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Evolution of the density parameter in multidimensional cosmology
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Inflation as a dynamical effect of extra dimensions is discussed from the viewpoint of the evolution of
the parameters 0 and q in the physical space. By reducing the dynamics of the models FLRW
(k=+1)X T (T =S'X XS') and FLRW (k =0)XS,where FLRW denotes Friedmann, Lemaftre,
Robertson, and Walker, to two dimensions it is shown that inflation need not imply A =—1 for the present
time, i.e., that it does not solve the flatness problem. The energy-momentum tensor of the form
T"=(p, mp, mp, mp, n,p, . . . , np) is assumed. The results are comparable to those obtained by Madsen
and Ellis for four-dimensional models N= 1, d = 11 of supergravity theory.

PACS number(s): 98.80.Hw, 11.10.Kk

I. INTRODUCTION

In the standard cosmological models, it is a scalar field

P with a potential V(P) that is identified as a mechanism
responsible for inflation. Within the Kaluza-Klein
cosmological scheme, space-time dimensionality becomes
a dynamic variable, and it is natural to regard inflation as
a result of the dimensional reduction process; the effects
of such a process could be equivalent to those of a scalar
field with a suitable potential. (See Refs. [1,2]. Some crit-
ical remarks with respect to this program are made in
[3].) The original motivation for introducing inflation
was a desire to avoid paradoxes of the classical cosmolo-
gy, one of them being the so-called flatness problem.
This problem was carefully rediscussed by Ellis and Mad-
sen and Ellis [4] who, by presenting inflationary models
(with exponential and power-law inflation) as dynamical
systems, showed that the density parameter Q is nearly 1

only during restricted periods of the world's evolution,
that the probability that 0,= 1 depends on time of obser-
vation, and that the set of initial conditions leading to Q
not being close to 1 at a given time is, in general, not of
zero measure. We address the questions of how this
problem looks in the multidimensional world models
FRW (k =+1)X TD and FLRW (k =0)XS (where
FLRW stands for the Friedmann-LemaAre-Robertson-
Walker space and T =S'X XS') with the hydro-
dynamic energy-momentum tensor T"= (p, m p, m p,
mp, np, . . . , np), where m and n are constants. In these
two cases the model equations can be reduced to a two-
dimensional autonomical dynamical system, and the as-
sumed for m of the energy-momentum tensor is general
enough to contain a physically interesting situation (see
[2]).

Following Barrow [5] we shall assume that the inflation
takes place in those regions of space for which accelera-
tion of the scale factor of the physical space is larger than

II. GENERAL FORMULAS

In [6] has been shown that the world models FLRW
(k =+1)X T and FLRW (k =0)XS with the energy-
momentum tensor T"=(p, mp, mp, mp, np, . . . , np) can
be reduced to the following two-dimensional dynamical
system.

For FLRW (k =+1)X T,
2D +4—3a 2 D (D +2—3a)

D+2 D+2
aD(D —1) 2 2d +4—3a
2(D +2) D +2

dy 3p 2 2(D +2)—3pD
dz D+2 D+2

D [2D +4 p(D —1)] 2 3p—

2(D +2) D +2

t dX
X

d7

zero, (R )0); if this condition is satisfied long enough, all
horizons will grow to sizes bigger than those of the visible
Universe. Our results remain in agreement with the
above-quoted conclusions obtained by Madsen and Ellis
(see Sec. V below). Although there can exist regions of
the phase plane in which inflation takes place, and these
regions can be of nonzero measure, phase trajectories
leaving such regions need not lead to 0=1. It turns out
that the probability that Q will be measured to be nearly
1 depends on the observation time, and 0= 1 is valid only
for a restricted time interval. However, it can happen
that there are trajectories leading to 0=1 which never
passed through the inflation region. In this sense the
state with 0= 1 is not an attractor for the inflation phase.

This failure to explain the flatness problem with the
help of multidimensional inflation will be illustrated by
the behavior of the FLRWX T world model filled with
radiation. The problem can be similarly discussed for the
FLRWXS model and for other types of the energy-
momentum tensor listed in Table I.
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Energy

density p

TABLE I. Energy-momentum tensor for particular cases.

Values of
parameters

Cases

p/(R r )

/(R 6 2B)

A

p /(R 3kr Dk)

/r 2D

/r D+4

and po &0

—1/(D +3) —1/(D +3)

—4/D

Dust matter
Massless scalar field
Cosmological constant
in D+3 dimensions
Radiation in
(D+3) dimensions
Field with the Freund-
Rubin ansatz [7]
Quantum effects of
massless scalar field
in low-temperature
approximation [8]

In the physical region determined by the (0,0) component of Einstein's equations one has

where

2 2 D (D —1) 2
0 for cases (1)—(5) in Table I,

«0 for case (6) in Table I,

x =R (lnR ), y =R (lnr),d d
dt ' dt

R and r being the scale factors of the physical and internal spaces, respectively, a = 1+(1—D)m and P= 2n + —3m +1
are constants, E is the curvature constant of the physical space, and D is the dimension of the internal space. Along
phase trajectories a new time parameter ~ is determined, dt =R d~, which is a monotonic function of t.

For FLRW(k =0)XS

dx 3(D+4—a) 2 D 2 3aD a—D(D——1) 2 aD(D —1)
X XP+ K,dr D +2 D +2 2(D +2) 2(D +2)

dy 3p 2 3(D +2) 3' 2D(D—+1) 4 pD (D ——1) —
2 (D —1)(pD D —2)—

d~ D+2 D+2 D+2 D+2
and, analogously to the previous case,

(3)

D(D —1) z k
Pr =3x +3Dxy+

2
@2+ c

3

)0, for cases (1)—(5) in Table I,
«0 for case (6) in Table I, (4)

where

x =r (lnR ), y=r (lnr),d d
dt ' dt

and k is the curvature constant of the D-dimensional
maximally symmetric space.

Particular cases of the assumed energy-momentum ten-
sor are shown in Table I, where k = (D +4) i(D + 3).

Vanishing of the energy-momentum tensor leads to the
following relation determining the density parameter:

Po

R 3(1—m) (1—n)D

III. MULTIDIMENSIONAL INFLATION
ON A PHASE PLANE

It will be convenient to construct phase portraits in
projectile variables. For the right-hand sides of Eqs. (1)
and (3), let us introduce the projective variables

z=
~ Q — and v=

X X 3'

The dynamical system in (z, u), and (U, w ) variables is
equivalent to the original one provided z&0 and V&0.
To infinitely distant points of the (x,y) plane correspond
a one-sphere S' which can be covered by two lines z =0,
for —ac & u & ~, and v =0, for —~ & w & ~. After the
time transformation ~~~„dz, =x d~, dynamical sys-
tems (1) and (3), in the projective variables (z, u ), assume
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FIG. 1. Phase portraits of multidimensional cosmological models in projective variables (z, u) for different values of D and E. This
choice of variables is useful for discussing properties of the system at infinity (on the Poincare sphere). The enhanced line denotes the
curve 0= 1. Note that the phase trajectories cross this curve; in the case of (1+3)-dimensional FLRW world models the curve 0= 1

is a phase trajectory on the plane (H,p), where H is the Hubble function and p is the energy density. The curve 0=1 is a boundary,
shifted up by 1, of the nonphysical domain (excluded by the "constraint conditions") in which 0=0. The domain 0 & 1 is above this
curve, and the domain 0 & 1 beneath it [(ai—(c)]. In ia)-(c) the curve A =const is obtained by stretching the boundary of the nonphys-
ical domain along the z axis by the value Q =const.
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the form

i = —zP*(z, u),
u =Q*(z, u ) —BP (z, u ),

For FLRWX T,
1 R

H'R (see Fig. 3), (8)
d7-

where

P (z, u)=z P 1 u

z z

D(D —1)=0=1+Du +Kz + u (see Fig. 2) .
3H 6

(9)

For FLRWXS
1 uQ*(z,u)=z Q z z dx /d~ —xy+x

x
dz +u —1,
d7

(10)

and an overdot now denotes differentiation with respect
to ~, .

In the (U, w) variables, dynamical systems (1) and (3) as-
sume the form analogical to that of (6), with the role of z
now played by v and that of u by m. In Fig. 1 six phase
portraits of system (1) are shown in the (z, u) variables.
The topological structure of the phase plane, for a given
K, is independent of the dimension D & 1 of the internal
space. The case D =1 is distinguished, which can be seen
on the phase portraits. Let us notice that dynamical sys-
tems (1) and (3), in the (z, u) variables, exhibit the symme-
try z —+ —z. We shall be interested in the region z ~0
(where physical space is noncontracting). Inflation
occurs in these regions of the phase plane for which the
following conditions are satisfied': for (1),

~ ~ dx 1 dzR)0 0 )0 —— )0,
d7 3 d7j

for (3),

(6)

R &0 &(xy —x )~ — &(u —1) . (7)
~ ~ dx 1 dz

z d7j

IV. DECELERATION AND DENSITY PARAMETERS

The deceleration parameter and density parameter can
be expressed in terms of the variables (z, u ).

Whether or not conditions (6) and (7) are satis6ed depends on
the tangent vector (dz/dw, du/d7l) to the trajectory. In the
case of condition (6) this fact depends only on the sign of
dz/d~&, which allows one to easily identify domains on the
phase portrait in which this condition is not satisfied [in the case
of condition (7) this is slightly more difficult].

From the phase portraits [Figs. 1(c)—l(f)] it can be seen
that the regions for which condition (7) is satisfied are of
zero measure, whereas in the remaining cases [Figs. 1(a)
and 1(b)] they have a finite measure. For physical spaces
with a zero or positive curvature, inflation takes place if
the internal spaces expand to a constant size, provided
D&l; for the case D =1 such a relationship does not ex-
ist.

For the physical space of negative curvature with
D & 1, a double inflation [Fig. 1(f), trajectory a], or single
inflation, for —ce &w& ao [Fig. 1(f), trajectory b], or a
preinflation [Fig. 1(f), trajectory c] can take place.

=A=1+Du +Kz + D(D —1)
(kz +u ),

3H 6

where H = (d /dt )( lnR ) is the Hubble function.
From (9) and (11) (Figs. 2 and 3) it can be seen that

conditions (7) and (8) are equivalent to q &0. Formulas
(10) and (12) are independent of the form of the energy-
momentum tensor. Dynamical system (1), with (10) or
(12), determines the evolution of the parameter 0 in rnul-
tidimensional cosmology. One can also eliminate u from
(10) and (ll), and determine 0 from the dynamical sys-
tem:

=P(Q, z),dQ

(12)
=Q(Q, z) .

7 $

Such a dynamical system was used in Ref. [2] to inves-
tigate the evolution of the classical FLRW models. From
the fact that it also can be done for multidimensional
counterparts of these models, the full classification fol-
lows from multidimensional world models on the phase
plane (Q, R ) or (q, R).

V. DISCUSSION

First; let us discuss the relationship of our results to
those known for (1+3)-dimensional world models. In
our case the physical space and the internal space are
dynamically conjugated, and consequently the parame-
ters 0 and q, as measured in the physical space, are
modified by the dynamics of the internal space. If we put
u =0 (the internal space is static) we formally obtain the
transition to the (1+3)-dimensional case, in the sense
that the corresponding dynamical systems are equivalent.
The problem of the configuration FLRWX {static inter-
nal space] is known as the problem of dimensional
dynamical reduction. For instance, such a reduction
occurs in the class of models FLRW(k = —1)X T with
the hydrodynamic energy-momentum tensor; however,
the multidimensional dynamics does not always admit
the solution FLRWX {static internal space, u =OJ. In
other words, there is no limiting transition, on the level
of dynamics, from multidimensional models to classical
ones. In the classical models, at the critical point zo =0,
A=1, whereas in our case at zo=0, u =uo, and
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0=Q( u ~ ). If u o ~0 (internal space changes slowly), the
dependence of uo upon 0 is weak, but A=1 is not a
phase trajectory (had it been a trajectory, this would have
meant a total dynamical disconnection of the physical
and internal spaces).

Let us notice that FLRW world models with the hy-
drodynamic energy-momentum tensor have the first in-

tegral independent of the state equation: namely,

3K
p —3H =

R

i.e.,

E0—1=
R
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FICx. 2. Level surfaces of the parameter 0 [formula (9)] for different dimensions D of the internal space and curvatures of the phys-
Dical space for multidimensional world models with topology FLRWX T .
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of Madsen and Ellis it is a pure effect of the hydrodynam-
ic energy-momentum tensor.

(2) In both cases the value 0=1 depends on the mo-
ment of observation (i.e., on the value of a parameter
along the trajectory).

(3) In both cases, there exists a nonzero measure set of
initial conditions leading to models with 0%1 which
remain in agreement with the actual observational data.

The essentially new effect that distinguished our case
from the classical one is the existence of a mechanism
which is responsible for an infinite series of inflationary
phases.

To discuss the evolution of 0 from the phase diagrams
in the (z, u) variables, the line 0—1=0 is shown. This
line can be determined from the condition p=O. From
(10) and (12) it follows that on the boundary p=O of the
physical condition p ~ 0 one has 0=0.

By a typical state of the metric in a neighborhood of
the initial singularity we shall mean a repelling critical
point such that the dimension of its invariant repelling
manifold is equal to the dimension of the phase space.
Analogously, by a typical state of the metric for t ~ ~ or
for t oto (where to is the final singularity) we shall mean
an attracting critical point such that the dimension of its
attracting invariant manifold is equal to the dimension of
the phase space. From the phase portraits (Fig. 1) it can
be seen that typical states of the metric are always situat-
ed on the boundary p=O of the physical condition p ~0.
For the typical states of the metric for t~~ or for
t ~ to, one has 0=0 (and not 0= 1), i.e., the states with
0=0 are attractors in the phase space.

Now, we shall turn our attention to particular models.
World models with D =K =1 do not undergo inflation,
and 0 changes from zero to any arbitrary value. The
state 0=1 is reached by various trajectories at various
times, i.e., whether or not an observer will see 0=1 de-
pends on the time the observation is performed.

Models with D = 1, K =0 exhibit similar properties.
World models with D =1, K = —1 undergo (a single)

inAation along certain trajectories. InAation leads to a
constant size of the internal space. The state 0=1 is
reached by various trajectories at various times ~, . Mod-
els with the internal space contracting and then expand-
ing to a constant size reach twice the state 0= 1.

World models with D =6, K =1 have a nonzero mea-
sure set of trajectories which remain in the inAation re-
gion when the internal space contracts. The state 0= 1 is
not an attractor, although it can be reached twice. Mod-
els with D =6, K =0 behave similarly.

World models with D =6, K = —1 have a nonzero
measure set of trajectories for which inAation takes place.
The state 0= 1 is reached by trajectories along which the
internal space either expands to a constant size [Fig. 1(f),
trajectories a, b, c] or contracts and then expands to a
constant size [Fig. 1(f), trajectory d].

Generally speaking, we can see that although the state
Q = 1 is not an attractor in phase space, it can be reached
by trajectories that do not pass through the inflation re-
gion. It can happen that the state 0=1 is reached once
or twice by trajectories for different time parameters. In
the case when the internal space contracts, inAation does

FICx. 4. Phase portraits of the world models
FLRW(k =1)X T with the Freund-Rubin ansatz. The critical
point P is a stable focus. In its neighborhood phase trajectories
enter into the inflation region infinitely many times.

guarantee that the state Q = 1 will be attained. For world
models, in which there is a period during which the inter-
nal space expands, the region of the phase space corre-
sponding to this period has a nonempty overlap with the
infiation region [Figs. 1(c) and 1(f)] provided that
0. 1 (Q ( 10 (see [4]) and K = —1. For K =0 and K = 1,
the assumption 0. 1 & 0 & 10 does not imply that inflation
took place in the past, i.e.,

[0:0. I (0 (10]6 I (z, u): q (OJ =0 .

We have analyzed the evolution of Q in FLRW
(k =+1)X T models with radiation. For all other cases
of the energy-momentum tensor, listed in Table I, the be-
havior will be qualitatively the same (for this class of
models) with the exception of the FLWR(K = —1)X T
world model with the Freund-Rubin ansatz. In this mod-
el infinitely many inflation epochs occur which lead to
the state 0= 1, and inversely, 0. 1 & Q & 10 for the present
epoch implies that infinitely many inAations took place in
the past. Let us notice that the typical state of the metric
for this model is represented by a stable focus point P
(Fig. 4). This example clearly shows that whether or not
inflation solves the fatness problem in multidimensional
cosmology depends on matter fields filling the model, and
it does not depend on the number of extra dimensions
(with the exception of the case D =1). In models with
the open physical space inflation solves the fatness prob-
lem.
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