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Light-front quantization of the sine-Gordon model
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It is shown how to modify the canonical light-front quantization of the (1+1)-dimensional sine-
Gordon model such that the zero-mode problem of light-front quantization is avoided. The canonical
sine-Gordon Lagrangian is replaced by an effective Lagrangian which does not lead to divergences as
k+ =(k +k')/&2 —+0. After canonically quantizing the effective Lagrangian, one obtains the effective
light-front Hamiltonian which agrees with the naive light-front (LF) Hamiltonian, up to one additional
renormalization. The spectrum of the effective LF Hamiltonian is determined using discrete light-cone
quantization and agrees with results from equal-time quantization.

PACS number(s): 11.10.Ef, 11.10.Lm

I. INTRODUCTION

Recently, there has been renewed interest in the light-
front quantization of the transverse lattice action of
gauge theories [1—3]. The basic idea is quite simple and
appealing. In Euclidean lattice gauge theory all four
space-time directions are discretized [4]. In Hamiltonian
lattice gauge theory, time is continuous while the three
spatial directions are discretized [5]. In the transverse
lattice approach one leaves the two "longitudinal" direc-
tions (x,x ) continuous while discretizing the transverse
directions (x', x ) [1]. On the one hand, the transverse
lattice thus provides a gauge-invariant ultraviolet regu-
larization scheme and, on the other hand, it is still possi-
ble to perform canonical light-front (LF) quantization,
making it a promising approach towards nonperturbative
calculations of deep-inelastic structure functions.

However, there are still many unresolved renormaliza-
tion issues in the context of the LF quantization of the
transverse lattice action [2,3]. Those are related to simi-
lar problems appearing in the LF quantization of the
sine-Gordon model [6—8]. Naturally, what one obtains
for the transverse lattice action are (1 + 1)-dimensional
(continuous) field theories on each of the transverse sites
and links coupled through link and plaquette operators.
Since the link fields are U(1) or SU(X) fields in QED and
QCD, one ends up with an action that contains terms

iagA& .
resembling gauged sine-Gordon [from U=e ' in U(1)],
or gauged SU(X) nonlinear cr models with many fiavors
in (1+1) dimensions (however, we will not push the anal-

f dp k
=0 for p+%0 .
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One can easily convince oneself that integrals such as the
one in Eq. (2) appear in the diagrams in Figs. 1 and 2 as
well as in many other graphs with similar topology.
Therefore, unless one finds a clever way to treat these
zero modes [11—14] in a canonical (and practical) frame-
work, any field theory where such integrals appear natu-
rally from the Feynman rules, cannot be generated from a
(naive) canonical LF Hamiltonian. '

ogy too far).
As a first step towards a LF quantization of these

transverse lattice actions it is thus helpful to understand
how to perform the LF quantization of the sine-Gordon
and nonlinear o model in (1+1) dimensions.

Naively, this seems to be straightforward. However, as
analyzed in detail in Ref. [6], the canonical procedure
yields results that are in contradiction to known results
for the sine-Gordon (SG) model [7,8].

1 CXp

a„yd~y —, [1—c—os(Py)] .

For example, in equal-time quantization the Hamiltonian
corresponding to XsG becomes unbounded from below
for Pz ~ 8rr In canon. ical LF quantization this occurs al-
ready for p ~4vr [6]. Furthermore, Green's functions
computed in mass perturbation theory disagree in the
two frameworks. For example, in second order in a the
LF result diverges as p ~4~ while the correct answer
(from equal-time quantization) stays finite at that point.

Griffin has pointed out the source of the problem,
which arises from an improper treatment of generalized
tadpoles (Figs. 1 and 2) in the canonical LF approach [6].
The root of the problem lies in the fact that [9,10]

FIG. l. (a) Tadpole diagrams in P theory. (b) "Generalized
tadpole" diagram in P4 theory.

Notice that this zero-mode problem is different from the
1/k+ singularities in gauge theories in the light-cone gauge. In
this work we will not address the question of how to regularize
gauge-field propagators.
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FIG. 2. Typical diagrams arising from interactions between
"tadpoling" bosons in the sine-Gordon model. (a) Correction to
the two-point function. (b) Similar correction to the four-point
function.

So far, no practical procedure has been given that al-
lows one to include zero modes as dynamical degrees of
freedom in a LF Hamiltonian (maybe this is even impos-
sible). The approach proposed in this article is to absorb
zero-mode induced effects into renormalization constants.
That this should be possible is clear from the following
observation (valid for self-interacting scalar fields) in per-
turbation theory. Only a very distinguished class of dia-
grams is treated incorrectly in LF quantization (i.e., do-
ing the p integrations first yields just zero). Those are
diagrams such as the ones in Figs. 1 and 2 where one (or
more) boson lines emanating from one vertex close back
to the same vertex [they may interact with each other, as
in Fig. 1(b) or 2, but not with lines from other vertices].
What those Feynman diagrams also have in common is
that the loops do not depend on the external momenta.
Therefore, they correspond to pointlike effects which one
should be able to represent by a loca1 counterterm. By
adding the counterterm one should be able to "make up
for mistakes" done in a naive approach.

In practice, we will proceed as follows. We will replace
the original Lagrangian by an effective Lagrangian. In
the effective Lagrangian, all generalized tadpoles and vac-
uum diagrams have been absorbed into a redefinition of
the couplings. Therefore, those diagrams will be "forbid-
den" diagrams for the effective Lagrangian. This
effective Lagrangian is then perfectly suited for canonical
LF quantization because exactly those diagrams which
are zero due to deficiencies of the canonical LF quantiza-
tion are forbidden anyway.

II. CONSTRUCTING
THE EFFECTIVE LAGRANGIAN

From general field theory principles it should be clear
that the effective Lagrangian exists for some range of pa-
rameters. The art is to actually construct it. For reasons
of clarity, we will first do this for the P theory with

4y4int 4!

A very helpful observation for the derivation of X; t ff is
factorization. All generalized tadpoles and vacuum dia-
grams factorize into a mass insertion into the external

2See also Refs. [15]and [16] for some related work.

one finds

y'+ y' (o~y'~0) + y' (O~y'~0)
int, eff 6 6) 4) 2i 2( 4t

4!
+

21 2!
(6)

and so forth. The general rule is: the higher the power of
tt in the original Lagrangian, the more numbers [the vac-
uum expectation values (VEV's) of (0~$"~0) ] are needed
to characterize the vacuum fiuctuations of the field P. (In
general, i.e., when X,„t contains odd powers of P, one also
has to include VEV's of odd powers of P, but this should
be obvious. ) Since there are now two extra counterterms
in Eq. (6) ((0~$ ~0) and (0~$ 0)) one has to use two re-
normalization conditions when one constructs X,ff."

In the sine-Gordon model X;„t contains an infinite
number of powers of P and it seems that one loses predic-
tive power since one has to know the VEV's of infinitely
many powers of tt before one can write down the effective
Lagrangian. Because of some properties of exponential
interactions [7] this is actually not the case. Generalizing
our above "dictionary" for going from Lj„, to Xj t eg

(denoted by an arrow ~ ) we note

3(0~$ (0)~0) diverges for free fields. We assume implicitly
that a Pauli-Villars regulator 1/(k —m )~1/(k —m 2)
—1/(k —A ) has been used to cut off the free field divergence.
4We will assume that the VEV's are not known a priori.

lines times a loop diagram that also occurs when one
computes (0~$ (0)~0). For example, in Fig. 1(a) one ob-
tains a mass insertion times the free field value for
(0~$ (0)~0). Figure 1(b) corresponds to a higher-order
perturbation theory contribution to (0~$ (0)~0) times a
mass insertion. Conversely, every term in the perturba-
tive expansion for (0~$ (0)~0) corresponds to a general-
ized tadpole.

After some combinatorics, one thus obtains

, (O~y'~0)
[~t «4)

By (0~$ ~0) we mean the full vacuum expectation value,
computed to all orders in A, using equal-time quantiza-
tion. Of course, in most cases one does not know that
number. However, since it corresponds only to a mass
renormalization, this parameter can be fixed by renormal-
izing the physical mass [15]. It is only important to keep
in mind that (for the same physical masses) different bare
masses will appear in equal-time quantization and in the
LF approach.

If the original Lagrangian also contains higher orders
in P, such as a P /6. term, the basic procedure is similar,
although more terms appear in the effective Lagrangian.
For example, for
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0 (n —k)! k!

(Here we include an irrelevant term proportional to P to
keep the algebra simple in what follows. ) Therefore

m (&p)n ao n yn k—
& O~yk~O &.=0 n! .=ak=o (n —k)t k

(ip)-y- & 0(ipy)" ~O &X X ) k f
m =ok=0

=e'~&& o~e'~&~0 &

(we replaced m = n —k in the sum).
Since VEV's of odd powers of P vanish in the SG mod-

el we thus obtain

cos(PP)&O~cos(PP)~0& .

Note that Coleman's normal ordering formula (which
eliminates only the tadpoles) is a special case of Eq. (9)
where the VEV is computed in free field theory. Because
of the special properties of the exponential function all
generalized tadpoles factorize from the interaction term
and can be absorbed into one single renormalization con-
stant. The structure of the effective Lagrangian is the
same as the original Lagrangian except for a redefinition
of a. In the renormalization procedure one has to fit no
anyway such that one obtains the physical mass of the
soliton for example.

Intuitively, one can understand the factorization of the
VEV as follows. Consider, for example, the basketball di-
agrams (Fig. 2). Obviously, up to combinatorical factors,
the same counterterm is induced for P as well as for P
and all higher powers of P.

Although this should be obvious from the derivation; it
should be emphasized that X,z is exact (provided one
knows the number & 0

~
cos(pp)

~
0 & ). Furthermore, the ap-

proach chosen here should not be confused with expand-
ing P around some "classical value" [16]. There one
would approximate

& Oi cos(PP ) [0 & =cos(P& Oi P iO & )

which is not what is done here. Finally, it is not neces-
sary to specify a "normal ordering" procedure in Eq. (9)
since tadpoles, normal order terms, etc., are "forbidden, "
i.e., zero by construction (they are already in the VEV
and one must not double count).

III. LIGHT-FRONT QUANTIZATION
OF THE EFFECTIVE LAGRANGIAN

The VEV in Eq. (11) has to be computed in the full in-
teracting theory (all orders in a and p) or determined by
renormalization. By construction, X~„t,s has Feynman
rules difFerent from X;„, in the sense that all generalized
tadpoles and vacuum graphs are "forbidden. "

Having constructed the effective Lagrangian it is now
easy to proceed to the light-front Hamiltonian. Since all
"trouble makers" (the generalized tadpoles) are absorbed
into a definition of a and thus forbidden anyway one can
apply the naive canonical procedure. The result is

I' = dx — [:cos(P(()):—1] .
+LF

(12)

The difference between P and P„„„is a renormaliza-
tion of a; i.e., compared to the equal-time (ET) result one
finds

aLF=ao&O~cos(PQ) ~0 &, (13)

~ET=~O&Olcos(p&) lO&r„, The canonical LF
quantization of X~„,,s is straightforward yielding the
"naive" light-front Hamiltonian except that eLF differs
from a„„.„=aET. Since

&Oicos(PP)iO&/&Oicos(PP)iO&~„,

diverges as p ~4n in the SG model [17] this also ex-
plains the divergences found in the naive LF approach
(aL„=aET) investigated in Ref. [6]. Also, because of
these divergences, P [Eq. (12)] should not be used for
p ~4'. The eigenstates of I' in Eq. (12) can now be ob-
tained using standard methods, such as discrete light-
cone quantization (DLCQ) [18] or the Tamm-Dancoff ex-
pansion [19]. Since all the tadpoles are already absorbed
in aLF, the cos(p|I) ) in I' [Eq. (12)] is to be understood as
already normal ordered. No additional "self-induced in-
ertias" should be added, because this would mean double
counting.

A final remark concerns the value of the VEV's. The
VEV's are not calculable in the light-front theory. They
have to be determined through renormalization (or pos-
sibly through some self-consistency conditions). For ex-
ample, in an accurate numerical calculation (e.g. , DLCQ
with many Fock states, such that the Fock-space expan-
sion has converged numerically) one should proceed as
follows: input is /3 and the physical mass of the lightest
boson (or any other particle). One then tunes aLc until
one reproduces that physical mass in the spectrum of P
[Eq. (12)]. Calculating &O~cos(pp)~0& becomes totally ir-
relevant in this kind of approach.

We will now construct and analyze the LF Hamiltoni-
an for the sine-Gordon model (12). On the one hand, this

We have constructed an effective Lagrangian for the
sine-Gordon model:

sa ~o
cos(pp), (10)

cos(PP)&0~cos(PP)iO& .

5In a renormalizable theory this is the most natural way to
proceed. Only in super-renormalizable theory it is common
that people take bare couplings too seriously.

For P in Eq. {12),the "tuning" is trivial, since the VEV mul-
tiplies P . However, if additional terms enter, one really has to
tune.
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demonstrates that the procedure outlined in this article is
practical. On the other hand, the explicit numerical solu-
tions can then by used to study the "parton content" of
the various physical states of the SG model. The numeri-
cal tool we will use is DLCQ [18]. The scalar field P is
put into a "light-cone box" of length 2L using antiperiod-
ic boundary conditions

where

+=2& 1k„= n ——
L 2

(15)

and the a, a satisfy canonical boson commutation rela-
tions: for example,

I&k &,']=&k,
q

. (16)

X an exp
lkn X+

The choice of antiperiodic bc leaves out the zero modes
automatically. As discussed in Sec. II, this is not a prob-
lem, as long as one uses aL„ instead of aET. The expan-
sion for (t (14) is inserted into P (12), yielding

+a„exp
—ik„+x P-= 'H,2'

(14) where

(17)

an2rrtz LF a

a„—exp i13 g-
, &n —1/2

am

, &m —1/2
5Pf, P,. (18)

and P=P/&4rr. Here 5~ ~ stands symbolic for thef' i

Kronecker 5's which ensure conservation of momentum.
An explicit expression would be quite lengthy and will
not be given here.

For fixed P+=(2rr/L)Ir one now diagonalizes H (ei-
genvalues E„)and the invariant masses are given by

M =P+P =LE
n n n

M„
Mi

ny'
sin

sin

(22)

The above formula is valid only for n y'/16 (m. /2. When

As discussed above, we cannot determine az „from a LF
calculation. Therefore, we restrict ourselves to calculat-
ing mass ratios. Typical results, as a function of 1/Ir. (to
demonstrate numerical convergence as K~ ac ), are
shown in Fig. 3. Without doing fancy fits, it is quite obvi-
ous that the DLCQ calculations reproduce (within nu-
merical errors) the exact result for the meson spectrum as
obtained in Ref. [20]:

2.0

1.8

M2/M i

p/v 4 rr=0. 5

3.0

2.9

2.8~—

M3/M,
I I I I I I I I I ll I I

p/W4 rr= 0.5

Mn sol sin
ny'
16

(20) 1.7 2.2

where

i.e.,

1 —P /8rr
(21)

1.5
0

p/v 4 = rr70

I I I I I I I I I I I I

0.1 0.2 0.3
i/K

0.4

2.1

2.0
0

p/v 4 0r.r7

I I I I I I I I I I I I

O. i 0.2 0.3
i/K

0.4

7For details concerning the application of DLCQ to scalar
fields see also Ref. [15].

FICr. 3. Convergence of the mass ratios M2/M& and M3/Ml
for P/&4 0rr. 5 and P/&4rr=0. 7 with increasing resolution K
(crosses). The analytic predictions [Eq. (22)] are indicated by ar-
rows on the y axis.
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y') ger/n [or P /4ir) 2/(n+ 1)] the meson breaks u
into a soliton-antisoliton

t e meson breaks up

t is means in terms of a LF calculation). Other values of
P an igher excited mesons (not sho h ) h
ar y goo agreement with the analytical result (22).

For /3 ~4ir one be obtains negative invariant masses and

the results become nonsensical. This sh'ca . is s ould not come as
a surprise since aLF becomes infinite for P =4'. Extend-
ing the DLCQ calculation beyond th'yon is point will most
i e y not work, as we will see below. The oin

the Fock-s ace ex-space expansion (in terms of elementary bosons
created and destroyed by a ~ and a fa an a or solitons diverges.

is is quite obvious since the asym tot'p o ic vaues of at
~ are diIterent from each oth

'
ho er in t e presence of a sol-

i on. inherent asymptotic values can 1 bcan on y e accom-
p is e y coherent states with eleme t b

2 ) en ary osons. For
4~ all mesons break u ip into soliton-antisoliton pairs.

ere ore, mass eigenstates will have a divergent Fock-

's conceivable that one can develo
vergence in K .

n eve op techniques to over-
e is 1 culty. However, this would go beyond the

scope of this article and
2 & 4~.

we will restrict ourselves t0

Let us now analyze the structure of the m
various cou lin

e o e mesons for

alread
up ings of P. The mass ratios (F 3)

'
d

y stronger binding (between the boson
ig. in icate

creases . T '
e osons as one in-

is expectation is confirmed when
at structure functions

e w en one looks

(23)

and the obvious con
'

continuum generalization f (x) where
momenta are measured in unit f th

'
s o e tota1 momentum.

The numerica1 results for the e 1vo ution of the ground
s a e an t e erst excited state rns a

'
meson structure functions

are s own in Fig. 4. For small /3 the h

y ound state of n elementary bosons. The struc-
ture functions are peaked at 1/ A aa n. s one increases a
sea of bosons develops and the eak de le

into a butterA y (soliton-antisoliton) pair. At th
as urne

the corres on
'pon" ing structure function t t d

at point
s ar s iverging as
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"Evolution" of tthe structure functions with
(a) Ground-state meson n =1' (b) first excited

FIG. 5.. 5. Total occupation number „( ata
k

ass „at / 4~=0.5. The calculation was done
and 26/2 (to accommodate even

the spectrum. Notice the
ach cross corres onds top o one state n in

o ice t e sudden increase around the mass
soliton-antisoliton pair (20)

'

in units of M&.

'r in icated by an arrow. All masses
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x ~0 indicating the drastic change of the internal struc-
ture of the state. The divergence reAects the impossibility
to describe solitons in a Fock-space expansion. Never-
theless, this unique signature allows one to extract the
soliton masses (again in units of the lightest meson mass)
from a DLCQ calculation.

If one plots the number of elementary bosons in a
DLCQ spectrum versus the invariant mass for a fixed
value of P there is a sudden increase at the soliton-
antisoliton threshold (Fig. 5). In that mass region, the oc-
cupation number for states with small occupation in Fig.
5 has already converged (with K). These states can be
identi6ed with meson-meson scattering states. In those
states in Fig. 5, where the occupation number is already
high, it keeps increasing with E showing no signs of con-
vergence. These states are most likely soliton-antisoliton
scattering states in which case one could determine the
soliton mass by determining the mass where the edge
occurs.

IV. SUMMARY

We have isolated a distinctive class of diagrams for
self-interacting scalar fields (generalized tadpoles) which
are incorrectly set to zero in canonical LF quantization.

These diagrams have then been absorbed into a
redefinition of the coupling constants in the interaction
Lagrangian. For the special case of the sine-Gordon
model all coupling constants acquire the same renormal-
ization factor.

Canonical LF quantization of the effective Lagrangian
is straightforward. We constructed the effective LF
Hamiltonian for the sine-Gordon model and solved it us-
ing DLCQ. The numerical results for the meson spec-
trum agree with known results (from equal-time quanti-
zation) to better than 1%. The natural next step would
be to construct the effective LF Hamiltonian for theories
with fermions and gauge fields because this brings us
closer to QED and QCD. Work for this is in progress.
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