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Vacuum decay in theories with symmetry breaking by radiative corrections
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The standard bounce formalism for calculating the decay rate of a metastable vacuum cannot be ap-
plied to theories in which the symmetry breaking is due to radiative corrections, because in such theories
the tree-level action has no bounce solutions. In this paper I derive a modified formalism to deal with
such cases. As in the usual case, the bubble nucleation rate may be written in the form Ae . To lead-
ing approximation, B is the bounce action obtained by replacing the tree-level potential by the leading
one-loop approximation to the effective potential, in agreement with the generally adopted ad hoc
remedy. The next correction to B (which is proportional to an inverse power of a small coupling) is
given in terms of the next-to-leading term in the effective potential and the leading correction to the
two-derivative term in the effective action. The corrections beyond these (which may be included in the
prefactor) do not have simple expressions in terms of the effective potential and the other functions in
the effective action. In particular, the scalar-loop terms which give an imaginary part to the effective po-
tential do not explicitly appear; the corresponding effects are included in a functional determinant which
gives a manifestly real result for the nucleation rate.

PACS number(s): 11.10.Ef, 03.65.Sq, 98.80.Cq

I. INTRODUCTION

When studying quantum field theories in a cosmologi-
cal context one often encounters situations where the
field is not at the absolute minimum of the potential (the
"true vacuum"), but is instead at some local minimum (a
"false vacuum") which is higher in energy. The transi-
tion to the true vacuum state proceeds by a quantum-
mechanical tunneling process in which the field in a small
region of space tunnels through the potential energy bar-
rier to form a bubble of true vacuum. Once nucleated,
the bubble expands, converting false vacuum to true as it
does So.

The bubble nucleation rate per unit volume, I, can be
calculated by a method, due to Coleman [1], which is
based on finding a "bounce" solution to the classical Eu-
clidean field equations. Thus, for a theory with a single
scalar field, one must solve

aalu—= y= BV
P P (1.1)

subject to the boundary condition that P approach its
false vacuum value as any of the x„ tend to + ~. I can
then be written in the form

I =He (1.2)

where 8 is the Euclidean action of the bounce, while 3 is
given by an expression involving functional determinants.
In practice, the latter generally turns out to be quite
difficult to evaluate, although one can show that A is
equal to a numerical factor of order unity times a dimen-
sionful quantity determined by the characteristic mass
scales of the theory.

A difficulty arises when one deals with theories where
the symmetry breaking is a result of radiative corrections
[2]. In such cases the true vacuum is not determined by

V(P), but instead can be found only by examining the
effective potential V,z(P). The bounce equation (1.1) is
clearly inappropriate —in fact, if V(P) has only a single
minimum there will not be any bounce solution. An ob-
vious alternative, which has been taken by a number of
authors [3], is to modify this equation by substituting
V,s(P) for V(P).

Although plausible, and clearly a step in the right
direction, this procedure raises some questions. The
one-loop radiative corrections generate an effective action
which contains not only V,z, but also terms involving
derivatives (of all orders) of the fields. Can these terms be
neglected when dealing with configurations, such as the
bounce solution, which are not constant in (Euclidean)
space-time? Even if this can be done in a first approxima-
tion, what are the nature and magnitude of the correc-
tions which these terms generate? There are also ques-
tions relating to V,z itself. First, the effective potential
obtained by perturbative calculations differs considerably
from that defined by a Legendre transform (the latter
must be convex, while the former is not). The latter
clearly does not lead to an appropriate bounce, but how
precisely does the formalism pick out the former? Fur-
ther, the perturbative effective potential is known to be
complex for certain values of the fields. How is the imag-
inary part of V,~ to be handled?

In order to answer these questions I develop in this pa-
per a scheme for calculating the bubble nucleation rate in
theories with symmetry breaking by radiative correc-
tions. The general idea is to use the path integral ap-
proach of Callan and Coleman [4], but to integrate out
certain fields at the outset. This leads to a modified
effective action which, although it differs somewhat from
the usual perturbative S,z, gives a correct description of
the vacuum structure of the theory and has a bounce
solution which can provide the basis for a tunneling cal-
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culation. The final result for I may again be written in
the form of Eq. (1.2), with 3 either of order unity or pro-
portional to a small inverse power of the coupling. As
might be expected, the leading approximation to B is ob-
tained simply by replacing V with the dominant one-loop
part of V,z in the standard procedure. The next-to-
leading terms in V,~, as well as the first corrections to the
derivative terms in the effective action, then come in and
give calculable and significant (i.e., larger than order uni-
ty) corrections to B. However, the corrections beyond
this point do not have a simple expression in terms of V,ff
and the other functions entering 5,&. In particular, the
potentially complex parts of the effective potential do not
enter the calculation directly, but only as part of more
complicated functional determinants which can easily be
shown to be real.

This approach can be understood by recalling the
Born-Oppenheimer approximation for the calculation of
molecular energy levels. Because the natural time scale
for the electrons is much shorter than that for the nuclei,
the electrons can be treated as adapting almost instan-
taneously to changes in the positions of the nuclei. This
leads to an effective action, involving only the nuclear
coordinates, which may be used to describe situations in
which the nuclei do in fact move slowly; thus, it can be
applied to the vibrational spectrum of the molecule, but
should not be used when studying the scattering of high
energy particles off the nucleus.

A similar situation arises in theories where radiative
corrections change the vacuum structure. For
definiteness, consider the case of scalar electrodynamics
[2], where radiative corrections from photon-loop dia-
grams lead to spontaneous symmetry breaking if the sca-
lar field self-coupling is O(e ) and the scalar mass term is
sufficiently small. This relationship between the cou-
plings implies that the natural time scale for the variation
of the electromagnetic field is much less than that for the
scalar field. Consequently, if we are only interested in the
long wavelength modes of the latter, as is the case when
studying vacuum tunneling, we can integrate out the elec-
tromagnetic field to obtain an effective action for the sca-
lar field.

The remainder of this paper is organized as follows.
Section II reviews the method of Callan and Coleman. In
Sec. III, I show how this method can be adapted to
theories with radiative symmetry breaking. The treat-
ment here is somewhat formal, so that it can be applied
to a variety of theories. The concrete implementation of
the method in specific models is developed in Secs. IV
and V, which discuss a simple model with two scalar
fields and scalar electrodynamics, respectively. Section
VI contains some concluding remarks.

G(T) e
—@To (2.3)

where 0 is the volume of space and 8 may be interpreted
as the energy density of the false vacuum state. Because
this is an unstable state, 8 is complex, with its imaginary
part giving the decay rate, which in this case is simply
the bubble nucleation rate. Dividing by 0 gives the nu-
cleation rate per unit volume,

I = —2 Im@ . (2.4)

The path integral may be approximated as the sum of
the contributions about all of the stationary (or quasista-
tionary) points of the Euclidean action S(P): the pure
false vacuum, the bounce solution with all possible loca-
tions in Euclidean space-time, and all multibounce
configurations. In each case the contribution to the path
integral is obtained by expanding the field about the clas-
sical solution (t (x):

P(x) =())(x)+i)(x) (2.5)

and then integrating over g. To leading approximation
one keeps only the terms in the action which are quadra-
tic in g. Expanding these in terms of the normal modes
of S"(())))= — + V"(P) gives a product of Gaussian in-
tegrals. The terms of cubic and higher order in g can
then be treated as perturbations, and have the effect of
multiplying the Gaussian approximation for I by a
power series in the coupling constants, with the first term
being unity. The counterterms are also treated as a per-
turbation, with the leading contribution being from
S„(P).

Thus, the integration about the trivial solution
P(x ) =P&„yields

G()=%K e ' " '" (1+ . )

(2.6)

where the Euclidean action

S(y) = fd'x f" dx [—,'(B„P) + V(P)] (2.2)

is expressed in terms of renormalized fields and parame-
ters, while S„contains the counterterms needed to make
the theory finite. Although divergent, these counterterms
are of higher order in the coupling constants and, as usu-
al, are treated as perturbations.

The path integral is over all configurations such that (t)

takes its false vacuum value (t)f„at +T/2 and at spatial
infinity. In the limit T~ 0() Eq. (2.1) is dominated by the
lowest energy state with a nonvanishing contribution (i.e. ,
the false vacuum) and is of the form

II. THK CALLAN-COLEMAN FORMALISM

Callan and Coleman [4] evaluated I by calculating the
imaginary part of the energy of the false vacuum. This
can be obtained from the quantity

where X is a normalization factor,

KD = [detS"((t)f„)]

=
[ det [ — + V"((t)~„)] J (2.7)

G(T)=(P(x)=PJe ~(t)(x)=(tf„)
—(S((( ) +5„(P) ] (2.1)

and the dots represent terms, due to higher order pertur-
bative effects, that can be neglected at the order to which
we are working. Although the determinant is actually
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B2J=
4n

(2.8)

The negative mode is handled by deforming the contour
of integration. Aside from a factor of —,', this leads to a
contribution whose imaginary part is just that which
would have been obtained from a naive application of the
Gaussian integration formulas; i.e.,

ImGi =GoGb

where

(2.9)

divergent, the divergences are cancelled by the factor of—Sct

The calculation of the contribution from the bounce
solution P~(x) is similar, but must be modified to take
into account the fact that S"(P&) has one negative eigen-
value and four zero eigenvalues; for none of the corre-
sponding modes is the integral truly Gaussian. The
zero-frequency modes are treated by introducing collec-
tive coordinates corresponding to the position of the
bounce. Integrating over these gives a factor of QT and
introduces a Jacobian factor which, for O(4)-symmetric
bounces, is given by

be located either at /=0 or at values of (t of order cr.
(With a single scalar field the most general renormaliz-
able potential is of the form

2

V(4)=
2

0'+ 30'+ 40'. (2.15)

The above assumption is then equivalent to assuming that
c is of the order of A,o, with cr =m /&A, . )

By defining a dimensionless variable s =&Acrx, we may
write the field equations as

aU
(2.16)

(2.17)

From the assumptions made above, this equation involves
no small parameters and so has a bounce solution in
which tt is of order unity and differs from the false vacu-
um within a region of a spatial extent (measured in terms
of s) which is also of order unity. In terms of the original
variables, the bounce has P of order o and extends over a
range of x of order I/(&A, o).

With the same change of variables, the action becomes
2

S=—Jd s — +U(Q)1 g 1 r)f
2

(2.10)

with

& =S(gb )
—S(gf„) (2.1 1)

det'[ — + V"(P„)]
2 det[ — + V"((b„)]

(2.12)

Here det' indicates that the translational zero-frequency
modes are to be omitted when evaluating the deter-
minant. As before, the divergences in the determinant
factors are cancelled by the terms containing S„.

Finally, the n-bounce quasistationary points give a con-
tribution of the form G„=GOGb /n!. The bounce contri-
butions then exponentiate, and one finds that

Gb1=2'QT
det'[ — + V"(pb ) ]

4~' det[ — + V"(P,„)]

Since the integrand contains no small parameters, while
the volume of the bounce restricts the integration to a re-
gion of order unity, the bounce action B is of order k

Similarly, the determinant factor K, becomes

det'
I (ko. ) [—,+ U" (gb ) ] ]K)=-

det t (A,o. ) [—,+ U"(P„)] ]
—1/2det'[ —,+ U"(P„)]

2 det[ —,+ U"(l(„)]
(2.18)

c~ /A,
I =c&o."e '

with c& and c2 both of order unity.

(2.19)

III. A FORMALISM FOR THEORIES
WITH RADIATIVE SYMMETRY BREAKING

where the explicit factor of X o- on the second line arises
because the det' factor involves four fewer modes than
the det factor. With this factor extracted, the ratio of
determinants is formally of order unity, although diver-
gent. ' Finally, the Jacobian factor J is proportional to
B -A. . Putting all of these factors together, we see
that the nucleation rate is of the form

—[Sct(pb ) —S„(gf~)]
(2.13)

I now describe how the methods of the previous sec-
tion can be adapted to theories where radiative correc-

V($) =k o. U(P ) (2.14)

where U involves no small couplings and the dimension-
less field g=glcr. The minima of the potential must then

For comparison with later results we need to know the
order of magnitude of the various terms in this expres-
sion. To be specific, let us assume that we can identify a
small coupling k and a dimensionful quantity o. such that
the potential can be written in the form

IIt was asserted above that these divergences are cancelled by
divergences in S„(P)—S„(P„„).To see that these counterterrns
are of the correct order of magnitude, note that with our as-
sumptions the one-loop contributions to the counterterm La-
grangian are of order k o. ; since the bounce has a spatial
volume of order 1/(&ko. ), the difference in the counterterm
actions is of order unity, which is what is required.
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tions to the tree-level potential qualitatively change the
vacuum structure. The general formalism is derived in
this section, while the detailed implementation for two
specific theories is described in Secs. IV and V.

In theories of this sort the fields may be divided into
two sets, denoted y. and P . The former give rise to the
radiative corrections which effect the changes in the vac-
uum structure, while the various vacua are distinguished
by the value of the latter. In order that the radiative
corrections from the y loops be comparable to the tree-
level terms, the interactions among the P. must be weak
compared to the P-y interactions. Hence, the y. may be
viewed as "fast" degrees of freedom which can be in-
tegrated out in a Born-Oppenheimer type approximation.
For simplicity of notation, I will assume here a theory
with only one field of each type, both assumed to be sca-
lars; the generalization to more complicated theories is
straightforward.

As usual, the bubble nucleation rate is obtained from
the quantity

G(T)= f [dg][dX]e (3.1)

W(P)= —ln f [dy]e (3.3)

may be thought of as an effective action. 8'has a simple
graphical interpretation. The integral on the right-hand
side of Eq. (3.3) is equal to the sum of all vacuum Feyn-
man diagrams in a theory of a quantized g field interact-
ing with a field c-number P field; i.e., the sum of all
graphs with only internal y lines and external P lines. Its
logarithm gives the sum of all connected vacuum graphs.
In general these include one-particle reducible graphs, al-
though in many cases these are eliminated by symmetry
considerations.

W(P) should be compared with the more familiar
effective action, S,ir(g, y), which generates one-particle
irreducible Green's functions. For theories in which
W(P) only receives contributions from one-particle irre-
ducible graphs, S,ir($, 0) and W(P) differ by the contribu-
tion from graphs with internal P lines. Our assumptions
about the size of the P self-couplings imply that these
graphs are suppressed. Hence, the dominant terms in
S,ir($, 0) and W(P) agree, and so the latter correctly
rejects the vacuum structure of the theory.

One might therefore envision using the classical field
equations implied by 8' to determine a bounce solution
which would be the basis for a nucleation rate calcula-
tion. Two practical difficulties arise. First, one cannot in
general obtain a closed-form expression for 8, but only a
perturbative series. Second, W(P) is a nonlocal function-

(To simplify the equations the counterterm action has not
been explicitly written. ) Because S(P,y) does not display
the correct vacuum structure, its classical field equations
do not have a bounce solution, and so the methods of Sec.
II cannot be directly applied. This difficulty can be cir-
cumvented by integrating over g to obtain

G(T)= f [dP]e (3.2)

where

al, so that even if a closed-form expression were available„
the equations determining its stationary points would be
rather unpleasant.

One way around these difficulties is to find a local ac-
tion Wo(P) which is a sufficiently close approximation to
8' and then use its stationary points as the basis for the
nucleation rate calculation. The possibility of such an
approximation arises from the fact that the nonlocality of
W is significant only on distances shorter than a charac-
teristic size set by the y-field interactions. For P fields
which are slowly varying relative to these scales, W(P)
can be expanded in a "derivative expansion" of the form

W(p) = f d x [ V(y)+,'Z(y)(a„y)'+ (3.4)

W, (y) = f d'x [-,'(a„y)'+ V, ...,(y)] . (3.6)

Here Vi &„(P) is the sum of the tree-level V(P) and the
contributions from graphs with a single g loop; to this or-
der it is equal to V,~($,0). Since the loop corrections in-
cluded in V, „, (P) are precisely those responsible for al-
tering the vacuum structure of the theory, 8 o possesses
an appropriate bounce solution.

Thus, for slowly varying P we may write

W(p) = Wo($)+5W(p) (3.7)

with 5W(P) representing subdominant terms. We can
(and will) make the same decomposition for arbitrary P,
but 68'will then not necessarily be small. In particular,
because the path integral includes contributions from
fields with Fourier components of arbitrarily high
momentum, for which the derivative expansion is not val-
id, 58' cannot be treated as a small perturbation within
the path integral.

Nevertheless, the path integral may be approximated
by expanding about the stationary points of 8 o, provided
that these are themselves slowly varying functions. Thus,
let us suppose that the field equation implied by 8'o,

(3.8)

has a solution P(x). Expanding W about this solution
gives

W(P)= W(P)+ f d z W'(P;z)i)(z)

+,f d z d z'W"(P;z, z')g(z)g(z')+O(q )

(3.9)

where the dots represent terms with four or more deriva-
tives. (A similar expansion of the effective action,

S„(y,y)= f d x[V, (P,g)+ ,'Z&—(g,y)(a„g)'

+ ,'z, ((t,-y)(a~)'+ ] (3.5)

is often made. In line with the previous remarks, V(P)
and Z(P) differ from V,z($, 0) and Z&($, 0) by the omis-
sion of graphs with internal P lines. )

The desired approximate action is obtained by keeping
only the first two terms in the derivative expansion of
W(P), and then only the lowest order contributions to
these; thus
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where g(x)=P(x) —P(x), and primes denote variational
derivatives; e.g. ,

,
(
—

)
5W(P)
5$(z)

(3.10)

[The term linear in rl is nonvanishing because p is not a
stationary point of the full W(P).]

We now insert Eq. (3.9) into the path integral. The cu-
bic and higher order terms in g can be treated as small
perturbations. If these are dropped, the integral becomes
Gaussian. About the false vacuum, P(x) =Pf„, W"(P) has
no zero or negative eigenvalues and the integration gives

(pf, ) ~'(Qf, )I ~"(pf, )] '~'(pfy)60=e ' e

the next two sections and are likely to be true for all
theories with radiative symmetry breaking. As in Sec. II,
the expansion of I is only carried out to terms of order
unity; terms which do not contribute to that order are
represented by dots.

First, the bounce solution has a characteristic length
scale which is large compared to those characterizing the

and y-P interactions. It therefore varies slowly
enough to allow a derivative expansion of W(pb). (We
will see that in some situations this expansion must be
terminated after the first few terms, leaving a nonlocal
remainder. This does not materially affect the picture
outlined here. ) For both /=gab and p=pf„ it is then pos-
sible to write W(P) as a sum of terms of successively
higher order in the couplings:

X [det W"(Pr, ) ] (3.1 1) W(p) = Wo(p)+ W, (p)+ W2(p)+ (3.17)

(For the sake of compactness, the spatial arguments of
the variational derivatives and the associated spatial in-
tegrations have not been explicitly displayed. ) As in the
standard case, the bounce solution has zero-frequency
modes which must be handled separately. Introducing
collective coordinates and proceeding as usual leads to

—~(yg ) ~'(yI, )[ +"'($I, )] ~'(yp )

with Wo given by Eq. (3.6) and the remaining terms con-
taining higher order contributions to the derivative ex-
pansion. For example, in the theories considered below

contains two-loop contributions to V and one-loop
contributions to Z.

A similar expansion can be used for W'(P;z). The
zeroth order term vanishes because P is a stationary point
of 8'0, and we have

X ~det'W"(pb )
~

' J (3.12) W'(P;z ) = W', (P;z )+ (3.18)

where now det indicates that the determinant is restrict-
ed to the subspace orthogonal to the zero modes of 8'0'.
Similarly, (W") ' is to be evaluated in this subspace,
while the Jacobian J is given by

[ Wo(kb )
—Wo(kr. ) ]'J=
4~

(3.13)

The path from these results to the nucleation rate is
just as before, and gives

det' W" ( pb )
I =e 'e ' J( 1+ ), (3.14)

det W"(pf„)

Matters are less simple for W"(P;z,z'). Although the
derivative expansion can be used when ~z

—z'
~

is large,
the behavior for small ~z

—z
~

is sensitive to the high-
momentum modes and so the derivative expansion fails
even for constant (t. However, the relation

W"= Wo'[1+( Wo') '5W" ] (3.19)

can be used to obtain formal expansions for (W") ' and
detW" as power series in (Wo') '5W". The actual utili-
ty of these expansions depends on the size of the contri-
bution from the region of small ~z

—z'~. In the calcula-
tion of C2 this contribution is subdominant and

where C2 Wl (db )[ WO (0b )] Wl (4'b ) (0b 0'fv)+

C, = W((tb )
—W(gf, )

and

C2= W'(db)l W"(0b)] 'W'(4b) (4b 0(,)—
(3.15)

(3.16)

(3.20)

For the determinant factor, on the other hand, more
terms must be retained:

The next step is to expand the various terms in Eq.
(3.14) in powers of the coupling constants. The details of
this depend on the structure of the theory and the magni-
tudes of the various couplings. The general features de-
scribed below hold for the specific theories considered in

det'[ W" ] =det'[ Wo']det[I+( Wo' ) '5W" ]

=det' [ WI1 ]exp I tr in [I+ ( Wo' ) '5 W" ] ]

=det'[ Wo [exp I tr( Wo' ) '5 W"

+ —,'«[( Wo' ) '5W" ]'+

Because the bounce is obtained from the truncated action 8'0,
the usual translational modes, proportional to e1„pb, differ

slightly from the zero modes of 8"'; however, it can be shown
that the efFects due to the diA'erence are suppressed by a power
of the coupling constant and hence can be neglected at the order
to which we will be working.

(3.21)

det' Wo' (pb )
I =e e 'e

det Wo'(p1.„)
(3.22)

Inserting these expansions into Eq. (3.14) leads to
—1/2 ~p

0 (1+ )
4~
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where

+0 ~0(eb ) ~0(ef ) (3.23)

B,= W, ((b„)+—,'tr[ Wo'(yb)] '5W"(yb) —(yb yf„), A=~, x=o4 (4.4)

(3.24)

aIld

+2 ~2(4b ) ~0 4b )[~0 (4b )] ~0(db )

+ —,'trI [8'o'(pb)] '6W"(pb)] —(pb~p, „) . (3.25)

We thus have the naive expression for I, obtained by the
standard procedure with V(P) replaced by the one-loop
effective potential, multiplied by a correction factor—(a, +a, 7
e ' ' . We will find that B, is proportional to an in-
verse power of the couplings, while B2 is of order unity.
Thus, although the B2 correction is of the same order of
magnitude as the determinant factor, which in practice
cannot be evaluated precisely, the B& factoI modifies the
naive result in a significant and (at least numerically) cal-
culable manner.

The form of these correction factors can be under-
stood. Bo is obtained by evaluating the approximate ac-
tion 8 o at its stationary points, whereas what we really
want is the exact action 8'evaluated at its own stationary
points. The difference between these two quantities can
be obtained by treating 68'= 8', + 8 2+ . . as a small
perturbation; up to second order, this gives the first term
in B, and the first two terms in B2. As we will see below,
the remaining terms correct for the fact that 8'is not the
full effective action and take into account contributions
to the full effective action which ~ould otherwise be
neglected.

IV. EXAMPLE 1: A SCALAR FIELD THEORY

V, „, (P)= (m +g P ) ln
1 m+gP

m +go.

1
2

+y ($2 o )2

0

+ —(k+z )+— +y,
1 1 p

4t & 4 2
(4.5)

where

2 2

16m.

m +go (4.6)

and

8vr (m +g o. ) m +g o
(4.7)

It is most convenient to choose the renormalization point
o. to be o., the location of the minimum of V, &„„. The
requirement V', &„(o ) =0 then relates A, to the other pa-
rameters via

For g=0 the effective potential is given by the sum of
graphs with only external P lines, all carrying zero four-
momentum. The leading contributions are from tree
graphs and graphs with one g loop, as well as the corre-
sponding counterterms. Let us denote the sum of these
by V, „,„(P), although it should be kept in mind that this
does not include the graphs with one P loop. We then
have, up to an additive constant,

As a first example, consider a theory with two scalar
fields governed by the Lagrangian

2

3 +pi zi0-2
(4.8)

with

(4.1) and yields

(4.2)

V& &„(P)= (m +g P ) ln
1 m+gP 1

m +g 0

(4.9)Both p and m are positive. In order that the y-loop
corrections to the effective potential be able to generate a
symmetry-breaking minimum at a value P=o&0, A, must
be O(g ), while f should be O(g ) to ensure that the

g —+ —g symmetry remains unbroken. There is also an
upper bound of order g o. on p, which will be displayed
in detail below. Finally, it will be convenient to assume
that m is O(go).

Renormalization conditions must be specified in order
to fix the counterterms in X,„. For the lowest order ap-
proximation to the effective potential only the definitions
of p and X are needed. These can be given by choosing
an arbitrary renormalization scale o. and requiring that

For o to be a minimum, V", „, (o) must be positive,
which leads to the bound

g4o-' m ' m '+g'o-'p( 4 — ln
16~ g 0 m

(4.10)

A slightly stronger bound on p is obtained if one requires,
as we will, that the minimum at P =o be deeper than that
at /=0, so that the latter corresponds to a metastable

~ ~ea
p

P=x=o
(4.3)

Since g =0 is to be understood for the remainder of this dis-
cussion, V,& and related quantities will be written as functions
of a single variable.
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false vacuum.
The higher order contributions to the effective poten-

tial can be obtained from Feynman graphs with
"dressed" propagators that take into account the back-
ground P field. Thus, the effect of summing over all num-
bers of interactions with a constant external P field is to
replace the standard y propagator (k —m )

' by

[k —m —g P ] '=—[k —M (P)] (4. 1 1)
(b)

Because the g-loop contributions to V,ff are of the same
magnitude as the tree terms, the dressed P propagator is
somewhat more complicated. In order that the perturba-
tive order of a graph increase with the number of loops,
these one-loop terms must be included in the dressed
propagator, which then takes the form

[k' —V", ...,(y)] ':—[k' —W'(P)] (4.12)
(c)

This inclusion of loops in the propagator means that the
loop counting for a graph with dressed propagators will
not necessarily agree with that for the corresponding
graphs with elementary propagators. Thus, the one P-
loop contribution to the effective potential will include
graphs which are multiloop when drawn with elementary
propagators. Some examples of these are shown in Fig.
1. In the last of these the momentum assignments have
been shown explicitly in order to emphasize that they are
not the ones usually associated with this graph. It should
be clear from this example that graphs with both g and P
internal lines must be analyzed carefully to avoid double
counting.

The next contributions to V,s, of order fg4 and g6,
arise from the two-loop graphs in Fig. 2, the one-loop
counterterm graphs in Fig. 3, and the 0(fg ) and O(g )

counterterms. The double-counting issue arises with the

FIG. 1. Examples of graphs which, although multiloop when
drawn in terms of elementary propagators, are included in the
one P-loop contribution to the effective potential in the model of
Sec. IV. Solid and wiggly lines represent P and y propagators,
respectively.

second graph of Fig. 2, which has the same topology as
the graph of Fig. 1(c), but a different (i.e., the standard)
assignment of momenta. However, since the latter graph
is O(g ) (after renormalization), the issue can be ignored
at this point.

The sum of these graphs gives a contribution which, in
terms of an arbitrary renormalization scale o., can be
written in the form

V2(p) = 1 2+ 2+2
[f(m +g P )+32g P ](m +g P )ln

2048m m +g o
I

+ (c,f+c2g )(m +g P ) ln
1

64~
m+gP
m +go.

1

2

+(c,f+c4g )m (m +g P )
m+gP
m +go.

Z22
(~2 p)2+ 2 + 2 ~4

4 4! 4
(4.13)

Here the ck are numbers of order unity which depend on the precise choice of the renormalization conditions fixing m,
g, and the g-field wave-function renormalization, while yz and zz are to be chosen so as to satisfy Eqs. (4.3) and (4.4).
If o. is again chosen to be o, with the latter now understood to be the minimum of the two-loop approximation to V,ff,
his r~~~lt combines with V~ ~oo~ to give

1 m + ~ 1Vz„,„(P)= (1+c,f+c2g )(m +g P ) ln
64m m +g o.

where y =y&+y

+(c3f+c4g )m (m +g P ) ln

1 2 2 2 4 2 2 2 2 2 m +g[f(m +g P )+32g P ](m +g P )ln
2048m m 2+g2~2

2 2 2 2m +g P 1 p z 22
m 2+g 2&2 4 a2 (4.14)
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Among the contributions at O(g ) are those from the graphs with a single P loop. These include a term proportional
to ln V", i«(P) which is complex whenever V", „, is negative. While such complex effective potentials are not unfami-
liar, and their physical interpretation is understood [5], their implications for bubble nucleation calculations have
remained somewhat unclear. We will see below how the potential problems associated with these are avoided.

Let us now turn to the bubble nucleation problem. The first step is to calculate W(P). Because the Lagrangian only
contains even powers of g, only one-particle irreducible graphs contribute. One obtains

IV(4)= f d x —(c) 4) + —p, 0 +—P +—f d x(x l»[ — +M (P)]lx &+counterterms+
2

(4.15)

4 2

f(p )=f(0)+ f dx ln 1+
8~2 M (P)

(4.16)

For p SM (P) this can be expanded in powers ofp:
4'

,
2 4

f(p') =f(0)+ + +
48vr M (P) 5M (P)

(4.17)

where the contributions from tree and one-loop graphs
have been shown explicitly. The second term, arising
from the loop graphs, is sensitive to the value of P(y) over
a region of size -M '(P) —(go ) '. Hence, for our pur-
poses a slowly varying P will be one which varies slowly
over this distance. Expanding such a field about its value
at a point x leads to the derivative expansion for 8'.

The first term in the expansion, V, is obtained by treat-
ing P as a constant. To order g this is the same as the
standard calculation of the effective potential, and gives
the result displayed in Eq. (4.9). However, the two quan-
tities differ at order g, since the two-loop graph of Fig.
2(b) contributes to V,a but not to V. Because this graph
is divergent, while the counterterm contributions to the
two potentials are the same, f', unlike V,a., cannot be
finite. This divergence is acceptable because V does not
directly correspond to any physical quantity. Indeed, it
combines with other divergent quantities to give a finite
result for I .

The calculation of the next term in the derivative ex-
pansion is equivalent to extracting the term of order p
from the sum of graphs with two external P lines carrying
nonzero momentum p and any number of zero-
momentum external P lines. Using dressed propagators,
the leading part of this sum can be represented by the sin-
gle graph of Fig. 4, whose evaluation gives

I

[The failure of this expansion when p ~M (P) reflects
the failure of the derivative expansion when the back-
ground P field is not slowly varying. ] The first term,
f(0), has been included in the calculation of V. The
O(p ) term leads to

2

Z(P)=1+ ~ +k +O(g ),
48ir m +g P

(4.18)

where k is a constant of order unity which is chosen to
enforce the P wave function renormalization condition.
[Note that to this order Z(P)=Z&($, 0).] The O(p )

term gives a contribution to the derivative expansion of
the form H(P)( P) . In addition, there are other four-
derivative terms, proportional to (B„P) P and
(B&P) (8 P), which can be obtained from graphs with
three or four external lines carrying nonzero momentum.

The bounce solution is determined by the approximate
action of Eq. (3.6) with V, „, (P) being just the V, „,~(P)
of Eq. (4.9). Scaling arguments similar to those of Sec. II
show that it has a spatial extent of order (g cr) ' and
thus varies slowly enough to allow a derivative expan-
sion. By contrast, in a theory with couplings of "normal"
magnitude (A, -g and p -g a ) the bounce would have
a size —(go )

' and would not be slowly varying. Of
course, in that case the loop corrections to the effective
potential would not change the vacuum structure, so the
standard calculation of I could be used and there would
be no need for a derivative expansion.

We need to know the magnitude of the various terms
in the derivative expansion of IV(pb). Since pb-o. , we
see that V(pb)-g a. , while our estimate of the bounce
size implies that (B„pb ) g "cr —More g. enerally, consider
a term containing j derivatives and k explicit factors of
pb, which might be written schematically as

u, k H&v, (db)d'0b . — (4.19)

FIk(P) must have dimensions of (mass) ~; since it is

(a) (b)

FIG. 2. The two-loop graphs which contribute to the
efFective potential in the model of Sec. IV at order fg and g .

FIG. 3. The one-loop counterterm graphs which contribute
to the effective potential in the model of Sec. IV at order fg
and g; the heavy dots denote counterterm insertions.
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FIG. 4. A one-loop graph from which the leading contribu-
tions to Z(P) can be computed.

g 0
M((h )

(4.20)

where the fact that M (P) ~ m -g cr has been used and
it has been assumed that P 8 o..

We can now estimate the various terms entering the
formula for I, beginning with the quantities 8; in Eq.

derived from graphs with only internal y lines, the mass
appearing here must be the effective y mass, M(P). Fur-
ther, the structure of the graphs implies that there is a
factor of g for each explicit factor of P, except in the
tree-level contribution to Z. Finally, each derivative
brings in a factor of g 0.. Thus, apart from the terms
contributing to Z (i.e., the case j=k =2),

J k k

M4(y) 4+j + 4

M(P)

W, = J' d'x [ V, +Z,(ay)'] —g
-' (4.22)

Here the subscripts indicate the order of the contribu-
A ~ A. ~

tions to V and Z, with V & being the same as V& &„,and

V 6 including both g and fg terms. The next term, Wz,
~ ~

is of order unity and contains V „(arising from graphs
with up to three loops), Z 4 (arising from one- and two-

loop graphs), and the one-loop contributions to the four-
derivative terms.

We also need expansions of the first two variational
derivatives of O'. In principle, the variations should be
performed before the expansion is carried out, although
this turns out not to matter for the first variation. Thus,
to one-loop order

(3.17). Because I involves the diff'erences between these
quantities evaluated at / =Pi, and at t)) =Pf„ the integrals
are eA'ectively restricted to a region of volume
—(1/g o ) . Using the above estimates for the in-
tegrands, we then find that the first two terms are

Wo= f d x[V 4+(t)P) ]-g (4.21)

and

W'(P;z)= — P(z)+V'(P(z))+g P(z)(z~[ — +M (P)] '~z)+counterterms . (4.23)

The leading contribution to the third, nonlocal, term is obtained by taking P to be constant. This combines with V to
give P'& &„,so that the leading approximation to W is indeed the variation of the leading approximation to W. One
can check that analogous statements hold at the next order, thus verifying Eq. (3.18).

Up to one-loop order the second variational derivative is

W"(lP;z, z')=5' '(z —z')[ — + V"(y)]+g 5' '(z —z')(z~[ — +M (y)] '~z &

—2g P(z)P(z')(z~[ — +M (P)] '~z') +counterterms . (4.24)

For ~z
—z'~ SM(P) the nonlocality of the third term can-

not be ignored and the derivative expansion fails, even in
a spatially constant background. To see this, let us sup-
pose that P(x) is constant, so that we can work in
momentum space with p being the momentum conjugate
to z —z'. The last term in Eq. (4.24) is then given by the
graph of Fig. 4. Ifp were set equal to 0 in the evaluation
of the loop, then the one-loop terms shown here would
give 8'z', which in momentum space is simply
W()'(p)=p + ~", „,p(P)=p +JR (P). Subtracting this
and recalling Eq. (4.16), we see that
5W"(p)-g p ln[1+p /M (P)]. If p /M (P) is small,
this can be treated as a small perturbation, but this is not
the case when p /M (P) is so large that the logarithm
overcomes the factor of g . Correspondingly, in position
space (z~[Wo'] '5W" ~z') is small except in a region
~z

—z
~
((M (P). Similar estimates clearly apply with a

slowly varying background field.
8"' enters the formula for the nucleation rate both

through the quantity Cz defined by Eq. (3.16) and
through the determinant factor. In both cases Eq. (3.19)
leads to a formal expansion in which the higher order
terms are suppressed if 68"' is indeed a small perturba-
tion; i.e., if the contribution of the short-distance, high-

I

momentum region is suppressed. Roughly speaking, C2
can be viewed as corresponding to a tree graph in which
two factors of 5W' are connected by a &P propagator. The
magnitude of the momentum running through this prop-
agator is set by the spatial extent of the bounce solution,
and is indeed small enough for 58" to be treated as a
perturbation. (This can be checked by a detailed exam-
ination of the contribution from the small z —z region. )

We may therefore write

C2= jd z d z'WI(gb, z)w', (Pb, z')

X(z~ [w,"(P, )] '~z') —(P, P„)+
(4.25)

The size of the bounce restricts the z integration to a
volume of size (1/g cr), while the falloff' of [Wo'] ' re-
stricts z —z' to a similar volume. The two factors of 8
are each of order g tT, while [Wo'] ' gives a factor of
roughly (z —z') . Combining these facts, one finds that
the terms shown explicitly in Eq. (4.25) are of order uni-

ty.
For the determinant factor, we recall from Eq. (3.21)

that det8"' can be written as a product of det8'0' and the
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exponential of a power series in (Wii' ) '5W". The form-
er combines with the Jacobian to give o. times a factor of
order unity, as in the standard calculation. The latter
corresponds to a sum of one-loop graphs in which a num-
ber of insertions of 58"' are connected by an equal num-
ber of P propagators. This sum has an ultraviolet diver-
gence which can be attributed to the graphs with one and
two insertions of 58 "; even after the cancellation of
these divergences by counterterm contributions, we
should expect the high-momentum region to be
enhanced, and these terms to be anomalously large. This
is in fact what happens. Working in momentum space,
and ignoring the spatial variation of P for the sake of
clarity, we may write the nth term in the expansion as

tr[(WD') '5W" ]"=f d x d p[[WI)'] '(p)5W"(p)J" .

(4.26)

The momentum integration is quartically divergent; after
cancellation of infinities by counterterms a finite term
proportional to the fourth power of M(P), the largest
relevant mass, remains. There is a factor of g for each
68"'. Finally, because we must eventually take the
difference between the contributions of the bounce and of
the pure false vacuum, the x integration is effectively re-
stricted to a volume —(g o. ) . The net result is a con-
tribution of order g ",implying that both the n=1
and the n =2 terms are of order unity or larger, as indi-
cated in Eq. (3.21).

The dominant, O(g ), contribution from the n=1
term is obtained by treating P as a constant. This term
then essentially reproduces the two-loop graph of Fig.
2(b), which contributes to Vdr but not to 0; [The
definition of 8'0' actually requires a subtraction corre-
sponding to the graph of Fig. 1(c), but this is simply the
correction for double counting noted previously. ] To this
order, then, the net effect is to simply replace f' by the
full effective potential. Furthermore, since Z and Z& are
equal at O(e ), it might seem that the derivative expan-
sion of W(P) is simply being replaced by the derivative
expansion of S,tr(g, y=O).

However, when we go to the next higher order it be-
comes clear that this is not the case. At O(g ), Vdr
differs from V by the contribution from two- and three-
loop graphs with both y and P internal lines plus the con-
tribution from graphs with a single P loop. The former
set of graphs is reproduced by the n =2 term in the ex-
pansion of the determinant and by the next-to-leading
contribution of the n =1 term. The contribution of the
latter set is contained in the factors of det W0', indeed, for
a constant background P the logarithm of this deter-
minant is just the spatial integral of this part of the
effective potential. Matters are more complicated when
this determinant is evaluated in the background of the
bounce. Since the effective P mass is a factor of g smaller
than the effective y mass, the derivative expansion of
det8'0' requires a more slowly varying background field
than is needed for the expansion of the terms in W(P)
arising from y loops. Precisely because the bounce is
determined by the field equations of 8 0, its characteristic
size is incompatible with a derivative expansion of

detWD (pb), and so the p-loop contribution to V,s cannot
be simply isolated.

This resolves a puzzle associated with the complexity
of the perturbative effective potential. As noted above,
the P-loop contribution to V,z.(P) is complex for values of
P such that V", ~„~(P) is negative. Since the bounce solu-
tion pb(x) lies in this range for some values of x, a mani-
festly complex result for the nucleation rate would have
been obtained if the calculation had explicitly involved
the full effective potential.

Of course, the fact that this effective potential contri-
bution cannot be isolated does not rule out the possibility
that a complexity problem could arise with the full deter-
minant, where it would be manifested by the existence of
a negative eigenvalue of WD (pb) in addition to the one
which occurs for any bounce. However, from the fact
that the bounce corresponds to the solution of a minimi-
zation problem (that of finding the path through
configuration space with the smallest WKB tunneling ex-
ponent), it is easy to show [6] that the bounce solution of
minimum action can never have additional negative
modes. Hence, ~det'Wz'(pb ) ~

' is real and the imaginary
part of the effective potential has no effect on the bubble
nucleation calculation.

To summarize these results, we may write

(Bo+B, )I =de (4.27)

where

B = f d I[V, (Pb)+ ,'(d„Pb) ]—
—(pb ~fr„)]=O(g )

B, = f d x t [V,ir(pb)+ ,'Z~ (pb)(B„p—b) ]

—(Pb ~Pr„)]=O(g ),

(4.28)

(4.29)

and the preexponential factor A, now understood to in-
clude the contribution from the O(1) part of the ex-
ponent in Eq. (3.22), is equal to o. times a dimensionless
factor of order unity.

V. EXAMPLE 2: SCALAR ELECTRODYNAMICS

(5.1)

where P =P, +Pz. In order that the one-loop radiative
corrections give rise to the desired vacuum structure with
both a symmetric minimum at /=0 and a symmetry-
breaking minimum at P=o, we require that X be O(e )

and that p be positive and O(e o. ). As with the previ-

~Although det WD (Pt„) can be expanded in a derivative expan-
sion, no complexity problem arises because V,~(gi„) is real.

A second example is provided by scalar electrodynam-
ics [2]. In terms of the real and imaginary parts, P, and

P2 of the scalar field, the Lagrangian takes the form

F„,+—(B„p,+—eA„Q2)
1 2 1
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ous example, p and k are to be Axed by Eqs. (4.3) and
(4.4), while the other renormalization conditions will not
be explicitly given.

It is most convenient to calculate the efI'ective potential
in Landau gauge. In this gauge all graphs with a zero-
momentum external P line entering a P-P-A„vertex van-
ish; this leads to a considerable reduction in the number
of graphs to be calculated. A further simplification fol-
lows from the observation that V,~ can only depend on
p, so that we may calculate it with $2=0 and p&=p. To
O(e ) the result is

4 2

V2 )„p((b)= (1+ce )P ln
64m 0 2

6 ~2 1
2

y41 2 v P (P2 2)2
4 2 4 2

The O(e') contributions to V,a. come from the two-
loop graphs of Fig. 5, one-loop counterterm graphs iden-
tical to those of Fig. 3, and the O(e ) counterterms.
Combining these with the O(e ) terms, with the renor-
malization point now chosen to be the minimum of the
two-loop approximation to the effective potential, gives
[9]

3e ~2 1
P 25

64~ 0 6
(5.2)

If, as before, we choose 0 =0., the minimum of V& &„,we
can eliminate k and, after adding a constant, write

4 y2
V, „, (P)= P ln

64~ 0

I 2

($2 2)2 (5.3)

Requiring that V", „,„(o.) )0 implies that

p & 3e 0. /16~; for this asymmetric minimum to be the
true vacuum, the stronger condition p & 3e 0. /32m
must hold.

As in the previous example, the higher order contribu-
tions to the efIective potential are most easily obtained
from Feynman graphs with modified propagators. In
Landau gauge with $2=0 these are the dressed photon
propagator with an et''ective photon mass

(5.4)

and the dressed scalar propagators with masses given by

8 V))„p
JN, ,(P) =

Qp2
(5.5)

8 Vi(„
At2(P) =

Qp2
(5.6)

In gauges other than Landau gauge there would also be
mixed $2-A„propagators. As before, the inclusion of
loops in the dressed scalar propagators implies that cau-
tion must be used to avoid double counting.

3e 2 2

(5.8)

where k, of order unity, enforces the wave-function re-
normalization condition.

Let us now turn to the calculation of the bubble nu-
cleation rate. Before going into the details, we can use
the example of the previous section to anticipate a num-
ber of the results. The bounce is presumably determined
by field equations involving V& J p

It is then easy to see
that it must have a constant phase, and so by a global
gauge rotation can be made entirely real. Furthermore,
the spatial extent of the bounce must be of order (e o )

thus making it slowly varying enough to justify a deriva-
tive expansion of the photon-loop terms, but not of those
due to graphs with purely scalar loops. This will make it
possible for the O(e ) part of the effective potential to
enter the calculation of I in a straightforward fashion,
while still avoiding the troublesome O(e ) terms.

There are at least two possible approaches to the calcu-
lation. Since the symmetry breaking arises from radiative
corrections involving photon loops, the most straightfor-
ward procedure would be to integrate over the gauge field
to obtain an action W(p&, $2). Since A„enters the La-
grangian at most quadratically, this integration can be
done exactly, yielding

(5.7)

where c, a number of order unity, depends on the precise
specification of the renormalization conditions.

The contributions from purely scalar loops enter at
O(e ). These make the effective potential complex, since

is negative in the region where V&'&„&0, while
At& &0 when ~P~ & o.

As in the previous example, the function Z&(P) will
also enter the calculation of I . At O(e ) this receives
contributions from the graphs of Fig. 6, and is given by

5The issue of gauge dependence is an important one, with some
issues still to be settled. It is known that the eftective potential
is gauge dependent beyond lowest order; this is acceptable be-
cause it is not in general a directly measurable quantity I7].
Physically measurable quantities, on the other hand, should not
depend on the choice of gauge. However, an investigation [8] of
the gauge dependence of the bubble nucleation rate in scalar
electrodynamics found an apparent dependence on the gauge
choice.

(b)
FIG. 5. The two-loop graphs which give O(e ) contributions

to the e6'ective potential of scalar electrodynamics. Solid,
dashed, and wiggly lines refer to P, , Pz, and photon propagators,
respectively.
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W($„$2)=f d x (—r)„P) + p—. P +—$ + —tr f d x( x~ln[ —5„+t)„t)+5„~ (P)]~x )

——f d x d x'j"(x)j (x')(x~[ —5„+t)„t)+5„~ (p)] '~x')+counterterms (5.9)

where j„=e({t2t) p&
—

p&r)„p2) and the factors of 5„arise from the Euclidean metric. The second term on the right-
hand side corresponds to graphs with a single photon loop, and is analogous to the one g-loop term in the model of Sec.
IV. The last term corresponds to a graph with a photon line connecting two currents. While it vanishes for both the
constant false vacuum solution and the bounce, it does not vanish in general and, indeed, it is clearly needed to bring
the O(e ) part of the effective potential into the exponent of I . However, because it cannot be expanded as a sum of lo-
cal terms, the analysis of this term introduces complications not encountered in the previous example.

These complications are avoided by an alternative approach. Since the bounce can be chosen to be entirely real, it
should be possible to integrate out Pz, as well as A„, from the very beginning to obtain an effective action

W{tt )=f rI x —(8 tt ) +—p P +—P +—trlnG+counterterms+
2 ~ 2 4

(5.10)

Here the dots represent multiloop contributions while G is the matrix

5S
53„5A

5S
5/25 3

5S
5A„5/2

5S
5/2 =0

G„({t) G„2(p)
G~„(tt') Gz2(p)

(5.1 1)

(5.12)
G (P) G,,'(P)G, ({t)

and then expand 8'as

In Landau gauge with a constant background {t t(x) the off-diagonal entries of this matrix vanish. For a nonconstant
but slowly varying background one can write

G„(rtp) 0 0 G,„($)G„2($)
0 0

W= d x —(t)„P) + —p {t +—P + —tr lnG„„+lndetG22+ —trG „G„2Gzz G2 +counterterms+4 1 2 1 q 2 A, 4 1 (5.13)

The first {tree-level) term and the second term, corre-
sponding to one-photon-loop effects, dominate. Aside
from a minor point noted below, these can be treated just
like the analogous terms for the previous model. Let us
write these as Wc+5, W, with Wo, given by Eq. (3.6),
again being the approximate action which determines the
bounce solution Pb(x). The spatial extent of the bounce
is such that 5& W(gb) can be expanded in a derivative ex-
pansion. This expansion does not give any further contri-

~ ~ ~

bution to V, but does give the contribution to Z corre-
sponding to the graph of Fig. 6(a).

Let us consider next the fourth term, which may be
denoted 528'. This corresponds to one-loop graphs with

both a photon propagator and a {tz propagator. Because
Gzz is obtained from the fundamental action S, the latter
propagator will have a mass JRz(tI}) given by the tree-level
potential rather than by Vi & &, as is the mass JKz(P) of
Eq. (5.6). The replacement At2~&zis obtained , by sum-

ming over multiloop graphs with arbitrary numbers of
photon loops attached to the P2 line, as in Fig. 7; let us
denote the result of this replacement by 5zW(P). [Since
both A2 and W2 are a factor e smaller than the effective
photon mass, 82W(P) and 5&W(P) actually differ only in

subdominant terms. ] About the bounce solution 52W(tt)
can also be expanded in a derivative expansion, with the
leading term being the contribution of graph 6{b) to Z(P).

The third term, lndetG2z($), is the contribution from

P

(0)

FIG. 6. The one-loop graphs which give O(e ) contributions
to Z&(P} in scalar electrodynamics.

FIG. 7. A multiloop graph whose contribution must be add-
ed to 5&W(P}.
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one-loop graphs with only internal Pz propagators. As
with 528' these propagators have the mass A, 2. Surn-
ming over graphs with photon loops attached to the $2
line again replaces this mass by At& and replaces G22(P)
by

G~~(p) = — +At2((5) . (5.14)

Two points should be noted here. First, the effects of the
change of mass are not subdominant, as they were in the
previous case. Second, this term cannot be expanded in a
derivative expansion about the bounce.

Doing the path integral about the bounce and the pure
false vacuum and then proceeding as in the previous ex-
ample leads to

w -g 4+
jk

4 (5.19)

For small P, the derivative expansion cannot be carried
out beyond the four-derivative terms. However, if we ex-
tract from 8' the potential terms and the two-derivative
terms, the remainder is O(g ) and gives an O(1) contri-
bution to the exponent 8, which can eventually be ab-
sorbed in a redefinition of the prefactor.

To summarize, the bubble nucleation rate is again
given by an expression of the form of Eq. (4.27), with

effective action contribution containing j derivatives and
k factors of P. With M(P)=eg, the previous estimate is
replaced by

j=4

—1/2det'Wo'(pb )
I =e e 'e

det 8'o' ( Pr„)

detG22(pb )
'

Bo (1+ . )
det G ~~ (Pr„) 4~

where

(5.15)
and

Bo=f d x I [V ff(pb)+ —,'(Bppb) ]

A.)1=«e ')

Bi = f d'x [[Veff(kb)+ pzp (0b)(~p4b)

(5.20)

(5.21)

Bo = ~o(0b )
—lVo(br. » (5.16)

1/2
2~f d'x yb(x) (5.18)

There remains a minor point, which was noted above.
Because the photon mass M(P) is proportional to P, there
can be infrared problems if P ((cr, as is the case far from
the center of the bounce, where pb(x) exponentially ap-
proaches the false vacuum P&„=0. These can be seen
most clearly by recalling the estimate (4.20) for the

B,=6, 8'(pb )+6~8"(pb )+tr[8'o'(pb )] '6, W"(pb )

+«[ lVo'(yb )] '&21V"(yb ) —(4b Wf, ),
and 82, containing higher order terms, is of order unity.
The leading term in the exponent, Bo, contains the e
part of the effective potential and the tree-level kinetic
term. The four terms in 8, reproduce, in the order in
which they appear, graphs 6(a) and 6(b) of the O(e ) part
of Z& and graphs 5(a) and 5(b) of the O(e ) part of V,ff.
Although some of the O(e ) terms in V,ff are contained in

82, the potentially complex ones, arising from scalar
loops, are contained entirely within the explicit deter-
minant factors. Because these determinants cannot be
expanded in derivative expansions, the imaginary part of
the effective potential does not explicitly enter the calcu-
lation. Just as before, it is necessary to look for negative
eigenvalues in the spectra of the operators in these deter-
minants. By viewing the bounce as the optimum tunnel-
ing path in the space of field configurations involving
both P& and $2, it is clear that there is still just a single
negative mode, involving only P&. However, in addition
to the four translational modes there is a fifth zero-
frequency mode, corresponding to a phase rotation of the
bounce. This must be treated by introducing a collective
coordinate, replacing detGz2(pb) by det'G22(pb), and
multiplying by a Jacobian factor

and the preexponential factor 3 now being of order
4y 4

VI. CONCLUDING REMARKS

In this paper I have shown how the decay rate of a
metastable vacuum can be calculated in a theory whose
vacuum structure is determined by radiative corrections.
As in the standard case, the result may be written as a di-
mensionful prefactor times the exponential of an action
involving a bounce solution. To leading approximation
this exponent is just the tree-level action supplemented by
the dominant one-loop contribution to the effective po-
tential; in scalar electrodynamics it is O(1/e ). The first
correction to the exponent arises from the next-to-leading
contributions to the effective potential and the leading
correction to the tree-level kinetic part of the effective ac-
tion. Although smaller than the leading terms, these give
an addition to the exponent which is larger than order
unity [e.g. , it is O(1/e ) in scalar electrodynamics] and is
thus more important than the prefactor. It does not ap-
pear that this correction need have any particular sign,
but rather that it might increase the nucleation rate in
some theories and reduce the rate in others. Further, the
separation between the leading and next-to-leading terms
in the bounce action is dependent on the precise
specification of the renormalization conditions. In fact,
the existence of a correction term of this magnitude fol-
lows simply from the requirement that the physical nu-
cleation rate be independent of the renormalization
scheme and of the particular definition of the coupling
constants of the theory.

All further corrections may be absorbed into the pre-
factor. Although some of these (those corresponding to
graphs with internal lines of the heavy "y particles" ) can
be identified with particular terms in the effective poten-
tial and the other functions entering the effective action,
this is not true of all the higher corrections. Specifically,



47 VACUUM DECAY IN THEORIES WITH SYMMETRY BREAKING. . . 4627

the (t-loop graphs which give rise to complex terms in the
effective potential cannot, when calculated in the back-
ground of the bounce, be expanded in a derivative expan-
sion. Consequently, the imaginary part of the effective
potential does not explicitly enter the bubble nucleation
calculation, and the problems of interpretation which it
would entail are avoided. In particular, the expression
obtained for the nucleation rate can be shown to be real.

In the examples considered in this paper, it was obvi-
ous that the standard formalism for vacuum decay had to
be modified, since the tree-level potential had only a sin-
gle vacuum and so could not possibly lead to a bounce
solution. However, one could easily construct examples
in which the tree-level potential had several inequivalent
minima, but where the one-loop corrections to the
effective potential were comparable to the tree-level terms
and changed the vacuum structure. In such cases a
bounce solution to the tree-level action would exist and
could be used to calculate the nucleation rate, but the re-
sult would not be current. Working with the standard
formalism, would one see any indication that the calcula-
tion was unreliable? The answer is yes. To see this, con-
sider a model similar to that of Sec. IU, but with an addi-
tional P interaction of magnitude such that V((t, g=O)
has two minima. Further, assume that the (t self-
interactions can be written in the form

V(P, g=D)= Acr" U(P/cr ,)

with U involving no small couplings and the relation be-
tween A, and the couplings involving y being the same as
in Sec. IV. Applying the standard formalism in this case,
one will obtain a bounce solution with nontrivial (b(x) but
with y=0 everywhere and will be led to an expression for
the nucleation rate which differs from Eq. (2.13) only by a
multiplicative factor

det [
— +M [(t b (x ) ] ]

det[ — +M ((br„)]
(&.2)

arising from the functional integration over g.
The magnitudes of the various terms entering the ex-

pression for I can then be estimated by the methods of
Sec. II. In particular, since the spatial extent of the
bounce solution is of order 1/(&Acr), ,it is useful to define
the dimensionless variable s =&A,ax, in terms of which
the bounce has spatial extent of order unity. The bounce
action is then seen to be of order 1/A, , while the deter-
minants arising from the functional integration over (()

combine with the Jacobian to give a factor of order unity.
However, the remaining factor, K&, now becomes

det[ —,+M [Pb(s)]/ko
det[ —,+M ((()„)/&cr ]

(6.3)
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One final note. This work has been concerned solely
with the problem of bubble nucleation by quantum-
mechanical tunneling at zero temperature. Issues similar
to those encountered here also arise in connection with
the problem of finite temperature bubble nucleation, even
in theories where radiative corrections have little effect
on the zero-temperature vacuum structure. These will be
considered elsewhere.

A similar situation could arise in the study of solitons. The
calculation of the quantum corrections to the soliton energy has

many similarities to the decay rate calculation considered in this
paper. Here too, the standard calculation should break down if
the one-loop corrections to the effective potential are large
enough.
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