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Computing spectral densities in Bnite temperature field theory
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Convenient Cutkosky-like diagrammatic rules for computing the spectral densities of arbitrary
two-point correlation functions in finite temperature field theory are derived. The approach is based
on an explicit analytic continuation of imaginary-time Feynman diagrams. The application of this
method to the perturbative evaluation of transport coefficients is brieAy discussed.

PACS number(s): 11.10.Ef

I. INTRODUCTION

Linear response functions characterize the behavior of
an equilibrium thermodynamic system when subjected
to a small disturbance [1]. Important examples include
shear and bulk viscosities, thermal or electric conductiv-
ities, and magnetic susceptibilities. Any response func-
tion may be expressed in terms of a spectral density de-
fined, for any pair of operators A and B, as

pg~(k, io):— d xdte '"'"+' '([A( xt), B(0)]) . (1.1)

For example, the static shear viscosity may be shown to
equal [2,3]

dt dt' ([frA, i(0), 7rA, i(x, t')])

j. G
p~~(0~ ~o) cu=o ~2 dM

(1.2)

where vi.
A, i(x, t) is the traceless part of the spatial stress

tensor. For instance, in a scalar field theory kt, ~

cli4cli4 —s4ici 4'~ ct.
All transport coefFicients are determined by the low fre-

quency, zero momentum limit of the spectral density of
the appropriate composite operators, as in Eq. (1.2). The
purpose of this paper is to examine the perturbative cal-
culation of composite operator spectral densities in this
limit. For simplicity, the calculation of the spectral den-
sity of the correlation function ([P (x, t), P (0)]) in a real
scalar AP theory is discussed. At zero momentum, this
correlation function has analytic structure similar to the
spectral density of the stress tensor correlation function,
but avoids inessential notational complications.

Despite the simplicity of the definition (1.1), spectral
densities are not easy quantities to evaluate perturba-
tively at nonzero temperature. Appropriate calculational
rules for the spectral density of general operators are de-
rived in the first part of this paper, starting from the stan-
dard imaginary-time diagrammatic rules for a relativistic
field theory. Then, the application of these rules to the
calculation of the spectral density ([P (x, t), gP (0)]) is ex-
amined. Individual Feynman diagrams, computed with

free thermal propagators, are shown to produce severe
infrared divergences. These divergences reflect a nonuni-
formity in the low frequency and weak coupling limit.
When calculated correctly, the would-be infrared diver-
gences are cut ofI' by the thermal lifetime of the parti-
cles. However, even after accounting for the finite single
particle lifetime, an infinite number of diagrams must
still be summed to obtain the correct leading-order low-
frequency behavior

Previously, several authors [5—7] have discussed rules
for the calculation of the imaginary part of a given dia-
gram within the real-time formalism. This work, when
combined with Refs. [8,9], yields a set of rules for the eval-
uation of the spectral densities of elementary fields equiv-
alent to the rules derived here. The derivation given be-
low, based on the imaginary-time formalism, is entirely
self-contained and easily permits inclusion of the neces-
sary self-energy resummations. Whether one prefers to
begin with the real-time or imaginary-time formalism is
ultimately a rnatter of taste, and cannot affect the final
result.

This paper is organized as follows. In the remainder of
the Introduction, the real-time formalism and imaginary-
time approaches are briefly described. The calculation
of imaginary-time correlation functions is reviewed in
Sec. II. Section III shows how the process of analytic
continuation and computation of the discontinuity can
be carried out in a convenient form. (For nonrelativis-
tic theories, a similar discussion of a portion of this ap-
proach may be found in Ref. [10].) In Sec. IV, it is shown
how to incorporate the results of previous sections into
a convenient set of diagrammatic rules. The resulting
method is then applied in Sec. V to a simple example of
the spectral density of the composite operator correlation
function ([P~(x, t), $2(0)]) in a scalar AP theory. Ap-
pendix A discusses the symmetry properties of the spec-
tral density and the implications of CPT invariance. For

Similar summations must also be performed in non-
relativistic calculations of transport coefficients [4].

The extension to arbitrary operators is a straightforward
generalization of [8].
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ip»(k, (d) = GAirr (k, (d) —
G~rr (k, (d)

These correlation functions

(1.3)

Gzz'""(k, (d)—:ki d x dt e '""+'"'0(+t)

ease of the presentation, the body of this paper discusses
tneories with zero chemical potential and composite op-
erators without time derivatives. Appendix B generalizes
the treatment to operators involving time derivatives of
the elementary field, and the generalization to nonzero
chemical potential is presented in Appendix C.

The;;pectral density is the difference between the ad-
vanced and retarded correlation functions:

advanced correlation functions can be expressed in terms
of the time-ordered correlation function of the doubled
fields [8,9]. The perturbative evaluation of any time-
ordered correlation function, in the real-time formalism,
requires using a matrix-valued propagator. For a scalar
theory, this has the form [11]

G~(k) (' &++(k) &+-(k)
+(k) 6 (k)

where

&++(k) = &--(k)* =

([&( t) &(o)])

have the spectral representation

(1.4)

and

(1.7)

G~~'"'(k, (d) = chd' p» (k, (d')

270 M —(d + zc
(1.5)

eelkol/2
+-( ) = -+( )=,„,,

( '+ ')

with the upper sign referring to the advanced and the
lower sign to the retarded function.

In the real-time formalism at nonzero temperature, the
number of fields are doubled [11], and the retarded and

This structure arises because the finite temperature, real-
time correlation function necessarily involves time evolu-
tion operators propagating both forward and backward
in time. To see this, note that in the interaction picture

(T(A(x, r)B(0))) = lim Tr Ur( r)) TT) T—(Ar—(x, e)Br(0)Ur(T, —T)) e (1.9)

where the subscript I signifies the interaction picture op-
erators, H is the full Hamiltonian and Ho is the free
Hamiltonian. To evaluate this perturbatively, one must
expand both time evolution operators. The time evo-
lution operator that propagates forward (from —oo to
+oo) generates ordinary time-ordered products, but the
time evolution operator that propagates backward (from
+oo to —oo —iP) generates anti-time-ordered products.
This difference cannot be avoided at finite temperature
and is ultimately reflected in the different signs of ie in
6++ and 4 . Only the 6++ part of the propagator
has the right structure to represent real particle prop-
agation. The other elements of the matrix propagator
model the heat bath and also serve to cancel unphysical
singularities that would occur if only the 6++ part of the
propagator were used.

Alternatively, in the imaginary-time formalism, one
may obtain the advanced and retarded two-point func-
tions (and hence the spectral density) from the time-
ordered imaginary-time correlation function,

( ) —= 9 (&( —i )&(o))) (1.10)

using analytic continuation. This is easily seen from
the spectral representation. The correlation function
G&&(x, w) is a periodic function of imaginary-time (with
period )9); hence, its Fourier transform depends on a dis-
crete frequency, vi = 2ml/P, where l is an integer, and

has the spectral representation

G»(k, iv&) —=
p

d3 —ik X.+iVl V

2pAirr (k, (d) = Disc G&&(k, (d)

= G~rr(k, (d+le) —G~rr(k, (d —2e) . (1.12)

The perturbative evaluation of finite temperature,
imaginary-time correlation functions involves precisely
the same momentum space diagrammatic rules as at zero
temperature except for the replacement of frequency in-
tegrals by sums [1,13,14], f dko/2vr ~ (1/P) Q . In
contrast with the matrix structure of the real-time prop-
agator (1.6), the free scalar propagator for the perturba-
tive calculation of imaginary-time correlation functions

x (T(A(x, —i~)a(O)))
p» (k, cd)

O'Tl M —RVt

Comparing with the spectral representation (1.5) shows
that the advanced function is given by the analytic con-
tinuation G&&(k, (d+ie) and the retarded function is

G&rr (k, (d —ie). Hence, to obtain the spectral density, one
must analytically continue the frequency dependence of
G&& from the discrete set jivi) to an arbitrary. complex
value [12], and take the discontinuity across the real axis:
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is simply the usual

1
o( )—

l

For determining the spectral density, the drawback of the
imaginary-time approach is that one must first manage
to perform explicitly all the frequency summations. Only
then can one analytically continue the external frequency
and compute the discontinuity (1.12).

As shown in the next section, all the necessary fre-
quency summations can be evaluated directly. Further-
more, one may perform these sums, analytically continue
the external frequency, and take the discontinuity across
the real axis before performing any of the remaining
spatial momentum integrations. This process generates
many terms from a single Feynman diagram, with indi-
vidual terms corresponding to each possible "cutting" of
an old-fashioned time-ordered diagram. These terms may
be recombined to obtain simple expressions correspond-
ing to "cut" Feynman diagrams which are generated by
a set of rules that closely resemble the zero-temperature
Cutkosky rules.

II. FINITE TEMPERATURE PERTURBATION
THEORY

1
Go (k, iv]) =

l

where

d(1) pp(k, M)

271 M —2 Vt
(2.1)

2~
po(k, ~) = (6(~ —Eg) —6(~ + Eg)),2' (2 2)

and E~ = v k~+m~. Then, using the relations

—2VL T

P, M —1V&

—Cc) T —4)7

(2.3)

tial. By applying the standard momentum space Feyn-
man rules, the perturbation series for a Fourier trans-
formed imaginary-time correlation function may be gen-
erated. However, as the number of the loops increases,
dealing with the discrete frequency summations becomes
inconvenient. To avoid these frequency sums (at the cost
of further integrals) one may simply Fourier transform
(in time) the momentum space propagators. This yields
"mixed" propagators that depend on a spatial momen-
tum and imaginary time [15]. To evaluate this mixed
propagator for a scalar theory, it is convenient to first
write the momentum space propagator in terms of the
free particle spectral density pp(k, w):

Consider, for simplicity, a relativistic scalar field theory
at nonzero temperature with vanishing chemical poten-

(valid in the interval —P & r & P), and —n( —w)
[1+n(cu)], one obtains

G() (k, 7.) = ) Gp (k, ivy) e ' '

po (k, ~) e '
(11(v)]1+ n(~)] + 8(—v)n(ui))

+ n ~ Oo ~, ~ « —po &, —~ I9
—OO

(2.4)

For the scalar field propagator, the rotational invariance
of the system implies that the spectral density depends
only on the magnitude of the momentum. Since the free
spectral density (2.2) is an odd function of the frequency,
the propagator takes the convenient form

Gp(lkl r) = j. +nw po k, w e ~ ~. 2.5

This result may, of course, be derived directly using the
free equation of motion plus periodicity in imaginary
time.

As discussed in Appendix A, in the absence of a chem-
ical potential, CPT invariance guarantees that the spec-
tral density for the interacting scalar field propagator re-
mains an odd function of the frequency. In what follows,
this symmetry of the spectral density will play a role in

simplifying the diagrammatic rules. We work with

—2 = -P(—o] —V' +m )P+ —AP .2 2 2 i 4
2 4I

(2.6)

To evaluate a Feynman diagram for a two-point func-
tion using these "mixed" propagators, one labels each
line by a spatial momentum and each vertex by a Eu-
clidean time 7~ which will be integrated over from 0 to
P. At each vertex where an external operator inserts ex-
ternal frequency ivy, an additional factor of exp (ivzrz) is
present. Each interaction vertex contributes a factor of
(—A). Each line connecting two vertices labeled by the
times r and r), represents a propagator Go (~k~, r —r),).
As usual, spatial momenta are conserved at every vertex,
and all remaining spatial loop momenta are integrated
over. Thus, the contribution of a diagram with a to-
tal of n+1 vertices and two operator insertions has the
schematic form
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exp ivri + in~re ]fee({ter),q)
r, e.r

dko 1+n k pp k~, k~ exp —k~ ~~ —7b (2.7)

Here I' denotes the Feynman diagram under considera-
tion, n labels the different lines of the graph, {ki.) are
loop momenta, and Sz is the overall symmetry factor.
The factor

0. Equivalently, one may simply set v0 to zero and assign
iv' = iv to —that vertex. Then, the remaining time

integrals in C&& have the form(I)

fAB({ki) q) = fA({kI.), q) fB({kI,) 'q) (2.8)
P

drr dr„exp ivrr —) h ~r —rs~), (2.9)

represents the action of the external operators A and &.
It is only a function of spatial momenta provided that
the operators do not contain any time derivatives of the
elementary field. If they do contain time derivatives, then
so does fAB({ki.),q). For simplicity, we will assume that
no such time derivatives are present. The generalization
to include operators with time derivatives is discussed
in Appendix B; this presents minor complications but
introduces no new features. The times v.

~ and v.p label the
vertices where the external operators insert the external
frequencies iv and iv and {w~, ~b) are times within the
set {~(),. . . , ~„).

Because of the translational invariance in imaginary
time, one can immediately do one time integration which
generates an overall Kronecker delta function enforcing
the conservation of the total external frequency, 2v+iv' =

with ~0 = 0. The evaluation of this integral and the
association of the result with old-fashioned time-ordered
diagrams are the main subjects of this section. Perform-
ing these intermediate time integrations in this "mixed"
form of perturbation theory is exactly equivalent to car-
rying out all the intermediate frequency summations in
the Fourier transformed version of perturbation theory.
After performing these integrations, it will be easy to an-
alytically continue the external frequency in the resulting
expression.

Before proceeding with the general analysis, it may
be helpful to consider a simple example. The lowest-
order connected term in the perturbative expansion of
('T(ds(x, ir)ds(0)) —is given by twice the square of the
free propagator, (rPc (x., r)) . The Pourier transform is

P 2
~ —iq x+iv~ QE x

d3k

(2~)s
«e'" &0 (lkl ~) G'0 (lq —k &)

d3k

(2vr) s
-"'II 1+ ko p, k k'

dk'0 „.0
e "I

I 1+nk' Pp q —k k

d3k

(2~)s

—P(k'+k")
+n k PP kk 1+n O' Pp q —kk' (2.10)

To simplify this, we may use e )" [1+n(k )] = —[1+n(—k0)], plus the fact that the spectral density of the propagator
is an odd function of the frequency, to rewrite the result as

dk

(2vr) s
kp k k0 1 + kip k krp

1 1xl, . +(k + k' —iv k + k' + ivy
(2.11)
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time

(q, zv)
with

and

s s
S M$+ (4PQQt i vs

o,e((s)~
(0,1,2, ...,s —1))

ng((s) ~
(s+1,s+2, . . . ,n) )

(2.13)

(2.i4)

(2.15)

q, sv (q, ip)

FIG. 1. The lowest order diagrams for the correlation func-
tion (1 (P (x, ir)P (0))).

P
0de de„exp ice& —) k

Aside from the fact that the external frequency is dis-
crete and imaginary, the terms in the parentheses of
Eq. (2.11) may be recognized as the standard energy de-
nominators of time-dependent perturbation theory [16].
The integration over the spatial momentum k can be
regarded as the sum over all intermediate two-particle
states. Thus it is natural to associate the two terms
in Eq. (2.11) with old-fashioned time-ordered perturba-
tion theory diagrams as illustrated in Fig. 1. The time
ordering of the first diagram corresponds to the energy
denominator (kP+O'P iv), an—d the time ordering of the
second diagram corresponds to the energy denominator
(kP+O'P+iv). In both cases, the energy denominator can
be interpreted as the sum of frequencies of lines cross-
ing the interval between two external vertices minus the
external frequency flowing out of the vertex above the in-
terval. The contribution of a line with momentum (k, kP)
is given by [1+n(k )] pp(~k~, k ), which, in the zero tem-
perature limit, reduces to 8(kP)2vr6(k2+m2). The inte-
gration over the spatial loop momentum and frequencies
k and k' completes the expression.

This association of the result of the imaginary-time
integrations (or equivalently the discrete frequency sum-
mation) with old-fashioned time-ordered diagrams is a
general result. To see this, we now go back to the evalu-
ation of the time integral in (2.9):

n n &n —1 Tn —in —1

(2.16)

with the initial condition Z'p(r) = 1. The original time
integral is Z((kP },iv) = Z'„(P). The functions Z„(r) sat-
isfy

—Z„(r) = e " 2„ g(r) . (2.i7)

This differential relation implies a simple algebraic recur-
sion relation for the Laplace transforms of the Z'„(r):

Z„(A) =— dr e Z'„(r)

t' —1 d—e " Z'„(r)

dr e —T„(r)
G

87

Here ((a, . . . , b) ~ (c, . . . , d)} indicates the set of lines
connecting vertices at times (r, . . . , rb} with those
at times (r„.. . , rg}. Hence a„ is the sum of fre-
quencies of all lines connecting ~, with earlier times
(rp, ry, r2, . . . , r y }, and cu'„, is the sum of fre-
quencies of the lines connecting ~s with later times
(r,+q, r,+2, . . . , r„}.The discrete external frequency i v,
is given by ivb, t because the external frequency is in-
serted only at the vertex labeled by ~~. The contribu-
tions of all the other time orderings may be brought to
this same form by suitably renaming the time variables.

To facilitate the evaluation of the time integral
Z((kP },iv), consider the sequence of integrals

and split the integrand into nt terms according to the
relative orderings of the n different time variables. The
term corresponding to a particular time ordering, for ex-
ample, ~„& 7.„1 & & 72 & ~1, may be written
as

dre " " 2'„&(r)

1
g(A + cr„) . (2.iS)

Z((kP },iv) Iterating this equation produces

d7n
T3

d72
T2 n

dei exp ) —tT,T,),s=l

where

(2.12)

where we have deflned

(2.19)
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(2.20)
0" —= 0" —Op+i (2.23)

The original integral is recovered by performing an in-
verse Laplace transform:

2'„(r) =
++100

A~g
2

(2.21)

Z„(P) = Z((ko), iv)
n n n

1 ~ . p„- 1 1
Qn J ~ Qn „„.. Qn Qn

j=l g k=1 k ~=1 j
jgk

+ ) —PAP
---- 0".j=l & k=1

k —1
1

..„.gk —1
j=l j

n+ 1

—njj =k+1 k

n+1 k —1
—PB~e gk —1

k=1 j=l —A~j =k+1

n
%+1

k=0
(-~~+i)

j=l j =k+1

where

(2.22)

where p & 0" for all j & n. Closing the contour anti-
clockwise at infinity and picking up the residues of all the
poles yields

and in the last two lines a product that has no elements
is to be interpreted as 1 and e ~ +& =—1.

The time integral Z'((ko ), iv) (2.12) is an analytic func-
tion of the real frequencies; i.e., all derivatives exist and
are finite. Thus, although individual terms in the expres-
sion (2.22) may become singular when any of the factors
in the denominator vanishes, the whole expression must
give the correct value of the finite integral if the limit-
ing value is taken as the value of the expression (2.22).
Since the function 2 is analytic, how one approaches the
limiting point is irrelevant. For our purpose, it will be
convenient to approach the limiting points from just ofl
the real lines in the complex space of frequencies (ko).
Equivalently, it will be convenient to regulate the expres-
sion (2.22) by adding an infinitesimal imaginary part ie,
to each frequency sum o., so that none of the denominator
factors vanish for any real value of momenta and the fre-
quencies. Any set of infinitesimal imaginary parts may
be used as long as these conditions are met. Different
choices produce equivalent results for 2, but create dif-
fering pole structure in individual terms. Since the rules
derived in this section involve each individual term, a
different choice of infinitesimal imaginary parts can lead
to a different set of rules. The most convenient choice
is the one which leads to the standard Cutkosky rules in
the zero temperature limit. The following choice of the
infinitesimal parts does this. Define

n k n

2((ko), iv) = lim ) (0," —ie,") ( 0'„+,—+ie'„+,)
k=O j=l j'=k+1

exp (P( ~A:+1 + ieA:+1)) (2.24)

where

(n —p+ l)e
(n+ p —t)e

for t+1 & p & n, ,
for1&p&l, (2.25)

I

where, as illustrated in Fig. 2, A~„' indicates the set o
lines connecting the times (r~, r~+i, . . . , rI, }with the ear-

lier times (ro, ri, r2, . . . , v~ i), and A '„, indicates a set

of lines connecting the times (r~, r~+i, . . . , rkj with the
later times (rg~i, rg+2, . . . , r„). In particular,

k= n n
k+1 (2.26)

a.en„"= ) k.o, (2.28)

ReO" = ) ko — )
o, gh' '

in

(2.27)

Here the index L corresponds to the vertex at time ~t
where the external frequency is inserted.

For further simplification of Eq (2.24), w. e need to ex-
amine the structure of the factors in 2, more closely. In
view of the definition Eq. (2.13), the factor 0" = P, . cr,
contains the sum of frequencies of all the lines con-
nected to any of the times (r~, r~+i, . . . , rl, ) with signs
indicating whether the line comes from an earlier time
(+w,'„) or a later time (—u'„,). Among these frequencies,
those corresponding to the li~es connecting the times
(r~, r~+i, . . . , rA, ) to themselves cancel in the sum for 0"..
Hence

so that the exponential in Eq. (2.24) has the form

exp —Ok + zek ——exp z 6k — A:~

(2.29)

In the expression (2.7) for the result of the complete
graph, the time integral X is multiplied by frequency in-
tegrals containing Bose-Einstein factors and the spectral
densities of free propagators. Since the Bose-Einstein
factors satisfy e i [1+n(w)] = n(u), and the spectral
densities are odd functions of the frequency, the identity
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~+& Cd PO Cd ~

n((u) pp(~) f(~)

1 + A Cd PO Cd —Cd 2.30

holds for any function f(u). This identity may be used to
absorb the factors of e ~ ' I+& appearing in the result
(2.24) for the time integral Z. When inserted into the ex-
pression for the complete graph, the factor of e ~+'~&+~

in each term of 7 may be omitted if, at the same time,
the sign of all frequencies in the set A,„+ '" are changed
in the corresponding denominator.

To see the efFect of this sign change on the remaining
factors of 0" in the denominator, recall that Re 0" is the

sum of the incoming frequencies of the lines A~„' entering
the block of the times (Ty, . . . , r~) minus the sum of out-

going frequencies of the lines Aj'„t leaving the block. To
be a member of the set A~'„"t, a line must cross the inter-
val just above the latest time in the time block, TI, . All

lines that cross this interval are also members of A,"„+ '"
since A,."„+ '" consists of all lines that cross the same in-

terval. Thus when the exponential factor e ~ ' k+& is
absorbed, all outgoing frequencies in Re 0" change sign.
On the other hand, none of the lines corresponding to
the incoming frequencies for the set of times (TA, . . . , w~)

A,
"—= ) k.'+ ) k.', .

a&A '
in

(2.31)

Note that A" is the sum of frequencies of all lines that
connect any of the times (TA, TA, z, . . . , T~) to times out-
side of this set. A similar result holds for the factors
involving Re Ok+1. In this case, it is the incoming fre-

~ /

quencles that change sign and Ren'@+1 is replaced by

) k.', ,

/~Ah+1, y/
out

(2.32)

which is minus the sum of frequencies of all lines that
connect any of the times (T~, r~ q, . . . , TA;+q) to times
outside of this set.

Consequently, the expression (2.24) for the result of
the time integration may be replaced by the equivalent
result

2'((ko ), iv) = ) SA, ((k ), iv) e'~'"+',
k=o

(2.33)

where, for n& A: &I, ,

are members of A,„' because these incoming lines allk+1,n

terminate at times earlier than ~k+1. Thus the incom-
ing frequencies are not affected by the absorption of the
exponential factor. Hence, after this change of variables,
Re 0" is replaced by the frequency sum

Sg((ko), iv)—:
l

," —iL —ie,"
j=l

k n

j/ 26j/ k+1 + Mk+1
j =l+1 j =k+1

(2.34a)

and

Sg((k ), iv)—:
k

(Aa;, a)
j=l

t —1 n
~ ~ ~

~ / ~ / 1 // ~ //

AI +i + 'ex+i AI +i + 'v + '4 ij' =k+1 j//
(2.34b)

for l —S & k&0.
The exponential factor e'~'&+& in Eq. (2.33) cannot be

omitted if two or more lines share the same energy. In
that case, the spectral densities of the propagators may
cause some of the factors in the denominator of SI, to
vanish (except for the ie's) for all values of the spatial
loop momenta. Then terms of order e and higher in the
expansion of the exponential can result in finite contribu-
tions and hence must be kept. For the purpose of deriv-
ing simple diagrammatic rules, this is an inconvenience.
To avoid this, note that if the external four-momentum
is nonzero, only self-energy insertions can cause multiple
lines to have identical four-momentum. If all self-energy

3If the external operators involve time derivatives, the cor-
responding factors in the numerator must also be changed.

j,kA.„t

+k

time

pj, k
in

PIG. 2. Illustration of the sets of lines A~'" and A~'". Thin ou~
shaded box contains the vertices labeled with (T/, ' ', Tg) and
the lines connected to themselves. The set A~'" contains the

~, a
in

hnes going into the box while A~'„, contains those coming out
of the box.
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insertions are resummed, thereby replacing bare propa-
gators by fully dressed one-particle propagators, then no
self-energy insertions remain and the factor e'~'I+& may
be set to one. The full propagator is given by

& (Ikl ») =—,+~z+Z(Ikl ~)
(2.35)

where Z(lkl, iv) is the full one-particle self-energy in the
imaginary-time formulation. The spectral density of this
propagator is given by

v'(lkl ~) = G' (Ikl ~+~~) —G' (Ikl ~—«)
E'„—(~+ie) + z(lkl, ~+ie)

&I, —(w it) —+ z(lkl, w —ie)

(2.36)

and the corresponding "mixed" propagator is

G (Ikl l~l) = cAd j+nw p k, u e I ~. 237

Note that the calculation of the spectral density also re-
quires the analytic continuation of the self-energy.

Prom now on, unless stated explicitly otherwise, the
fully dressed one-particle propagator will be used and
the term "skeleton expansion" will denote the expansion
in which the propagators are fully dressed but the ver-
tices are not. Of course, for a practical calculation, some
approximation of the full propagator must be made. Be-
cause of infrared divergences, performing a consistent ex-
pansion in the powers of the coupling constant may not
be completely trivial [14]. This will be discussed further
in Sec. V.

We return now to the original time integral (2.9).
Recall that the integral Z was one of the n! difFerent
time orderings in the complete integral g. As shown in
Eq. (2.33), each diff'erent time ordering generates a sum of
n+1 individual terms. Hence, there are a total of (n+I)!
terms contributing to Q. These correspond precisely to
the (n+1)! difFerent time orderings of the n+I vertices in
the original graph (including the one vertex whose time
was set to zero). In particular, each term in the result
(2.33) is naturally associated with a cyclic permutation
of the n+1 times, w„& . . . & ~~ & 0. This may be seen
as follows. Consider the real part of the factors A" and

~ //

A&+~ appearing in the denominator of SA... As noted ear-
lier, A is the sum of frequencies of all lines that connect
any of the times {~y, ~p q, . . . , r~) to times outside of
this set. Equivalently, when the time ordering starts with
the sequence wp & 71, ~ & & 7j &, A". is the sum
of frequencies of all lines crossing the interval preceding
7j, since for this ordering, any line connected to any of
the times (&A, , wy q, . . . , wz) from outside this set must
cross the interval just below the earliest time in the set,

~ //

Similarly, A&+& is the sum of frequencies of all lines
that connect any of the times (7&, . . . , TI,+2, 7g+]) to
times outside of this set. Equivalently, it can be inter-
preted as the sum of frequencies of all lines crossing the
interval just above 7j when the time ordering ends with

~ & 7j » . ay+~ & ~~+q. In this case, a line con-
nected to any of the times (~~', . . . , ~A;~2, ~A;+q) from
outside this set Inust cross the interval just above the
largest time in the set, 7j//.

Since j ranges from 1 to k and j" ranges from A:+I
to n, these completely determine the time ordering,
&a&7a —i & . &&i &0&&n&&n —~ & -&&A;+~.

~ //

Hence, each denominator factor of A" and A~&+~ can be
interpreted as the sum of frequencies of all lines cross-
ing each interval in this time ordering. The e~ternal
frequency contributions have a similar interpretation.
%'hen ~~ & ~p, the frequency denominators of SI, cor-
responding to intervals between 7t and wo = 0 contain—iv. Since e~ternal frequency iv Bows out of the vertex
labeled with w~ and fIows into the vertex labeled with wp,
the contribution —iv is always minus the sum of exter-
nal frequencies fiowing out of the graph from above the
interval. A similar interpretation is also possible when
7p & ~t. In this case, the denominator factors of Sk corre-
sponding to the intervals between ~o and ~t contain +i v.
Since the ordering of 7~ and rp is reversed compared to
the previous case, again +iv equals the sum of external
frequencies Bowing out of the vertices above the interval.
Finally, this interpretation also holds for intervals which
are not between the two external vertices. The part of
the diagram above both vo and ~~ has no external vertex
above it. Thus the net external frequency How is zero;
the part of the diagram below both ro and r~ has two ex-
ternal vertices above it, and the net external frequency
fIow is again zero.

In this way, each contribution Sl, is associated with the
cyclic permutation of the n+1 times, ~„& & v.

~ & 0.
Figure 3 schematically illustrates S„. Figure 4 shows a
term St, with n & k & t, while Pig. 5 shows SI, with
t&k&0.

The assignment of in'. nitesimal ie s in the denomi-
nator of the result (2.24) may seem complicated. But
only the following two properties are necessary. First,

A„—gp

&("~, —i(k l)g—

A", —iv —i(&+1—l)~

~P+, +i(n k)~—
&+I

A~+I + gP

FIG. 4. A schematic illustration of SI, with n ) A: & L.
This diagram is cyclically related to the diagram in Fig. 3.
The denominators from each interval are shown at the right.
The upper shaded box contains times 7)+y to TI, and lines
connected to them. The middle shaded box contains times ro
to ~~ q and lines connected to them. The lower shaded box
contains times v.k+q to ~„and lines connected to them.
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A"„—ie

AP~, —i(n —l)~

A —tv —'LAE
l

A"„+ i~

A", + k

A"„+, + iv + i(n+k+I —l)~

A'„+, + i v + i (&+1)e

ll
7p

A", —iv —i(n+1 —l)e

A'„+', —i(l —k —1)e

Ak+' —i~4+1

FIG. 3, A schematic illustration of S . The denominators
from each interval is shown at the right. The upper shaded
box contains times ~~+q to ~„and lines connecting them, The
lower shaded box contains times ~o to 7~ q and lines connect-
ing them. At the times wo and w~, two external operators are
inserted. The A", denotes the sum of all frequencies of the
lines crossing the interval between ~, q and &, .

the contributions of intervals above the vertex ~t when
7~ ) ~0, as well as the contributions of intervals below
7) when ~0 ) ~~, all have negative imaginary infinitesi-
mals, while contributions of intervals below the vertex 7o
when r~ & 7 p, and the contributions of intervals above 70
when 7.0 & ~~, all have positive imaginary infinitesimals.
Note that the contributions from these intervals do not
contain the external frequency iv. Since the factors with-
out 2v are not affected by taking the discontinuity across
the real line in the complex iv plane, only the signs of
imaginary infinitesimals in the contributions from these
intervals matter, but not their relative amplitudes. Sec-
ond, between w~ and wo, starting from 7t, the infinitesi-
mal imaginary part increases in each successive interval.

FIG. 5. A schematic illustration of SA, with l ) A: & 0,
This is also cyclically related to the diagram in Fig. 3. The
denominators from each interval are shown explicitly at the
right. The upper shaded box contains times 7.o to ~g and lines
connected to them. The middle shaded box contains times
7.~+q to ~„and lines connected to them. The lower shaded
box contains times 7I,+y to 'TI, y and lines connected to them.

These two conditions will be needed to simplify the final
result and relate it to the standard Cutkosky rules.

In summary, in this section the following has been
shown. When evaluating a Feynrnan diagram in the
imaginary-time formulation, the intermediate frequency
summations can be performed before any other calcula-
tion. Each term of the result may be naturally associated
with an old-fashioned time-ordered perturbation theory
diagram. The contribution of each time-ordered diagram
is given by the product of frequency denominators from
each time interval multiplied by a statistical factor and
spectral density for each line. Hence a given Feynman
diagram I generates a contribution of the form4

Czz(q, iv) =(I), (—A)"
SI-

dskl, dk
&+n(k ) p(~k ~, ko)f~II((kl, },q) ) Si.((ko), iv)

I EI' o.EI' (F CI'

where I labels the diferent time-ordered diagrams and
Sp. is the product of frequency denominators:

intervals

—1

g
—2 V~

—26~ (2.39)

Here Az is the sum of frequencies of all lines crossing
the given interval, and ivy is the net external frequency
flowing out of the diagram above the given interval. The
vertices in a given time-ordered diagram can always be
chronologically relabeled so that the largest time is 7

and the smallest ~0. Then

where 7~ labels the vertex where external frequency flows
out (corresponding to the insertion of the operator A)
and r~ labels the vertex where the external frequency
flows in (corresponding to the insertion of the operator
B). As before, the subscript n labels the different lines,
L labels the diferent loops, and SI. denotes the overall
symmetry factor associated with the diagram. The factor
f~II((kl. ), q) represents the action of the external oper-
ators. Assigning the infinitesimal imaginary part is~ is
a little complicated. For diagrams with rI ) w (where
operator A acts after B),

(2.4O)

and
2v~=2v Ol —g+1 2 —19m —g+j. 2 (2.41.)

A similar result can be found in Ref. I23], which uses a
diferent method to sum the intermediate frequencies.
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{g —Pl) 6

forl+1& j&a,
form+1& j&l,
for1& j&m,

(2.42)

while for diagrams with r ) ~~ the assignments are
reversed,

(m —j+ 1)e
form+1& j &n,
forl+1& j &m
for1& j &l .

(2.43)

III. EVALUATINC THE DISCONTINUITY

To find the spectral density, one must take the discon-
tinuity of the analytically continued two-point function
across the real axis in the complex frequency plane:

i pz& (q, ~)—:Gzz (q, ~ + i )e—G~~ (q, ~ —2E) . (3.1)

Between r( and r22„starting from rt, the magnitude of e~

decreases in each successive interval. For intervals before,
or after, the action of both operators, only the sign of the
imaginary part ej will matter.

xyx —v (3.2)

to write Sp as a sum of simple poles in the external
frequency. The standard identity

1
Disc —=

x
1 = —2~i'(x)

X —lf (3.3)

may then be applied. If the vertex rI where the external
frequency Bows out is above the vertex ~m where the
external frequency flows in, one obtains

Once the imaginary-time integrations are done, perform-
ing the analytic continuation in the external frequency is
trivial. Furthermore, it is possible to take the discontinu-
ity before any spatial loop momenta integral is evaluated.

The only source of a discontinuity comes from the
product of energy denominators denoted by Si- in the
previous result (2.38). To evaluate the discontinuity, it
is convenient first to make a partial fraction expansion of
Sz . This simply means repeatedly using the identity

Disc Sz ((ko ),cu):—Sz. ((ko ),~ + ~e) —Sr. ((ko), u) —ce)

—1 —1) (A6 cc) (Ac —fd —c(cc c ))
c=m+1 j=I+].

c—1 —1
x (2 c)6(A—xcc) ', (Ac —cc + 6(c, —cc)

m —1
Aj +i~

(3.4a)

Alternatively, if the vertex r) where the external frequency flows out is below the vertex r~ where the external
frequency Bows in, the discontinuity is given by

c=t+1 j=m+1 @=c+1
c—1 —1

x( 2xc')6(A, + cc) (A—c+ ~ —c(cc —c,))

m n ] m —1
DiscSr. ((A ), cc) = ) (A, +~'c) (Ac +cc+6(c, —cc))

Aj —ie

(3.4b)

The sum (with index c) runs over the different poles in
external frequency of Sr, or equivalently, enumerates
each interval between the two external vertices. Typical
diagrams corresponding to these results are illustrated
in Figs. 6 and 7. After taking the discontinuity, only
the signs of the infinitesimal imaginary part matters; the
relative magnitudes of ej's are no longer relevant. The
combinations of ej's appearing in the above expression
are all positive. Thus every infinitesimal in the above
expression may be replaced by the same ie.

Each term of the discontinuity is naturally associated
with a "cut" time-ordered diagram. This is a time-
ordered diagram with a line, called the "cut," drawn

across one time interval which must lie between the two
external vertices. The result (3.4) is written in such a
way that the contributions of the later intervals in a cut
diagram appear earlier in the expression. The complete
contribution of each cut diagram may obviously be fac-
tored to the product form:

Disc Sz ((k~)) u) = xs ) 2~b' ) k, —s~
C I cut lines

c

xS~ ((k },~)S~ ((k ), cu),

(3.5)
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(A, —ic)
(A, +is) '

(A, —Cd —ie)

2)).6(A. —cd)

(Ap —Cd + 1E)

(A, + ic)

(A, + Cd + )E)-'

—2)).b(A, + cd)

(A), + Cd —1E)

(A, —ie)

FIG. 6. A schematic illustration of a time-ordered cut dia-
gram@ corresponding to the Disc Sr in Eq. (3.4a) where the
external frequency flows out above the cut. The vertices are
chronologically ordered so that the largest time is v„and the
smallest v.p, and n & j & l+1, l & q & c+1, c—1 & p & m+1,
and m & j' & 1. The dashed line indicates the cut, and the
contribution of all the intervals are shown at the right.

FIG. 7. A schematic illustration of a time-ordered cut dia-
gram Z corresponding to the Disc Sr in Eq. (3.4b) where the
external frequency flows out below the cut. The vertices are
chronologically ordered so that the largest time is 7„and the
smallest wp, and n & j & m+1, m & q & c+1, c—1 & p & l+1,
and l & j' & 1. The dashed line indicates the cut, and the
contribution of all the intervals are shown at the right.

where the sum runs over all cut time-ordered diagrams,
indicated by 4, generated by the original time-ordered
diagram I'

S~.((k.') ~) = p
—(dp —'LSC (3.6)

denotes the contribution from the upper part of the cut
diagram, and

S~ ((A: ), Cd) —=
p

—41p + 186
p=l

(3.7)

denotes the contribution from the lower part. Here n+
is the number of interaction vertices above the cut, n
is the number of interaction vertices below the cut, and
s is +1 if the external frequency enters the lower part of
the diagram, —1 otherwise. cd„ is the net (real continu-
ous) external frequency flowing out of the vertices above
the pth interval and equals su for intervals between the
external vertices, and 0 otherwise. The contribution of
each interval is summarized by the rules.

(1) Each uncut time interval between two vertices con-
tributes a factor which is the inverse of the sum of fre-
quencies of all lines crossing the interval, minus the total
external frequency flowing out of the vertices above the
interval, plus or minus ie. If the interval is on the side
where the external frequency flows out, use —ie, if on the
other side, use +ie.

(2) The cut interval contributes 2vr times a delta func-
tion whose argument is the sum of the frequencies of all
lines crossing the interval minus the external frequency

flowing out of the vertex above the cut. The sign of the
delta function is (+) if the cut is above the vertex where
the external frequency flows in and (—) if below.

The fact that each side of the cut interval contributes
the energy denominators with the same sign of ie is im-
portant, and will enable these cut time-ordered diagrams
to be resummed into the simpler cut Feynrnan diagrams
considered in the next section. If a different set of ie's
than Eqs. (2.26), (2.42), and (2.43) had been used, the
result would have been equivalent but less conveniently
organized. Note that if the contribution of an interval j
in a cut time-ordered diagram is given by (A~ akie)—
then the contribution of the corresponding interval in the
time-reversed diagram is (Az+cd+ie) . Thus, the contri-
butions from a time ordered diagram and its time rever-
sal are related to each other by an overall sign change
combined with the flipping of the external frequency,

Combining these results, the discontinuity of a com-
plete Feynman diagram I can be expressed as a sum
over all possible cuts,

»~«~BC'7) ) ( AB(aC,)a') —&ABC l Q ))
4-cr

(3.8)

where the sum runs over all topologically distinct cut
Feynman diagrams, denoted by Z, and DA&(q, qo) is the
sum of contributions from all topologically equivalent cut
time-ordered diagrams with a common cut and with the
external frequency flowing out above the cut:

DAa(q) =(~) (—A)" '
~r (1+~(4'))a(i" i

).".)f~~C() ~) a)
I.er air

x ) 2vrib ) a.' —q' s+ ((a.'), q') s- (~A:.'), q')
cut lines

C

(3.9)
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Obtaining a more compact form of this result is the goal
of the next section.

diagrams, as explained in the previous section, sum to
D—A(B(q, —qo). Below, it will also be shown that

IV. SIMPLE CUTTING RULES DAB(q q-) =e DAB(q q )
(&) o —q'p (&) o (4.1)

For diagrams with n vertices, the number of cut time-
ordered diagrams is more than n! times greater than the
number of original Feynman diagrams. This is obviously
inconvenient. Fortunately, one may combine diferent cut
time-ordered diagrams so that each side of the cut yields
ordinary Feynman diagrams.

Consider a set of topologically equivalent cut time-
ordered diagrams with n —1 interaction vertices. This
means diagrams with the same connectivity and the same
cut, but with any relative ordering of the vertices on each
side of the cut. Assume, for convenience, that the exter-
nal operator A emits the external momentum q above
the cut. Let 4 denote this set of cut time-ordered dia-
grarns (or equivalently, a single cut Feynman diagram).
As shown in the last section, the sum of contributions
from the graphs in the set Z is given by DAB(q) (3.9). For(~)

each choice of the cut interval, the contribution DAB(q)
(~)

sums up only half of the cut time-ordered diagrams. The
remaining cut time-ordered diagrams are those where
the external momentum flows out below the cut. These

Consequently, the spectral density pAB(q) has the dia-
grammatic expansion

'~AB(q) =) (I —e '')DAB(q) (4.2)

where the sum runs over all topologically distinct cut
diagrams Z.

We wish to rewrite the expression for DAB(q) in
Eq. (3.9) as a product of two contributions represent-
ing each half of the cut diagram, with each contribu-
tion produced by the standard Feynman rules. This will
generate a Rnite temperature generalization of the zero
temperature Cutkosky rules. To proceed, note that the
cut separates the vertices of the diagram into two disjoint
sets, the upper part and lower part. Thus the summation
over time orderings, with the cut fixed, can be separated
into two independent summations over permutations of
vertices on each side of the cut. Therefore, the total con-
tribution from a cut diagram P can be written as

(4.3)
d4 ' d4k

&~~(~)=s. . . l, , ; (~+~(~.'))~(s))&~ Hs) ~)&~ (8) ~')
cut lines

C

where DA ((k, ), q) and DB ((k, ), q') denote the results of resummation in the upper (I'+) and the lower (I' ) parts
of the cut diagram, respectively. Here and henceforth the subscript c labels the diferent cut lines. An extra integrationr+over q' is introduced because each factor D&~~ (with 0+ = A and 0 = B) will contain an overall four-rnomenturn-
conserving b function. Hence their product will produce an overall factor of (2')4h4(q —q') which is removed by the
integration over q'.

Explicitly, the contributions from each half of the diagram are given by

D~~((s), q):—(—A)"*(sm)'6'
~ ) k. —s I, , (1+n(k')) p((k ~, k')

) Lei'+ ncI'+

xf~+((kL) q) &'((k.') (k.') q') (4 4)

) k.' —q' ) S+ ((k.'), (k,'), q'),

where, as before,

(4 5)

S~+ ({k ), {ko),~) =—

g —fl 72++1
A~ —w~ —z& , (4.6)

The factor fc)+ ({kL),q) represents the action of a sin-
gle external operator The facto.rs J'+ ((k ), (ko), qo) de-
note the sum of the products of the frequency denomina-
tors over the permutations of the vertices on each side of
the cut:

&'((k'. ) (k.') q')

S- ((ko), (ko), ~) =—

n —1
A& —

cd& + 'b6 (4.7)
j= jL

Here it should be understood that the summation is over
the permutations of vertices on each side of the cut. Re-
call that the times are labeled in chronological order so
that the largest time is always labeled as ~ for each time
ordering. Thus, in any given time ordering, Az —u~ can
be replaced by 0" = g", . a., [cf. Eq. (2.20)t.

For the upper part of the diagram, the product of fre-
quency denominators in S&, Eq. (4.6), together with the
overall frequency-conserving delta function, has exactly
the same form as the contribution of a zero temperature
time-ordered diagram corresponding to the upper part
of the cut diagram. Consequently, S~+ ((k },(ko), qo)
times a delta function equals the ordered real-time inte-
gral,
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dt
—

inurn + tn +„+e &~n —n++1 ~n —n++1ut~ ~++] e e &~—n&n (4 8)

which is simply the t„& t~ q & - & t„„+piece of the unordered real-time integra:

p='A A+

~ 0
dt ep

-ik.'t&
cut lines

C

—i(k~ —i~) jt —tb
~

uncut lines

(4 9)

corresponding to the same half of the cut diagram.
As done previously, t~ denotes the vertex time where
the external frequency q0 flows out and all the times
(t~, t~, tg, t~) are within the set (t„„+,. . . , t„). The
frequencies of the cut lines are regarded as flowing into
the upper part of the diagram; hence each cut line con-
tributes a factor of e ' ~", while the external line con-'ttributes a factor of e'q ~'. The equality of the sum (4.5)
and the unordered time integral (4.9) can be easily es-
tablished since the unordered integral J'+ (qo, (ko j, (ko))
precisely generates the sum of contributions from all or-
derings of vertices above the cut. For future use we note
that changing the integration variables (t„) to (—t„}
shows that

I

Thus, for both Q+((ko), (ko), qo) and Dr ((k }qo)
changing the sign of the external frequency is equivalent
to changing the sign of the frequencies of all cut lines.
This fact will be needed to prove the relation (4.1).

The complete contribution D&+ ((k,), q) of the upper
half of the cut diagram can thus be produced by apply-
ing standard Feynman rules using the simple real-time
propagator

(4.1i)

(k ) (".)) = & (—q (k ) (—k )) (410) or equivalently, using its Fourier transform

cled 1 1
2vri

1+n(~), —,
I a(li I ~)k + td —1'E k —Cd + lEp

(4.12)

for each uncut line, and regarding each cut line as an external line with definite frequency and momentum. Explicitly,this result is

D~~((k, ), q) = (—iA)"+(2n) 6 ) k, —q I

d4k
4 f~+((kr, },q) G(k ) .

L&I + nCI+
(4.13)

The same procedure may be applied to the lower part of the cut diagram. Because of the difFerence in sign ofthe infinitesimal imaginary parts, the result involves complex conjugated propagators. Noting that 0"=—0~0, thecontribution of a particular time-ordering r„&w q » wq & 0 can be expressed by the real-time integral

dt e' "-'"-
Ct e0 (4.14)

As before, summing over all time orderings of the vertices below the cut produces

0
dt e"'-

g
ooq 0

I

cut lines
C

i(k +i~) ~t, —tf ~

)

uncut lines
(4.i5)

where in going from (4.14) to (4.15) the integration variables (t~) are changed to (—t~}. The time t denotes thevertex where the external frequency q Rows in and the times (t„tf, tg, t ) are now within the set (to, . . . , t„).
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The factors in P (q, {k~),{ko)) are complex conjugated compared to those in Q+(qo, {k~0),{ko)). Thus, the com-
plete contribution from the lower part of the cut diagram is produced by applying standard Feynman rules, but
using complex conjugated propagators. Once again, both Q (qe, {ko),{ko)) and D&~ ({k,), q) are invariant under
simultaneous changes in sign of q and the cut frequencies. The final contribution of the lower part is

D~ ({k,), q) = (iA)"- (2vr) 64
~ ) k, —q

)
d4kI.

), f& ({kL),q)
r.cr-

G(k )* . (4.16)

Combining both halves, the complete expression for the finite temperature cut diagram, defined as the sum of all
topologically equivalent cut time-ordered diagrams with the cut corresponding to 27(b(g, ko —qo), is given by

i(—iA) "+(iA)"-
DAaq =

~r
d4k

(1+n(k, ))p(k, )fxa((kr), q) , G(k ) G(k )', (4 17)
LC1 cut lines ~gr+ o, 'El

using the fact that after integrating over the delta func-
tions the remaining cut momenta are all independent
loop momenta. This expression for the finite tempera-
ture cut diagrams is almost identical to that of zero tem-
perature cut diagrams given by the Cutkosky rules. The
cut may be regarded as dividing a diagram into shaded
and unshaded regions. The unshaded region is above the
cut where the external operator A emits the external mo-
mentum q. An uncut line with the four-momentum k in
the unshaded region represents the propagator G(k). An
uncut line with four-momentum p in the shaded region
represents the complex conjugated propagator G(p)*. A

cut line with four-momentum q flowing into the unshaded
region represents the phase-space factor [1+n(qe)]p(q).

Once again, note that only cut time-ordered diagrams
with the external momentum flowing out above the cut
enter the definition of the finite temperature cut diagram.
The sum of the remaining cut time-ordered diagrams
where the external momentum flows out below the cut
are not independent and can be expressed in terms of the
same finite temperature cut diagrams. As stated earlier,
the sum of cut time-ordered diagrams where the external
momentum Qows out below the cut equals

-DAa(q -q') =AB
d4 ' d4k; (k+ ~(k,')) p(k. ) l

D~ ((k.), (q, —q')) &s ((k.), (q', —q")) (4 ~S)
cut lines

Both of the factors Dr+ are invariant under simultaneous
sign changes of both the external frequency and the fre-
quencies of the cut lines. Thus, changing the integration
variables {ke) to {—ko) easily yields

ioAB(q)—:i dx e 'q*(A(x)B(0))

) - D(&) (q) (4.21)

DAB(& q ) = e DAB(& q )
(&) 0 —q'P (&) o (4.19)

pAB(q) = (1 —e ) (rAB(q), (4.20)

show that the finite temperature cut diagrams DA(a)(q)
directly generate the perturbative expansion of the cor-
relation function:5

Results equivalent to Eqs. (4.13), (4.16), (4.18), (4.21) can
be extracted from Refs. [6,8].

after using the relation [1+n(—ko))p(~k~, —ko) = e
[1+n(k )]p(]k], k ) and overall frequency conservation.

The relations (4.19) and (4.2) combined with the stan-
dard relation [1,13],

Furthermore, the definition of the spectral density as a
commutator, or

pAB(q) = rrAB(q) (rBA( 'q) i (4.22)

combined with the identity (4.20), implies that the sum
of all cut time-ordered diagrams with the external mo-
mentum q Rowing out below the cut yields craA( q). — —
Thus (TBA(—q) can be interpreted as the sum of all finite

temperature cut diagrams where the external operator A
emits the momentum q from the shaded region whereas
(YAB(q) is given by cut diagrams where operator A is in
the unshaded region.

Finite temperature cut diagrams differ from zero tem-
perature cut diagrams in one notable way. At zero tem-
perature, each side of a cut diagram must itself be a con-
nected diagram. But at nonzero temperature, the cut
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(2) On the unshaded side of the cut, apply the standard
Feynman rules; use the propagator G(k) [cf. Eq. (4.12)]
for each uncut line and assign a factor of —iA to each
interaction vertex.

(3) On the shaded side, apply complex conjugated
Feynman rules; use the propagator G(k)* for each un-
cut line, and assign iA to each interaction vertex.

(4) Each cut line with momentum k Howing from the
shaded region into the unshaded region contributes a
thermal phase space factor

I'IG. 8, A typical finite temperature cut diagram which is
absent at zero temperature. The shaded line separates the
shaded and unshaded region.

need only separate the two external vertices. Although
the complete diagram must be connected, each half of the
cut diagram, considered separately, may have multiple
disconnected parts. A typical such diagram is illustrated
in Fig. 8. This change reflects the fact that at nonzero
temperature, a perturbation ean lower the internal en-
ergy of the original thermal ensemble. At the diagram-
matic level, this means that a cut line can have a four-
momentum with either positive or negative energy, and
so a collection of physical excitations can have vanishing
net four-momentum. Consequently, a disconnected piece
in half of a cut diagram can produce a nonzero "on-shell"
result at finite temperature.

Given the previous results, the diagrammatic rules for
the spectral density can be cited in two equivalent ways.
One may use finite temperature cut diagrams to calculate
the correlation function o.~~(q) and then simply multi-

0
ply it by (1 —e 'i ~) to obtain the spectral density. Or,
one may use finite temperature cut diagrams to calcu-
late both o.~~(q) and cr~~( q) sep—arately and subtract
them to yield the spectral density. The following dia-
grammatic rules summarize the latter approach which
directly reflects the commutator origin of the spectral
density. Rules for the First method are obtained simply
by restricting the set of diagrams to those in which the
external momentum flows out of the unshaded region of
the cut diagram. These rules also apply when the exter-
nal operators involve time derivatives of the elementary
fields. A sketch of the proof is contained in Appendix B.
To calculate the perturbative expansion of a finite tem-
perature spectral density we must do the following.

(1) Draw all suitable topologically distinct cut di-
agrams (including a choice of shading). Label each
line with a four-momentum k, assign the external four-
momentum, and conserve four-momentum at each ver-
tex.

Thus, for each diagram with a total of n interaction ver-
tices, the number of finite temperature cut diagrams (neglect-
ing symmetry factors) is 2 . The separation of vertices into
the shaded and the unshaded regions of the cut diagram is
completely equivalent to the language of the circled and the
uncircled vertices used in Ref. [6].

~(a) = (i+ (e)) p~~)

(5) Integrate over all loop momenta, and divide by the
symmetry factor. If the external frequency flows out of
the shaded region, assign an additional factor of —l.

As the temperature goes to zero, the phase space fac-
tor A(k) develops a step function 8(k ) p(k) ~T o which
forces all cut lines to carry positive energy. Inserting the
spectral density of the bare propagator reduces A(k, )
to e(ko)b'(k, + m~) and immediately reduces these fi-

nite temperature rules to the standard zero temperature
Cutkosky rules.

V. APPLICATIONS

To illustrate the application of the cutting rules, con-
sider the spectral density of the correlation function

([gP(x, t), &P(0)]) in the AP theory. In particular, we
will focus on the quantity

pp. p~ (k, ~)
gp2p2 = lim lim

w —+0 k—+0
(5.1)

This differs from the shear viscosity (1.2) only by the
omission of spatial derivatives in the operator insertions.
Including these derivatives would make only minor no-
tational changes in the following discussion. When the
Boltzmann equation is valid, the transport coeKcients
can be shown to be inversely proportional to the scatter-
ing cross section. Finite-order perturbative calculations
of the transport coefIicient can never produce that result,
and hence a partial resummation of diagrams from all
orders will always be necessary. The example discussed
here will show similar behavior.

We will consider the first few terms in the expansion
of p~2$2 and analyze the resulting low momentum behav-
ior. The cutting rules will be used to evaluate cut dia-
grams where the external momentum q flows out of the

Opunshaded region. Multiplying the result with (1 —e q ~)
will yield the complete contribution to the spectral den-

sity, as discussed in the previous section.
The first contribution to the spectral density comes

from the one-loop cut diagram in Fig. 9. Following the
rules given in Sec. IV, the cut lines contribute factors
of [1+n(ko)]p(~k~, ko) and [1+n(—ko+cu)]p(~k~, —ko+~)
where p(~k[, ko) is the full one-particle spectral density
and the spatial external momentum is set to 0. Multi-
plying these contributions by a factor of (1—e ~ ) yields
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p~,'P~(0, ~) = 2(1 —e ~") (I + n( k—2+ 22)) (I + n(k ))p(]k], —k2+ 22)p(]k], k2) . (5.2)

(The first factor of 2 is an overall symmetry factor. ) For a
free theory, the one-particle spectral density p(k) reduces
to a 6 function,

pI„,(/k/, k ) = „2~b(k + m ), (5.3)

and the resulting integral (5.2) agrees with the stan-
dard result [18]. The b function in the free one-particle
spectral density pr«, (~k~, k ) requires that ke = kE&,
and pI«, (]k~, —k +~) ~~q~ires k = +Ek+~. When
]u~ is less than twice the mass m, these two conditions
cannot be satisfied simultaneously, and hence ii&2'&2

lim p&&&& (0, u)/w vanishes in a massive free theory.

This result changes dramatically when the spectral
density has B.nite width. If

g(~k~, iv):—G~(~k~, iv) ' —v —(k + m ) (5.4)

denotes the full self-energy, then one-particle spectral
density is

p(A l— —2ZI(k)
5.5)

[k2 + m2 + +R(k)]2 + [gI(k)]2
where E(k) = ZR(k)+iZI(k) when ko approaches the
real line from above in the complex k plane. The spec-
tral density has a peak at A:o = Ek where the single parti-
cle energy El, is the solution to E&~ ——k2+m2+ZR(k, Ei, ).
The width of the peak is given by I )2

= —Z (k, E),)/2E)2,
and for weak coupling this width is O(A ) (since the first
graph which contributes an imaginary part is the two-
loop graph in Fig. 10). For sufficiently small coupling,
the frequency variation in the self-energy is negligible
over the width of the peak in the spectral density. Hence
the single-particle spectral density may be approximated
by

4koI'k

[(ko) —E„'] + 4(kor„)
With a Bnite-width single-particle spectral density, the
integrand in Eq. (5.2) is smooth for all (k), and the limit
cu —2 0 and the momentum integral may be freely inter-
changed. Hence

i loop

o
= 2)2

' ", n(k2) (I + n(k')) (p(]k], I'))'
4k'r „

(2n)' 2n (](k')' —E']'+ (4k12' )2)2
d3k 1

2 n(E2)(l+n(E2)) 2 (I+0(1'2/Ek)), (5.7)

wheretheprefactor p comes from lim [(1—e p )/u]. Since the width I'k is O(A ) for weak coupling, this approximationm~0
to g@,&, diverges in the weak coupling limit. This is in accord with the earlier expectation based on the Boltzmann
equation.

The evaluation of the leading contribution to Il&, &, is now reduced to the evaluation of the width I'l, . The cutting
rules can be used to evaluate the width since the imaginary part of the self-energy is proportional to the discontinuity
in this case. The self-energy diagram with the least number of interaction vertices is shown in Fig. 10. Using the
result of the previous section, the contribution from this diagram is given by

2

~2)...(~) = -»(I —e )
Pqo d4I

&

(27r) 4
', (I + n (k', ))p(k2)

x (I + n(k2)) P(k2) (I + n(Q' —kl —k2)) P(Q —k2 —k2) (5.8)

In the massless limit, the one-loop spectral density p&'&&, (0, (2)) in the free theory is nonzero and can easily be calculated
explicitly. One finds

lim p~'2'~2(0, ~) = 2(1 —e S )m~0 ,"",,„',(I+.(1')) (I+ (-k'+ ))

x (2 b(k' —]kl) —2 &(k +lkl)) (2x&(—k +22—]k]) —2 6(—k + +]kl))

= —coth()9(u/4) .
1

4m
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77271/71777~7

FIG. 9. The lowest order diagram for the spectral density
of ([&() (x, t), P (0)]) at zero external three-momentum.

The overall factor of 12 comes from the symmetry factor
of 6 and a factor of 2 difference between the discontinu-
ity and the imaginary part. This two-loop diagram is the
first single-particle irreducible self-energy diagram in the
skeleton expansion. To evaluate Eq. (5.8), some approx-
irnation to the full single-particle self-energy Z(q) must
be made.

One may easily show that approximating the full spec-
tral density by the free single-particle spectral density is
adequate to yield the leading result. An approximation
scheme using dressed propagators is equivalent to adding
a self-energy term ~~PEP to the free Lagrangian and sub-
tracting from the interaction term:

-~=-4(-~. —7 + +~)4+
l

—A4 — 4~4 I-=1 2 2 2 /' I 4 1

2 &4'

(5.9)
By using [v +k +m +Z(iv, k)] as the basic propaga-
tor and treating —

—,'PEP as an additional interaction, a
rearranged perturbation series can be obtained for any
physical quantity. If E is the exact self-energy, then this
expansion is what was previously called the skeleton ex-
pansion. Since the propagator already contains the full
self-energy, all corrections to the propagator must add up
to zero in the skeleton expansion. Thus, the sum of con-
tributions from all one-particle irreducible skeleton self-
energy diagrams minus the contribution from the addi-
tional interaction Z vanishes. This is one of the standard
Dyson equations for the A/4 theory.

If in the Lagrangian (5.9) one adds and subtracts only

7)P/7T)~1/77)7

—kI —A:g

FIG. 10. A two-loop self-energy diagram in A(t theory.
The sl'shed lines are the amputated external lines.

the lowest order, the sum of contributions from all single-
particle irreducible self-energy diagrams minus the con-
tribution of the additional interaction Z will be nonzero,
but it will be of higher order than the lowest-order self-
energy. In the resulting expansion, the lowest-order self-
energy acts as an infrared cutoff and renders finite higher-
order on-shell single-particle reducible diagrams which
would normally have been divergent. Provided that the
correct O(A ) single-particle width appears in the re-
arranged propagators, the resulting diagrammatic series
will generate corrections suppressed by positive powers
of the interaction strength A (perhaps modified by loga-
rithms). Thus, it is sufficient to compute the leading be-
havior of (the imaginary part of) the two-loop self-energy
diagram by replacing the single-particle spectral densities
by free spectral densities in the weak coupling limit. The
actual calculation is somewhat complicated [19,20]. Here
we exhibit only the leading result at high temperature
(T )) m) and vanishing spatial momentum, q = (m, 0).
One finds [21]

r, p) = —Z (m, 0)/2m = A T /1536m~(1+ O(A)) .

(5.11)

Using this result, the leading behavior of g&, &, in the
high temperature limit can be found:

d3k
rl~,'~, ~ ——p —„, n(E), ) 1+n(E/, )

A: A:

x 1+0 I'k Eg

ln(aT/m) (1+O(m/T, A ))
768

(5.12)

The numerical constant a in the logarithm depends on
the spatial momentum dependence of the width I'~. (For
a constant width, a = 2 [20].) The appearance of the
logarithm reHects the fact that when m=0 this integral
is logarithmically divergent. However, even a massless
field develops a finite thermal mass at finite tempera-
ture. In the case of massless high temperature AP4 the-
ory, the one-loop self-energy provides a thermal mass
mT = (A/24)~T I14,21].

The one-loop result q&, &, is not the only relevant con-
tribution to g~~~2 at this order. There are other diagrams
with more interaction vertices that also make contribu-
tion of the same order as the one-loop result. This is
because there are additional infrared divergences at fi-
nite temperature, and the infrared cutoffs provided by
the thermal scattering width of the self-energy contribute
negative powers of A. For example, consider the "eye"
diagram shown in Fig. 11. Since this is closely related
to the two-loop vertex correction, we will denote it by
p&, &, (0, u). Applying the cutting rules, the graph in
Fig. 11 together with the one with all internal lines re-
versed generates the contribution

A2T2
Es n,n(m, 0) = —sgn(ns) (I+ O((m/T) ln(T/m)))

(5.10)
and the static one-particle width is given by
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p4, g4, g(0, ~) = (1 —e ~ ) A
a4k, a4k, a4k.
(27r)4 (2~)4 (2vr)4

Ld] G&2 1+ n( k,——k2 —k~ + ~))0 0 0

27r 2'
X 1+& Q1 1+% &1 ~+& A'2 ~+'A 2 ~+&

xp(lkil ki) p(lkil ~1) p(lk2 k2) p(k21 ~2)
x p(lk31, ks) p(l —kl —k2 —k3 I,

—k1 —k2 —k3 + ~)

( ( ki + M) (&1 2e) ( k2 + M) —(ld2 —t&)

If free one-particle spectral densities are used, the
kinematical constraints require Iwi I

=
I ki I

=Ek, , and
lu2l=lk2I=Ek, . Under these constraints, the contribu-
tion of the uncut lines in the lower frequency limit be-
comes

24M] 28422

( k + ~)2 (~1 t'e)2 ( k + ~)2 (~2 je)2

(5.14)

Combined with the (1 —e 1 ) prefactor, this will cause
p&» (0, u) to diverge linearly as w —+ 0.

dhe nonzero width of finite temperature one-particle
spectral densities will cut o8' this divergence. The two
uncut propagators will be almost on shell. To esti-
mate the contributions of this diagram, these propaga-
tors may be replaced by their maximum on-shell val-
ues, 1/EkI'k. Thus as the external frequency w tends
to 0, the diagram's leading contribution behaves as
uA /I'k, I"k, cu/A, efFectively replacing the cu denom-
inator in Eq. (5.14) by the product of inverse lifetimes
I'k, I'k, . [As before, the factor of cu comes from the small
cu limit of the prefactor (1 —e i ).j Note that this con-
tribution is the same order in A as the leading one-loop
result. This demonstrates that the one-loop calculation
is not sufBcient to obtain the correct weak coupling, low
frequency behavior. We will show below that there are

an infinite number of diagrams contributing at the same
order in the zero frequency limit.

The leading behavior of the contribution of a general
diagram in the limit of zero external four-momentum is
not dificult to determine. Since the source of the inverse
powers of the coupling is the infrared cutofF provided by
the thermal scattering width of the self-energy, the weak
coupling behavior is directly related to the infrared singu-
larity of the diagram when all the lines are interpreted as
free propagators. At zero temperature, there is a stan-
dard argument that asserts that the appearance of on-
shell singularities is due either to the pinching of an inte-
gration contour by coalescing poles or tc poles colliding
with the end point of a contour [22j. A similar argument
may be given for the diagrams considered here. Suppose
we approximate the one-particle spectral density by the
Lorentzian form

1 I' I'
p(k) ~

Ek (ko Ek)2 + I'2 (k0 + Ek)2 + I'2
P

(5.15)

In this approximation, both G(lkl, k ) and p(lkl, k )
contain four simple poles in the complex k plane at
EI,+iI' and —EI,+iI'. Thus the products of prop-
agators and spectral densities G(lkl, kc) G(lkl, ko+w),
p(lkl, ko)G(lkl, ko+cu), and p(lkl, kc) p(lkl, ko+~) all have
poles within a circle of radius I' as u —+ 0 which ap-
proach the contour from opposite sides. Therefore, after
performing the frequency integrations, a loop containing
one of these products will behave as 1/I' as u —+ 0. All
one has to do to determine the leading behavior as ~ —+ 0

p = —kg —kg —kg+~

FIG. 11. A cut "vertex correction" diagram contributing
to the spectral density of ([P (x, t), P (0)]) at zero external
three-momentum. The dashed line indicates the cut. The
contribution of this diagram together with the one with all
internal lines reversed is denoted by p4, 24, 2 (0,~).

FIG. 12. The planar ladder diagram with N rungs in AP
theory.
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is then to count the number of such loops in skeleton ex-
pansion diagrams.

As an example, consider a generalization of the dia-
gram in Fig. 11 to the (2N+1)-loop planar "ladder" di-
agram illustrated in Fig. 12. When the external four-
momentum vanishes, there are N+1 pairs of lines with
identical four-momentum in this diagram. Equivalently,
there are N+1 loops each of which behave like 1/I'. Thus,
all cut diagrams for the (2N+1)-loop planar ladder dia-
gram in Fig. 12 can generate O(A%2+/I'~+i) contribu-
tions in the low frequency limit. [As always, a factor
of u comes from the prefactor (1 —e ~~).] Since the
single-particle width is order A2, all planar graphs of this
form contribute at order w/A regardless of the num-
ber of loops. (Similar behavior may be found in other
processes [14].) Other (2N+1)-loop graphs with crossed
loops (nonplanar graphs) are necessarily of higher order
because they cannot have as many pairs of lines sharing
the same four-momentum. Summing all leading contri-
butions is a nontrivial problem. We hope to pursue this
matter in a future paper.
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APPENDIX A: CPT INVARIANCE AND THE
SPECTRAL DENSITY

Consider the consequence of the CPT invariance on the
spectral density of the two-point function of any pair of
operators A and B. Assume that A and B have definite
behavior under a CPT transformation:

OAt (x, t) O '= il„A(-—x, t)—

where 0 is the antiunitary CPT operator and lilzl
1. If the equilibrium density matrix

e ~H/Tre ~H of the theory is CPT invariant (i.e. , no
chemical potential), then the following identities hold:

([A(x, t), B(0)])' = ) (OnlOp[A(x, t), B(0)]O O)n)

qAilB ) .(n'Ip[A (—x, —t), B'(0)]ln')
n'

rjAQB ).(n' P[B'(x t) A'(o)] In')
n'

= -nAVB([B'(x t) A'(o)]) . (A3)

Hermiticity implies the independent relation

([A( t) B(o)])*=([ '() A'(, t)])
= ([B'(-x -t) A'(0)]) (A4)

In terms of the Fourier transforms, the relation (A3)
reads p„'B(k, ~) = g„rIBpB—tz~( —k, —~), and Eq. (A4)
gives p&B(k, a) = pBt~t(k, u). Combined, these imply
that

g+7JB pB—t Ag (—k, —&) = PB~ At (k, v) (A5)

APPENDIX B: OPERATORS WITH TIME
DERIVATIVES

If B = At, then, the Hermiticity relation (A4) gives

pzz, (k, w) = p»t(k, w) implyingthat p»t(k, u) is real.
Since space is isotropic, the spectral density must also be
an even function of the spatial momentum k. Thus in
any CPT-invariant equilibrium state the spectral density
p»t (lkl, w) is an odd function of frequency,

p»t(lkl ~) = p»~(lkl ——~) .

and

OBt(x, t)e-' = EBB( x, t)——(A2)

If the external operators involve time derivatives, the
sum over the permutations of the vertices in the upper
part of a cut diagram is

Z+(q', Ek'. ), (&.'})= ( )"
p—fl f5+

iq t~
p

cut lines
c

e '"-"O~(d/dtt) —i(k0 —i~) ~tb —t
I

uncut lines
Q!

(Bl)

where O~(d/dt~) is the action of the external operator A. The spatial momentum dependence of Og(d/dtt) is

suppressed here since it is of no importance in this discussion. As in the main text, tt denotes the vertex time where

the external frequency qo flows out and all the times (t, tt„ td, , t~) are within the set (t„„+,. . . , t„).
If the time orderings are all reversed, then the same (now lower) parts of the diagram sum to

&& (q' (k'. ) (—&.')) = (&)"'
I 4 I

p=A A+

d]pe
cut lines

C

e ' ~ "OA(—d/dtt) e
—i(k —it.) ~

tb —t
I

uncut lines
A

= (&)"'
I

p—n—n+

~ 0
eiq tL

p
e'"-'"OA (d/dtt)

cut lines
c

—i(k' —i~) ~tb —t
I

1

uncut lines
A

(B2)

Strictly speaking, this applies only when the mass is nonzero. If the mass is zero, the statistical factors can provide additional
sources of divergent behavior.
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In the first equality, the sign change of q to —q comes
from the change in sign of the frequency denominators.
The sign change of the derivative d/dt's comes from the
fact that the factor of frequency brought down by the
time derivative must change sign when the time ordering
is reversed. Since the factors corresponding to the uncut

@'—lines e '(" ")~" ~ are not changed, the sign of the
derivative d/dt's must change. The final equality comes
from changing the integration variables (tz) to (—t&).

A similar argument holds for the other half of the di-
agram. Thus the whole expression for the sum of all
cut time-ordered diagrams with the external momentum
Rowing out below the cut is the same as the expression
with external momentum flowing out above the cut ex-
cept for changing the sign of the frequencies of all cut
lines. Changing the sign of the cut frequencies introduces
additional exponential factors coming from the statistical

factors. Using the overall frequency conservation, those
0

factors combine to yield e

APPENDIX C: NONZERO CHEMICAL
POTENTIAL

Consider a complex scalar field theory with nonzero
chemical potential p associated with the conserved
charge. The Euclidean Lagrange density for this theory
is given by

—8 = p'( —0 —V + m —p )p ~ —(p*p)2

+ip(P 0 P —$0 P ) .

One may regard the theory as having two difFerent free
propagators:

and

G„(lkl, iv) —= d~e '" "+' (2 (P*(x,—i~)P(O)))() =
E& + (v —ip, )2 (C2)

G „(lkl, iv):— d x «e *""+'-P(4(x —i~)4*(o)))o = ~2+ (C3)

where ( )0 indicates the average is taken with only the
c,uadratic part of the Lagrangian. Because of this diKer-
ence, each line in a Feynman diagram is assigned a direc-
tion which indicates which end of the line corresponds to
~)*, or equivalently the direction of the How of conserved
charge. At each interaction vertex, two lines must point
outwards while the other two point inwards. In coordi-
nate space, a line pointing to (Ti„xg) from (r, x ) corre-
sponds to the propagator (2 (P*(xi„—i7~)P(x, —ir )))0,
or in momentum space, if momentum is assigned in ac-
cordance with the arrow, then each line represents the
propagator G„(lk l, iv~). There is then no need to in-

troduce G+„(lk l, iv ).
The CPT invariance of the system is explicitly bro-

ken by the chemical potential term. Nevertheless, an
I

argument similar to the one given in Appendix A can be
applied using the relation

~
—PH+p, Q

Tre-~H+~
e—PH' —p, Q

Trq —PH —vQ

p)d(lk w) =——i Disc G)d (lkl ~)
= —p-&(lkl, —~) (C5)

Here G„(lkl, iv) is the fully dressed single-particle prop-
agator in the imaginary-time formalism. The "mixed"
propagator is then given by

The one-particle spectral density is not an odd function
of frequency but satisfies

Gp(lkl &) = (p~(lkl, ~) d(~) + p-~(lkl ~) d( —~)) ~ "(~+~(~)) (C6)

As in the main text, consider a Feynman diagram with a total of n+1 vertices. Using the mixed propagators, the
contribution of a line with a momentum k~ pointing to a time ~t, from time r is G„(lk l, ~i, —~ ). To evaluate the
resulting time integral, one of the times is again set to zero, and the integrand is split into n. terms according to the
relative time orderings of remaining n time variables. A typical time integral still is

Z((ko), iv):— d7 d72
T2 n

dT, GXp ) tTITj)
l=l

(C7)

as in Eq. (2.12). Which combination of p„( k l, k ) and p ~(lk l, k ) multiplies this time integral depends on the
particular time ordering that gives rise to the integral. To determine this, draw the corresponding time-ordered
diagram with the directions of the arrows determined by the flow of charge. If the arrow of a line n points up-
wards, it corresponds to a factor of [1 + n(ko)] p&(lk~l, ko), and if it points downwards, then it corresponds to
[1 + n(ko )] p „(lk l, ko ).
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The time integrations of Eq. (C7) produce

~ J E

g'=A:+1
(—0'„+, +ie'„+,) exp (&(-~~+i + iC+i) ) (CS)

with the same notation used in the main text. Once
again, the factor e ~ ' "+& may be omitted if, at the
same time, the sign of all frequencies in the set A,"„+ '",
and the sign of the chemical potentials associated with
the lines in this set, are also changed. The resulting fac-
tors of A" have the same interpretation as the sum of the

p
frequencies of all lines crossing the interval between wz

and wz q when the time ordering is r~ ) &I,

& 0 & ~„& ~ q & & wk+q. This time
ordering is achieved by moving the sequence of times

& &J,+y down below zero. Diagram-
matically, the only arrows that change directions under

this operation are those of the lines in the set A;"„+ '", or
equivalently the lines whose chemical potentials had their
sign flipped. Thus, it remains true that every upward ar-
row is assigned to a factor p& and a downward arrow to
every factor of p ~. As before, the contribution of all
time-ordered diagrams is expressed in terms of statisti-
cal factors, spectral densities and energy denominators.
The process of extracting the spectral density is not af-
fected by the presence of the nonzero chemical potential.
The previous discussion in the main text applies with-
out change. The resummation of the cut time-ordered
diagrams is possible in terms of a real-time propagator:

dt e'"" p„k, u) 07. +p ~ k, cu 6I —w e ' ' 1+nw

& p»(II I, ~) p-&(II I ~) ~

2~i (u) —ke —ie ur + ko —icy
(C9)

The resulting diagrammatic rules are as follows.

(1) Draw all suitable topologically distinct cut dia-
grams with directed lines.

(2) Label each line with a four-momentum k fiow-

ing in the direction of the arrow. Assign external four-
momentum where the operators are inserted. Conserve
four-momentum at each vertex.

(3) On the unshaded side of the cut, use the standard
Feynrnan rules; assign G„(ka) to each uncut line o, and
assign —iA to each interaction vertex. .

(4) On the shaded side, use the complex conjugated
Feynrnan rules; assign G~(k )* to each uncut line n, and
assign i% to each interaction vertex.

(5) To each cut line that points towards the unshaded
region assign

A~(k)—:(1++(k )) p„(~~k~~, ko} .

To each cut line which points towards the shaded region,
assign

(k) —= n(ko) p ~(lkl, ke) .

(6) Integrate over all loop momenta, and divide by the
symmetry factor. If the external frequency flows out of
the shaded region, assign an additional factor of —l.
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