+ 1)-dimensional
case, and for the sake of brevity we shall not present the
details.

We will make the usual assumption that there exists a
unitary transformation between the free fields and the full
(interpolating) fields:

We make a mode decomposition for (t:

P(x)= (b u e '"'+d v e'y' ),d
2~

and impose the standard anticommutation relations

[d, d~] =|"(p—k) .

(6)

(7)

From (6) and (7) it is straightforward to verify the an-
ticommutation relation

g( )
p

(
—ip (x —y) ip. ( ey)x)

d 1

(2'�) 2e„
(9)

[P (x),Pt)(y)] =(t'8 ) t)i&(x —y),
where h(x —y) is the three-dimensional invariant singu-
lar function:

p(x, t) =Z (t)li)(x, t)Z '(t),
a (x, t)=Z(t)A„(x, t)Z '(t) .

Using the Heisenberg relation,

i [H(t), (liixt)]= (li)xt),

it is straightforward to show that

iZ(t)Z '(t) =H, (t)+e,(t),
where Ht(t) is the interaction Hamiltonian

Ht(t)= —e J d x it)(x, t)y a(x, t)P(x, t),
and eo(t) is an arbitrary time-dependent c number.

III. ASYMPTOTIC STATES AND FIELDS

(17)

(18)

(19)

(20)

(21)

At equal times (9) reduces to the usual expression

[P (x, t), Pp(y, t)] =5'(x —y)5 p . (10)
Now we come to a crucial step. We wish to construct

asymptotic fermion states in such a way that the infrared
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dynamics is sufBciently represented. That is, a charged
fermion at an asymptotic time must be accompanied by a
low-frequency electromagnetic field. To accomplish this
we start by considering the large-time behavior of the
coupled theory. Let us decompose the interaction part of
the Hamiltonian into

HI(t) =HI"(t)+Ht(t), (22)

where Ht"(t) is the dominant term of HI(t) at asymptotic
times, t ~~. To find an expression for Ht"(t), one first
substitutes the mode expansions (6) and (12) into (21).
Consider a typical contribution to iZZ

p= —e d q btp u 1 e(k, p)u [a(k p)e" I " '+at(k, p)e'x ~&+" q']dx d dk
)2 2~ +2

= —e [b„b ku y E(k, A, )u i, a(k, A, )e
IT

(23)

One now retains only low-frequency contributions to the momentum integrals. For ~t~~~, these occur when the
momentum factors multiplying the time t in the exponents are small. That is, when e —

ep k cok approaches zero.
This in turn requires co& to be small, and so the vector-field momentum integration is restricted to a small sphere cen-
tered around k =0. Then the approximations up+k Qp &p+k bp are made, which allows the y-matrix dependence to
be eliminated via the Gordon identity (5). Finally, terms of order (cok/e~) in the exponentials are neglected. This
reduces (23) to

2 2" "
b,'b, P '"' '[ (k, X). """"+'(k, X) """"].

27T +2Qj 6
(24)

When all contributions to ZZ ' are reduced in this manner, the following expression for Hl"(t), valid only at asyinptot-
ic times, is obtained [12]:

2m. +2~„e~
where

Consider now the large time behavior of Eq. (20). Define the operator U(t) to satisfy the relation

iU(t) U '(t) =Ht"(t), ~t~ ~ ~ .

(25)

(26)

(27)

In other words, U(t) is the operator that allows a free field to be mapped into an interacting field, suitable for use at
asymptotic times only. A significant result is that with the expression for Ht"(t) found above, a closed form solution to
(27) exists [21]:

as t
U(t) =exp —i f Hl"(t& )dt&+ 2 (

—i) f dt& f dt2[Ht"(t~ ),Ht"(t2)]
fo 2 to

(28)

where U(to) = 1. The commutator in (28) may be evaluated by using relations (7) and (13):

d[Ht"(t, ),HI"(t2)]= f p(p)p(q) i&[(p/erat, , t, )
—(q/eqt2, t~)] .

Cp Eq
(29)

This commutator is called the Coulomb phase operator, and it does not have any significant effect in modifying the
mass-shell behavior of the fermion propagator [12]. In what follows we shall therefore neglect its contributions. This
makes the U(t) operator formally unitary.

We may now construct asymptotic states of the theory by operating on free-field states with U(t). For example, in-

coming and outgoing fermion states are represented by

~p );„=U '(t;„)f d x P (x, t;„)X(x,t,„)~0), (30)

..t&q~= f d'X ~ (y, t...)&01&(y,t.„,)U(t.„,), (31)

where X(x, t) is a normalizable solution of the free massless Dirac equation (2) and ~0) is the vacuum in the space of the
free-field operators. The fermion operator dependence in U and U ' can be anticommuted by the operators in P and P
to give
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p a(p/e t„t, )

lp&,„= exp +ie f '"dt,
0

b,'lo &, (32)

q a(q/e t, , t, )
„&&ql=(0 bq exp ie f dti

0
(33)

We see that the effect of the U(t) operator is to dress incoming and outgoing free fermions with a cloud of soft vector
bosons.

We may define the asymptotic fields

P"(x,t)=U '(t)P(x, t)U(t),
a„"(x,t) = U '(t)a„(x, t) U '(t),

and the Lehmann-Symanzik-Zimmermann [22] asymptotic conditions

w-lim f d x N (x, t)P(x, t) =w-lim f d x N (x, t)P"(x, t),
as t —+t as

w-lim f d x f*(x,t)B, A„(x, t)=w-lim f d x f'(x, t)B,a„"(x,t),
as t~t as

(34)

(35)

(36)

where f (x, t) is an arbitrary normalizable solution of the Klein-Gordon equation. The notation "w-lim" (weak limit)
denotes a matrix element relation, not an operator relation. The states enclosing a w-lim relation are the asymptotic
states, which we assign to be the true physical states of the theory.

At this point some discussion of a Gupta-Bleuler subsidiary condition is warranted. Since our physical states are no
longer created by free-field operators, a modification of the usual subsidiary condition should be expected. We follow
Hailer [23] and construct a subsidiary condition that is consistent weakly with Gauss s law, at asymptotic times [24].
Gauss's law is represented by the equation of motion

+egg=B 3,
where the fields are the full interacting fields. Requiring that a physical state lv & satisfy the matrix relation

&via a'-'=a w'+'Iv&=o

at asymptotic times, implies that

(vl A'+esty v&=(vlB i lv&=o,

(37)

(38)

(39)

which is consistent with Gauss s law. If desired, one may integrate (38) and (39) with a normalizable solution of the
free, massless Klein-Gordon equation to obtain equivalent relations in terms of (time-dependent) creation and annihila-
tion operators. The subsidiary condition (38) has the appearance of the usual condition found in standard texts, but is
inherently different in that the vector field is not a free field. Unfortunately, the physical charged states identified in (32)
and (33) (the asymptotic states) do not satisfy (38). Swanson [15] has shown how to remedy this shortcoming by dress-
ing the asymptotic states with yet another transformation. We shall not proceed with this, however, since strict compli-
ance with the Gupta-Bleuler condition is not necessary, if we confine our interest to the mass-shell behavior of the fer-
mion propagator [15].

IV. ASYMPTOTIC FERMION PROPAGATOR

Let us consider the perturbative evaluation of the two-point function

r~.'~( „,)=(OlTIq. (x, )q,(x, )] lO& .

By means of the Z and U operators this may be expressed in terms of asymptotic fields:

I ' '(, , ) p=(olZO 'U, T{U, 'Z, Zi 'Uip"(xi )Ui 'ZiZ2 'Uqpg'( 2)U2 'Z2Z; 'UI] U, 'Z, lo&,

(40)

(41)

where the time of the U and Z operators is displayed by subscripts, with 0 representing t,„,(+ oo ) and i representing
t;„(—~ ). Because of the use of the U operator, (41) is valid only for large lt, l

and lt2l. The first-order contribution to
(41) is called the asymptotic fermion propagator [13]:

i''(xi, x2) = (ol TI P"(x i )Pp'(x2) I lo& .

Noting that U '(t)lo& = lo&, we have

iSF(x„x2) ti=(olp (x, )U(t, )U '(t~)gati(x2)lo&8(t, t2) —(Olgt—i(x~)U '(t~)U(t, )P (x, )lo&8(t2 t, ) . —

(42)

(43)
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ten as

d p it( ~p (», —x, ) . z d3k p [1—cos(o.k p)]
iSJ'," x, ,x2 =i e ' ' exp ie

(2ir) p +ic &' (2m ) (k +i c)(k p+i c)
(51)

d k p [1—cos(o.k p)]X p, o =ie
&'(2') (k +ic)(k.li+ic),

valid for large e ( —p )'~ o ))1. To determine the —p —+0 behavior of the fermion propagator, it is sufficient to con-

sider the behavior of the integral [11]:

(52)

where cr = ~t, t2—~/c~, and where the contour of the k integral is to be completed in the lower half k plane for
t, ) t2, and in the upper half k plane for t, & t2.

Before attempting to evaluate the k integration, a short digression concerning the analogous case in four dimensions
is worthwhile. There dimensional arguments indicate that the integral will be of the form of a logarithm of the momen-

tum p. This logarithm leads to the well-known result that the simple pole of the conventional fermion propagator is
modified into a branch point [11].

In three dimensions, however, dimensional considerations dictate a different form of k integral. One finds

I "(p)= i f—do exp(itTp )exp[X(p, o)] . (53)

In contrast with the four-dimensional case, this integral is not straightforward to evaluate. Also, as in the discussion

following (23) and (49), only large tr contributions, specifically a. —1/( —p ), should be admitted toward the evaluation

of I "(p). Hence we may approximate I "(p) by

2

I "(p)= i f—do exp(iop )exp[X(li, 1/( —p ))]= exp —,ln
0 p +ic 4ir( —p i—c)'~

e

( —p —ic)'
(54)

Thus as —p ~0, I "(p)~0. Within our approximations
the fermion propagator does not possess a singularity at
the mass shell p =O. This result may be rather surpris-
ing, but as we shall brieAy discuss it is consistent with the
nature of a confining theory.

V. DISCUSSION

It should be emphasized that the use of the asymptotic
fields for S-matrix element calculations does not alter the
fundamental theory, which is governed by the full (inter-
polating) equations of motion and the commutation rela-
tions of the fu11 fields. The use of asymptotic fields in

place of free fields provides an alternative method of per-
turbatively evaluating Green's functions. We believe that
this approach should provide a better representation of
the true physical behavior of the theory, at least near the
mass shell. For the fermion propagator, our results indi-
cate that the usual mass-shell singularity obtained in con-
ventional perturbation theory is eliminated. The non-
singular behavior implies that the one-particle fermion
states do not have a well-defined energy-momentum rela-
tionship. This agrees with a conclusion by Cornwall [3],
obtained by arguing on more general grounds, that the
fermion propagator in a confining theory does not neces-
sarily admit a mass shell characterizing a particle with

f

well-defined properties. Our result is also in line with the
belief that the Green's functions of a massless theory
should be less singular than in the corresponding massive
theory [11].

A softening of the infrared behavior of near-massless

QED3 has also been found by lattice-gauge simulations,
with N flavors of fermions [5]. By placing the fermions in
doublets, chirality may be defined in QED3 [3], and an
area of significant interest is the relation of the infrared
behavior of the fermion propagator to chiral symmetry
breaking. The analogous result to (54) for N flavors ar-

ranged in fermion doublets would be relevant to the issue
of chiral symmetry breaking. The most direct way to
study the effect of the modified mass-shell behavior on
chiral symmetry breaking would be to use the form of
(54) as input to the Schwinger-Dyson equation for the fer-
mion propagator, in the mass-shell domain. This is, how-

ever, beyond the scope of this paper.
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