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Influence functionals and the accelerating detector
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The inAuence functional is derived for a massive scalar field in the ground state, coupled to a uniform-
ly accelerating DeWitt monopole detector in (D+1)-dimensional Minkowski space. This confirms the
local nature of the Unruh effect, and provides an exact solution to the problem of the accelerating detec-
tor without invoking a nonstandard quantization. A directional detector is presented which is efficiently
decohered by the scalar field vacuum, and which illustrates an important difference between the quan-
tum mechanics of inertial and noninertial frames. From the results of these calculations, some corn-
ments are made regarding the possibility of establishing a quantum equivalence principle, so that the
Hawking effect might be derived from the Unruh effect.

PACS number(s): 03.65.8z, 03.70.+k, 05.40.+j, 97.60.Lf

I. INTRODUCTION

A typical state of a quantum field, such as the vacuum,
contains coherences between spatially distant degrees of
freedom. This is the source of the nonlocality of mea-
surement and other nonintuitive results of quantum
theory. The "decoherent histories" reformulation of the
theory allows one to consider quantum-mechanical sys-
tems which do not possess long-range coherence [1],and
other recent work likewise examines quantum coherence
specifically [2,3]. Both of these areas of research employ
inAuence functionals as essential tools. The inhuence
functional for a scalar field initially in the ground state,
coupled to a pointlike accelerating detector, is of interest
both because it provides another example of the use of
inhuence functionals and because it sheds light on the
acceleration-induced heating of the vacuum, referred to
as the Unruh effect [4].

The acceleration-induced heating of the vacuum was
first discussed at length by Unruh as a toy model for
Hawking radiation from an eternal black hole [5]. An
earlier paper by Davies equipped Hat space with a static,
rejecting boundary in order to model a black hole
formed by collapse; this led to a similar result [6]. The
original derivation of this effect begins by quantizing a
scalar field in Rindler coordinates, replacing ordinary
time evolution with translation along trajectories of con-
stant proper acceleration [7,8]. From this point of view,
the interaction between a pointlike accelerating detector
and the field becomes a global problem: it involves rela-
beling the entire Pock space. It also turns the accelerat-
ing observer's personal event horizon into an apparently
special location in Minkowski space, leading to the im-
pression that the thermal effects of acceleration are
somehow global properties of spacetime, rather than lo-
cal effects.

On the other hand, arguments may be constructed that
obtain the thermal character of the vacuum, as seen by
an accelerating detector, without using the Rindler
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quantization [4,9,10]. These discussions involve time-
dependent perturbation theory and an examination of the
two-point function of a scalar field in terms of the
detector's proper time. They suggest that the apparent
horizon of the detector plays no direct role in generating
the Unruh effect. This paper extends this line of argu-
ment beyond perturbation theory, deriving an exact re-
sult in the form of an influence functional. The physics
involved is all implicit in the perturbative approach, but
the formalism used is more powerful and perhaps less fa-
miliar.

Proceeding from the idea that acceleration implies, in a
local manner, an Unruh temperature, it has been suggest-
ed that an appeal to the local equivalence of gravitation
and acceleration might allow one to derive the Hawking
effect from the Unruh effect [10]. Infiuence functionals
are also used in this paper to investigate how useful a
naive quantum extension of the equivalence principle
might be as a basic tool, for possible application in
curved spacetime. The study of a particular model for a
directional accelerating detector shows that, in addition
to the Unruh temperature and the differences between
Rindler and Minkowski densities of states, there is anoth-
er significant difference between the local behaviors of a
quantum field perceived by accelerating and inertial ob-
servers: the correspondence between directions in space
and orthogonal field modes breaks down in the accelerat-
ing frame. There are such significant additional effects of
acceleration in quantum field theory, beyond the appear-
ance of a temperature, that using an equivalence principle
will not necessarily be as helpful as one might hope. This
and other facts suggest that further study is needed if a
quantum equivalence principle is to be used to approach
quantum field theory in curved spacetimes.

This paper is organized as follows. A brief summary of
the method of inhuence functionals is presented in Sec.
II. In Sec. III the Unruh effect in D+ 1 dimensions is de-
rived using inAuence functionals, with some comments on
the distinction between thermal population and spectral
density. The role of spatial regions causally disconnected
from the detector is made clear in Sec. IV. Section V
then deals with a directional detector in 2+ 1 dimensions.
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Section VI concludes, with some comments on the exten-
sion of this analysis to the case of Hawking radiation.

II. REVIEW OF INFLUENCE FUNCTIONALS

The theory of influence functionals was presented in
1963 by Feynman and Vernon. For a full discussion of
the technique, the reader is referred to their original pa-
per [11].

In many quantum-mechanical problems, at least impli-
citly, one has an observed system coupled to an environ-
ment which is unobserved. Both system and environment
are quantum mechanical; one assumes that the complete
Hilbert space may be spanned by a basis of direct-
product states of the form ~'0,„„&~1(,„,&. The probability
PFI =

~
(F

~
U~I &

~
of a transition from an initial state with

a product wave function O'Ig; to a final state 4Fg& is
given by the path integral

PFI= E E' S S'lI Ei i Si %I Ei i Si VF Ef f Sf F f f Sf

X exp — dt L E,S —L E', S'

Here E and E' variables represent the environment de-
grees of freedom, while S and S' stand for the system un-
der observation. E, stands for E(t, ) and similarly for the
other variables and subscript. The Lagrangian is

L (E,S ) =L, (S )+L,(E )+L;„,(E,S),
organized into a system term, an environment term, and
an interaction term.

By axiom, the transition probabilities are to be
summed over all final states of the unobserved sector.
This leaves a truncated quantum theory describing only
the observed degrees of freedom. (The initial state of the
environment must be given, of course; it modifies the pa-
rameters of the truncated theory'. ) A great virtue of
Feynman's path-integral formulation of quantum

I

I

mechanics, in comparison with the canonical approach,
is that one can in principle carry out this truncation be-
fore considering the evolution of the observed sector. By
performing first the path integration over all the unob-
served degrees of freedom, one is left with a modified
path integral containing only observed degrees of free-
dom. This modified path integral is temporally nonlocal,
and it provides nonunitary time evolution, since its con-
struction has involved replacing pure final states with
decoherent mixtures in which all states of the unobserved
sector are equally probable.

The part of the truncated transition probability path
integral that contains the nonlocal and nonunitary evolu-
tion is called the influence functional F[S,S']. It de-
scribes completely the inAuence of the unobserved envi-
ronment on the observed system. One can write

Pf ' S S'; S;,* S f Sf f Sf F S,S' exp — dt L, S —L, S'

where

yplF &

denotes the probability of a transition of the observed system. Comparing (2) and (1) and using the fact that
~

is an identity operator, it is straightforward to obtain the formula for the infiuence functional:

F[S,S']= fX)E SE' %1(E;)0'l(E )6(E& E&)exp —f—dt[L, (E) L, (E')+L,„,(—E,S ) L;„,(E',S')]-
1

=«+rl Us (tf r;)Us(rf t;)l'pl & .

Us refers to the unitary time-evolution operator for the environment, with S in L;„,(E,S) treated as an external source.
(Because S and S' are difFerent, Us is not the inverse of Us. )

The inAuence functional can also be used to obtain the time evolution of the observed system density matrix
p(S, S', t ):

i
p(SI, S&, tI)= f2)SX)S'p(S;,S;t, )F[S,S']exp —f dt[L, (S) L,(S')]—

Because F[S,S ] is a nonunitary kernel, it provides a mechanism for decoherence in the evolution of p; one can inter-

It is assumed throughout this paper that the system and the environment are initially uncorrelated, so that the initial state of the
Universe may be written as a product of system and environment states. For systems strongly coupled to their environment, this as-
sumption is not realistic [3]. In the present case, a hypothetical detector will be used to probe the unperturbed state of a field, and so
the uncorrelated initial state is appropriate.
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pret this eA'ect as representing the loss of information from the observed system into the unobserved environment. It is
in this decohering context that inhuence functionals have recently found application [1,2].

A pertinent example of an inAuence functional is that for a collection of harmonic oscillators, distributed over all fre-
quencies co with spectral density G(co), linearly coupled to an observed degree of freedom Q(t). The Lagrangian for the
unobserved sector, represented by the variables X, is of the form

L = f den G(co)f dt( ,'X ——
—,'X +QX ) . (5)

From this Lagrangian and choosing the initial state of the collection of oscillators to be thermal, one may obtain the
influence functional [11]

lnF[g, g']= — f G(co) f dt f dt'[Q(t) —g'(t)] coth [Q(t') —Q'(t')]costs(t t')—
I

—i [Q(t')+Q'(t')]si neo(t —t') (6)

where T is the temperature of the initial state of the ensemble of oscillators and k is the Boltzmann constant. Note that
the t' integral is over the range t' ( t.

Another useful instance of an inAuence functional is the one describing a free massive scalar field in 1+ l dimensions,
initially in the vacuum state, linearly coupled to an observed degree of freedom Q. The Lagrangian of the scalar field
may be written

2

L = f dk @k—@k — @k@k+Q(t)[Ak (t)@k+Ak(t)@k] (7)
2w —~ 2

Here @k(t) is the kth Fourier mode of the field and cok=c(k +m )'~ for A'm/c, the field mass. Ak is a coupling
strength which may depend both on k and on time t. For this Lagrangian one obtains the inAuence functional

(8)

where

Vk[g, g']= f dt f dt' Ak(t)Ak*(t')[Q(t) —Q'(t)][[g(t') —g(t')]c socio(t —t') —i[g(t')+Q'(t')]since(t t')]—
t

Equations (6)—(8) will all be used below.

III. ACCELERATING DETECTOR
IN THE MINKOWSKI VACUUM

A. Unruh erat'ect in 1+ 1 dimensions

A pointlike quantum-mechanical detector may be
idealized as interacting with its environment only
through the DeWitt monopole moment Q(t) [12]. If it is
linearly coupled to an otherwise free massive scalar field

P in (1+1)-dimensional Minkowski space, then it serves
as a localized probe of the field. If the detector is con-
strained to move along a trajectory x =xo(r), t =to(r),
where x and t are Cartesian coordinates and w is the
detector's proper time, then one has the interaction La-
grangian

L,„,(g, g, t)= fdrg(r)5(t t,(r))—
X f dk 4&k(to(r))e

The 6 function will clearly serve to transform inertial
time integrals into proper time integrals, in such formulas
as (6) and (8). When this is done, it can be seen that (9)

I

gives the simple action term

1;„,= fdrg(r)P(xo(r), to(r)) .

If the detector's trajectory is one of constant accelera-
tion a, then

c a~
xo(r) = cosh

a C

c. a~
to(r) = —sinh

a c

Inserting this into (9) and comparing with (7), one obtains
the time-dependent, k-dependent coupling of the detector
to the field:

. kc a~
Ak(r) =exp i cosh

a C

Applying this in turn in (8) and using the 5 functions to
replace t and t' everywhere with the functions of proper
times, to(r) and to(r'), one derives the influence function-
al of the free massive scalar field on the pointlike ac-
celerating detector:

7

F[Q,Q']=exp — f dr f 'dr'[Q(r) —g'(r)][g(r')U(r, r') —Q'(r')U*(r, r')] (12)
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where the kernel U(r, r') is defined as

c dk . kc
U(r, r')—: exp i-

(k +m2)'
Q7 Q7

cosh —cosh
c c

. COC . Q7 . Q7'—i sinh —sinh
Q c c

(13)

Equation (12) is an implicit answer to the question of how the ground state of the scalar field appears to an accelerat-
ing observer. One need only proceed with the path integral (2), using some appropriate Lagrangian L, (Q) for the detec-
tor itself, to have an exact solution for the detector s time evolution. Rather than doing this, however, it will be more
instructive to derive the Fourier transform of the apparently complicated function U(r, r ). The result will be of the
same form as (6), providing a clear interpretation of the infiuence functional (12) as representing the effect of a heat bath
at the Unruh temperature kT=AQ /2~C.

Redefining k =m sinh[rI —a (r+r')/2c ], (13) becomes

oo . mc
U(~, r') = dg exp

oo Q

7—7'
sinh g+Q

2c
7—7'—sinh g —a

2c

oo 2 I

2'tT f . mc Q 7 7
d q exp —2i cosh' sinh

Q c 2
(14)

One now invokes a crucial identity from the theory of modified Bessel functions of imaginary order (denoted K; ) [13]:
—i a sinh(x /2) 4

dvK2, (ct)[cosh(mv)cos(vx ) i sin—h(~v)sin(vx )] . (15)

Substituting v —+ceo/a, this allows us to reexpress (13) as

leo C 7TCO
U(r, r') = G(a, co} coth cosco(r r') i sin—co—(r—r'}

Q
(16)

where
l

used above by the definitions

2C co rnc C 7TCO
G(a, ai) =—

2
drI K2,, z, 2 cosh') sinh

Q77 Q Q

2C CO . C 7TCO
2

sinh
Q

mc
2

(17)

S=f gdf (p BP —BP —m P)
0 2c 7 P

using another modified Bessel function identity [14].
Inserting (16) into (12) and comparing the result with (6),
one observes that the effect of the scalar field vacuum on
an accelerating detector is exactly that of a heat bath at
temperature kT=Aa/2~c, with spectral density G(a, co).

In order to verify that these results coincide with the
standard conclusion that an accelerating observer sees
the Minkowski vacuum as a thermal ensemble of Rindler
modes [5,8], it is worth determining what G(a, co) would
appear in a thermal inhuence functional derived using
Rindler quantization [7]. Begin with the action for a sca-
lar field P(p, g) in Rindler coordinates [15],

x =p cosh(,

t=psinhg .

These coordinates label only the Rindler wedge of Min-
kowski space x )0, ~t

~
(x. The Minkowski line element

is given by

d~ 2 —d 2 2d(2

Following Fulling [7], one now expands the scalar field

y in Rindler modes p, (g') instead of Fourier modes Nk(t).
The q& are the coefficients in an expansion of the field P
in solutions of the scalar wave equation

dp dp dg

separated in the p, g variables. As mentioned above,
these solutions are modified Bessel functions of imaginary
order, and so the Rindler modes are defined by

(18) P(p, g)= —f dv&2vsinhirvK; (mp)g (g) . (20)

where p and g are related to the Cartesian coordinates One can then use the orthogonality relation [7]

These functions appear naturally in solutions to the scalar
wave equation in Rindler coordinates and therefore in wave
functions for a scalar field quantized in an accelerating frame
[7].

' K, -px--p= '"
p 2v sinhmv

(21)

and the modified Bessel equation satisfied by K,. (mp) to
rewrite (18) as
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4= f f "dv
—,'B~,——,'v p + Q —g &2vsinhirvK;

c 0 a 7T

mc
(22)

The fastest way to obtain the inAuence functional for a thermal ensemble of Rindler modes with this action is to put
(22) into the same form as the action derived from (5). This requires that the time variable be the proper time of the Q
system and that the interaction term have the same weight as the kinetic term. Both conditions may be arranged by re-
scaling g= (a /c )r,

a
y =—X v'2vsinhmvK;,

77

mc

and v=(c/a)co. One obtains g= fdrL(r), where

2

L(r)= f den sinh K,, z,a~ a
mc

[ ,'x'.-,'~—'x—'.+Qx„]. (23)

The measure on co appearing here is exactly G(a, co) from
(17). Comparison with (5) and (6) then shows that a heat
bath of Rindler modes at the Unruh temperature indeed
gives the same inhuence functional as was derived using
ordinary Fourier modes populated at zero temperature.

B. Temperature versus spectral density

The result derived in Sec. IIIA may be expressed as
the fact that an accelerating observer in the Minkowski
vacuum will detect thermal radiation. In this context,
however, thermal radiation must not be construed as a
thermal population of Fourier modes. Such an interpre-
tation of the Unruh effect would be inaccurate, because a
heat bath of Rindler modes does not give the same
inhuence functional as a heat bath of Fourier modes at
the same- temperature.

An inertial detector at x =0 coupled to a scalar field in
1+ 1 dimensions may be described by the Lagrangian (7)
with Ak =0. With an initial state at temperature T, one
obtains the inhuence functional

F[Q, Q'] =exp — f dt f dt'[Q(t) Q'(t) ]-
t I

X [Q(t') U,„(t,t') —Q'(t') U,*„(t,t')]

(24)

Since, in general, GWF, the infiuence functionals (12)
and (24) are not equal. Nevertheless, (12) does indeed
represent a heat bath, because it includes the factor
coth(fico/2kT), for kT=A'a/2irc. It is this factor which
refIects the thermal population of each mode of the bath;
the spectral density only describes the distribution of the
modes over frequency [16]. It is also this factor that is
measured by a thermometer: In the limit where its cou-
pling to the environment is weak, a test system acted on
by an infiuence functional of the form of (16) or (25) will
be driven toward the canonical ensemble, regardless of
the spectral density [17]. This may be understood if one
examines the role of the influence functional in the path
integral (4) governing the observed detector system. One
finds that the real parts of (25) and (13) both describe fiuc-
tuations induced by the environment, while the imagi-
nary parts represent dissipation. The relative strength of
these two effects is the true signature of a thermal envi-
ronment.

C. Unruh eff'ect in D + 1 dimensions

The point of Sec. III B must be borne in mind when in-
terpreting the Unruh effect beyond one dimension of
space. The accelerating detector in D ) 1 spatial dimen-
sions may be described by amending (13) so that

dk d k
2ir (2')D '

(k + )' ~(~k~ +m )'
where the inertial kernel analogous to (13) js

By expressing the (D —1)-dimensional
(k2, k3, . . . , kD) in polar form, so that

k2 = r cosa&

k 3 —r sinu
&
cosa 2, etc.

(25)i since( t——t '
)

U;„(t,t') = — F(co) coth cosco(t t')—dc' %co

2kT

vector

for

F(cu)=, =limG(a, co) .~(~' —m'c')'" (26)

[One may verify that F(co) is indeed equal to G(O, co) by
reversing the derivation of (17) from (9).]

one obtains for the D-dimensional kernel UD(r, r') an in-

tegral over k&, r, and the angles n„.The angular integra-
tion is trivial and contributes only a factor equal to the
area of the unit (D-2)-sphere. The k& integral may be
treated exactly as the k integral in Sec. IV, except that r
modifies the mass term by changing m ~(m +r )'~
One thus obtains generalized versions of (12) and (13):
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FD[Q, Q']=exp — f dr f dr'[Q(T) —Q'(T)][Q(r')UD(T, &') —Q'(T')UD(T & )]
I

(27)

and

dt's

C 7TCO
UD(T, T') = Gn(a, co) coth e osco( T T'—) —i sinco(r —T')

CO a

For D ) 1, however, one now has

c co sinh(c~co/a ) D —2 C 2 2
D —3 (D+3)I22 am. I ((D —1)/2)

drr K;,„&, (m +r
a

1/2 2

(29)

For the case m =0, the r integral may be obtained in a closed form. This case is analyzed in Ref. [9], where a
response function related to UD(r, r ) is derived which is proportional, for odd D, to the Planek distribution function.
For even D, however, the Planck factor is replaced by the Fermi-Dirac distribution function, even though the problem
involves a bosonic field. It is instructive to see how this comes about, for the massless scalar field does not in fact seem
fermionic to an accelerating observer in any number of spatial dimensions.

The equations needed to evaluate (29) in the massless limit are [18]

2D —4g1 —D 2 2

1 ((D —1)/2) PD(v),
harv+

—harv 21 (D /2)

where the plus (minus) sign applies for D even (odd). PD (v) is the polynomial

d —1 d —1

P2d(v)= / [(n —
—,')'+v'], d», P +](v)=—g [n'+v'] .

n=1 n=0

From these facts one obtains

(31)

coPD [(c/a )co]
GD(a, co)

2D —1 D/21 (D /2) 2

21TC
e~p co —1

a

exp co +( —1)
2&C D

coR~ (co )

277c
exp 6) 1

a

exp co +( —1)
2'TTC D

a

(32)

where RD is simply a rescaled version of the polynomial
PD.

The response function FD(co) (equal to F„ofRef. [9]
for n =D+ 1) is defined for co H ( —~, ~ ) to be

FD(co)= lim f dr f dr'e ' ' "'U(r r')
L~ oo 2L —L —L

FD(co) = R~(co)

exp co + (
—1)

27Tc D

(34)

function is equal to a polynomial multiplied by a either a
Planck or a Fermi-Dirac factor:

exp

sgn(co)

2&c

in agreement with Ref. [9]. This is in contrast with the
response function FD for inertial thermal radiation in
8+1 dimensions, which always involves the Planck fac-
tor:

7T=—GD(a, co)
CO 2&c

exp co —1
a

(33) 2' vr' ' '~co~ sgn(co)
FD (co)= culkT 1 )

(35)

using the fact that RD has the same parity as D.
It is therefore easy to see that, for m =0, the response

The important point to realize in interpreting (34) is
that if one ignores the parity of FD, then information
about the real and imaginary parts of UD(r, r') has been
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discarded. As emphasized in Sec. IIIB, these real and
imaginary parts play drastically different roles in the
detector path integral (4) and so are physically distin-
guishable. To check the statistics of the bath oscillators,
rather than simply extracting the most obvious statistical
factor from the response function, one must check wheth-
er the ratio of its even and odd parts is of the form
coth(A'co/2kT). This confirms that (34) actually describes
a bosonic thermal environment:

FD( —cg)+FD(co) mc=coth
FD( —~) FD(~—) a

(36)

So the scalar field does appear as a bath of bosonic oscil-
lators populated thermally at the Unruh temperature,
and this is true for all values of D; but GD(co) is such that
the scalar field heat bath felt by an accelerating observer
has in general an effect different from that of thermal ra-
diation in an inertial frame. This effect is only partially
described by the response function, but may be represent-
ed exactly by the influence functional.

IV. ROLE OF LONG-RANGE COHERENCK

This section examines the role played in generating the
Unruh effect by those of the scalar field's degrees of free-
dom that lie outside the past light cone of the trajectory
of the detector; this is equivalent to considering the role
of vacuum-state coherences between degrees of freedom

I

I. =
—,'q —

—,'0 q +Jq . (37)

The amplitude for a transition between initial and final q
states is

inside and outside the light cone. For simplicity, the
analysis is again restricted to 1+ 1 dimensions. The past
light cone of a constant-acceleration trajectory from

to ~, with the past horizon as an initial data
surface, of course contains the whole Rindler wedge. If
one wishes to consider the evolution of the detector over
all time, then the formulation of the Unruh problem in
terms of Rindler modes seems correctly to attach impor-
tance to the horizon. But (16) describes a thermal envi-
ronment, regardless of ~; and ~&. an accelerating detec-
tor "feels" a heat bath over any time interval, however
short. Hence one can consider the behavior of the detec-
tor between any two finite proper times ~; and ~&, and the
Unruh effect will still appear. The past light cone of a
finite trajectory does not coincide with the Rindler hor-
izon; consequently, the role of quantum coherences be-
tween field degrees of freedom separated by spacelike in-
tervals is distinct from the role of the horizon. The form-
er may best be studied using the inhuence functional for-
malism.

To begin, consider the simple case of a harmonic oscil-
lator driven by an external force J(t), with the Lagrang-
ian

(q& UJ(t&, t; )Iq; ) =N exp —. (q&+q; )cosQ(t& —t;) 2q, qj. —i (0/2)
fi sinQ tI t;—

+—f dt' J(t')[qIsinQt'+q, sinO(t& —t')]+
t

(38)

where the ellipsis denotes terms independent of q, and q&.
The inhuence functional for the oscillator, on the system represented by J, is given by

F[J,J']= f dq;dq P, (q, )g,*(q,') f dq&(q IUJ q&)(q& UJIq;), (39)

where g; is the wave function for the initial state of the oscillator. One may extract and simplify the kernel in this
definition, writing

f dq&~ q I
U Iq/) ~ qI I UJ lq; ~ =A [J,J']5 q,

—
q,

' ——f dr [J(r)—J'(t)]sinQ(t t,)—
t

(4O)X exp — f dt [J( t) J'( t) ]cosA( t—t;)—q;+q;
2

Since q& is the same in both amplitudes in the first line, the q& term in (38) is canceled by the Hermitian conjugate term,
leaving an exponent linear in q&. The integration over final states then converts this into a 6 function, which is then
used to eliminate (q, —

q, ') from the expression. The prefactor A is independent of both q, and q .
This analysis may be generalized to the case of the massive scalar field, coupled as prescribed by (7), (9), and (11),

since the Fourier modes @;(k)—:@k(t;) are closely analogous to the Schrodinger picture position operators of an infinite
set of decoupled oscillators. One obtains, for the kernel analogous to (40),

The time necessary for the detector to reach equilibrium with the environment is a separate problem, not considered here.
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7 I

(4,'. (k)
~ Ug Ug ~4,. (k) ) =A [Q(r), Q'(r)] Q 6 4, (k) —4,'(k) —f d7 ) ~, (2 e sin(ok [to(r) —t, ]

2~(k +m )'

@,(k)+@,'(k)
xexp ' f" dk

' ' f dr(Q —Q')e '
cossack[to(r) —t;]

2~A 2 1 ~

(41)

Fourier transforming back to field variables, so that 4, (k) is replaced by P;(x), for x the inertial spatial coordinate
mapping the initial data surface t = t,-, this amplitude may be rewritten

7

(P,'( )1U & lg;( ))=&[Q( ), Q'( )]g& y;( ) —y,'( ) —f d (Q —Q')G[ ( )—,t ( ) —t;))
X t

Q;(x)+P;(x) &g c)
X exp ——f dx f dr(Q —Q') G[xo(r) —x, to(r) —t, ]

2 at,
(42)

where the odd G-reen's function for the scalar wave equation is defined by

G[x,y]=, e' si nco&t .-- (k'+m')'" (43)

G [x,t] vanishes outside the light cone ~ct
~

) ~x ~.

Define the intersection of the light cone of the accelerating trajectory with the initial data surface to be the initial
data region S. (See Fig. 1, where t, =0 is chosen for convenience. ) The fact that G vanishes outside the light cone may
then be used to rewrite (42) as

(y,'(x)~Ug', Ug~y, (x)) =A, [y, y ]X g 5(y, (x)—y,'(x)), (44)

where%'s is a functional of the field degrees of freedom lying inside the initial data region S.
The infiuence functional may formally be obtained from (44) by inserting the initial-state wave functionals +, [P, (x)]

and V,*[/,'. (x) ], and then integrating:

F[Q,Q']= f Q dP;(x)dP, '(x)%;[P;(x)]+,*[/,'(x)](P,'(x)
~ Ug Ug ~P;(x) )

= f Q dP;( )dP,'( )W [P,P'] f Q dP;( )dP,'( )5(P; —P,')+;[P;( )]+,*[/,'( )]
xGS x&S

= f Q dP;(x)dP, '(x)%' [P, P']p [P, (x),P,'(x)],
xBS

(45)

where the reduced density matrix ps describing the state
of the field degrees of freedom lying within the region S is
defined implicitly in the last line. The product over the
continuous index x is meant to describe the infinite-
dimensional integrals over all initial field configurations

P, (x) and P', (x), using the ordinary measure dP, dP,'in
order to avoid confusion with path integrals over P(x, t ).

In general, initial data for a scalar field inhuence func-
tional are provided by the density matrix for the field on
the initial data surface, which in this case is the x axis.

FIG. l. Initial data region S.

Where the field is initially in a pure state 4, , one has the
initial density matrix p, (P, P') =4,.[P]%,*[/']. In the par-
ticular case of a pointlike detector, however, (45) shows
that the inAuence functional involves no more than a
trace over the initial values of those field degrees of free-
dom lying outside the past light cone of the detector. In
this case, therefore, the reduced density matrix ps,
formed by taking the trace of p; over all the degrees of
freedom outside S, provides sufficient initial data for the
evolution of the detector between the given initial and
final times.

Of course, S may be extended outside the past light
cone as far as one likes, and it will still be true that the
inhuence functional involves only a trace over the field
modes outside S. Defining p, , and then obtaining ps by
tracing out the modes of the field which lie outside the in-
itial data region, is therefore a procedure which makes no
reference whatever to the detector's trajectory or event
horizon, and involves only ordinary, inertial quantiza-
tion. Thus, even though the long-range coherences of the
scalar field ground state do affect the form of the reduced
density matrix, it can nevertheless clearly be seen that the
Unruh effect does not arise from any interaction between
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the long-range coherence of the vacuum and the
geometry of the Rindler wedge. On the contrary, the Un-
ruh effect originates in the identity (15) relating functions
of inertial and accelerating time.

V. DIRECTIONAL DETECTOR
EXHIBITING DECOHERENCE

Section III showed that the thermal radiation detected
by an accelerating observer has a different spectral densi-
ty than that of a thermal ensemble of ordinary Fourier
field components. This section illustrates another, and
perhaps more profound, difference between the accelera-
tion heat bath and inertial thermal radiation.

The accelerating detectors studied so far have been
coupled to the field omnidirectionally: they do not
discriminate between different directions in space. In the
debate over whether or not the acceleration heat bath is
isotropic, various authors have considered directional
detectors, whose couplings single out preferred angles
[19—21]. This section examines a model slightly different
from previous ones. This model has a novel feature that
is shown clearly in the inhuence functional formalism: if
the detector's narrow line of sight is pointed away from
its direction of acceleration, then the inAuence of the sca-

I

lar field vacuum on the detector is not like that of a sta-
tionary ensemble of oscillators. Instead, the field acts as
a quantum measurement device that causes the detector's
quantum state to evolve rapidly into a decoherent mix-
ture of eigenstates of the monopole moment operator Q.
In the limit where the angular aperture of the detector is
extremely narrow, this is all that the scalar field does.

The present directional detector is similar to that of
Ref. [21] in that its window of angular sensitivity is
infinitesimal. The latter model uses Rindler modes to de-
scribe the scalar field, however. Since these modes do not
possess a momentum quantum number in the direction of
acceleration, the preferred angle of Ref. [21] is defined by
a ratio of transverse momentum to energy. Such an angle
is not actually a direction in space, even in the detector's
rest frame. In this respect the present model is more like
that of Ref. [20] in that it describes a directional detector
in terms of its coupling to Fourier modes in an instan-
taneously comoving inertial frame. The angle 0 referred
to in the discussion below will therefore be a true spatial
direction, held constant in the frame of the accelerating
detector.

Since the problem of the accelerating directional detec-
tor has azimuthal symmetry, all of its significant features
are encompassed in the case D =2. In two spatial dimen-
sions, then, consider the coupling

Q(r) d k ik) x&(r) —/rat&(~)I.;„,(r)=,W(k„kz;8,r)+k k e
Svr (k, +k +m )'~ (46)

W(k), kz,'8, r) is a projection operator that vanishes outside a narrow window, of infinitesimal width e, around the polar
angle 0. In the rest frame of the detector at proper time w, it is given by

W(k;, kz, 8,r)= j x dx j da 5(k, —x cosa)5(kz —x sina) . (47)

The cases 0=0,m turn out to be difticult to evaluate in closed form. It will therefore be assumed that sinO)) e )0.
To calculate the inAuence functional, it will be necessary to have 8' at two different times ~ and ~ expressed in the

same inertial frame, since the kernel U(r, r') will become

U(r,r';8)=, W(k„kz;8,r) W(k„kz;8,~')1 d k
(k', +k,'+m')'"
XexpIi(k) [xp(r) xp(r )] tp(k) k )[ztp(7) tp(7 )])I .

It will be convenient to choose for this frame the one in which the detector is at rest at proper time r = —,
' (r+ r'). In this

frame the detector's locations at times ~ and ~' are given by

C Cxp(r) =xp(r') = cosh', r, tp(r) = —to(r') = —sinhb, r, (49)

for br =
—,
) (r—r'). Boosting (k i, kz) into the 7 frame, one obtains

00 0+a
W(k), kz,'8, r)= f x dx f da5(kz —x sina)5(k)coshbr+(x +m )'~ sinhbr —x cosa) . (50)

W(k i, kz,'8, & ) is given by a similar equation, in which the plus sign in the argument of the last 5 function is replaced by
a minus sign.

To leading order in e, the narrow limits of integration on a in (50) simply impose a=8. Therefore, to leading order

4The spatial as well as the temporal frequencies perceived by the accelerating observer differ from those in the instantaneously
comoving inertial frame [22]. The description of the directional detector in terms of its coupling to Fourier modes in instantaneously
cornoving frames presumes that the detector performs its angular discrimination within a su%ciently short distance for this effect to
be negligible.
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in e and for sinO » e & 0, one can obtain
2

W(k„k2',O, r)8'(k, , kz, O, r')= . dx x 5(kz —x sinO)5(2(x +m )'~ sinhhr)
sinO o

X5(k, cosh', r+(x +m )' sinhb. r —x cosO)

E ~ Xdx=5(r—r') . , 5(k, —x cosO)5(k2 —x sinO) .
sinO 0 (x2+m2)'~2

(51)

Substituting this and (49) into (48), one obtains

x dx
U(r —r'; 8)= 5(r—r')

4m sinO x +m
e 3 5(r—r') .
sinO

(52)

A is divergent as written, but it may be regulated in the
manner described in the Appendix, by assuming that the
field-detector coupling has a cutoff at some large Rindler
energy. The regulated version of A is finite and positive.

The reason for the 5 function on (r —r') is that a polar
angle such as O is not Lorentz invariant. As viewed in
the laboratory frame, a fixed polar angle in the accelerat-
ing frame decreases with time (if it is between 0 and ~),
converging toward the direction of acceleration [23].
Hence, if the detector's window is bounded by two very
close angles, held constant in the accelerating frame, then
this window will not overlap itself at different times.
Consequently, the product of the two window projection
operators at different times vanishes unless the two times
are the same (to zeroth order in e).

To leading order in e, the infIuence functional implied
by (52) is simply

e 3
F[Q, Q';8] =exp — . f dr[Q(r) —Q'(r)]

(53)

When F[Q,Q', 8] is used to obtain the time evolution of
the detector density matrix p(Q, Q'), it clearly suppresses
all paths [Q(r), Q'(r)] except those in which (Q —Q')
rapidly approaches zero. The density matrix p(Q, Q')
evolves toward being diagonal: The inhuence functional
(53) drives the detector's quantum state toward a
decoherent mixture of eigenstates of the monopole mo-

I

I

ment operator Q. Such decoherence is a generic effect of
inhuence functionals for large environments acting on
small systems, but (53}is remarkable for its simplicity. It
decoheres the detector in the Q-state basis; it does so in
an obvious and direct manner, and it does nothing else.

The reason for this simple behavior lies in the
laboratory-frame time dependence of the detector's time-
independent angular window. The variation in an inertial
frame of the angle of receptivity means that an accelerat-
ing detector with a narrow aperture, directed away from
the axis of motion, couples at each instant to a succession
of different (and orthogonal) modes of the scalar field.
This is the physical interpretation of (53). It implies that
the association of a fixed direction in space with a given
field mode, which is a basic feature of quantum field
theory in inertial frames and is an important element in
our notion of quantum fields as representing particles,
breaks down in noninertial frames.

It can also be shown that the forward and backward
(8=0 or m} directions, which represent orthogonal field
modes in inertial quantization, are associated with the
same mode of the field in the Rindler quantization. So
not only can a fixed angle correspond to a succession of
modes, but distinct angles can correspond to a single
mode.

The fact that the 5 function in (52) may be related to
the elementary relationship between inertial and ac-
celerating angular directions should confirm that it is not
an unrealistic artifact of some approximation that has
been used. If the calculations are extended to include
terms of third order in the narrow angular width e, then
the 6 function is indeed blurred into a narrow window,
but the basic features of (53) are not significantly
changed. A brief sketch of the extension of (52) and (53)
to third order follows.

One can obtain by straightforward means the result
that

3 oo

U(r, r', 8)= . [A cotO+iB cscO]5(r —r')+, f dy f dx, , 5 r r' —,—"".. .y +O(e'),
sinO 4msinO o o x +m (x '+ m ')'"

(54)

where A and B are real constants defined by integrals needing to be regulated in the same manner as that in (52). The
imaginary term proportional to B and the smeared 6 function lead to new terms in the inhuence functional:

2 7

F[Q, Q', 8]=exp — . f dr [A+ecotOA ][Q(r)—Q'(r)]
2R sinO

+iecscOB[Q(r) —Q'(r) ]+eC [Q(r) —Q'(r)]
d~

(55)
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where a new real constant C is defined by the x integral in
(54). The term in F[Q, Q', 8] proportional to B is simply
an addition to the quadratic potential term in the Q-
system Lagrangian L(Q). The term arising from the
smearing of the 5 function also tends to decohere the sys-
tem in the Q basis.

VI. CONCLUSION

The apparent heating of the vacuum observed along an
accelerating trajectory seems to be a fundamental result
in noninertial, relativistic quantum field theory. An ac-
celeration provides a natural energy scale, but that this
scale should appear precisely as a temperature is an ex-
ample of rare natural simplicity. The underlying reason
for this simplicity seems originally to have been sought in
the behavior of certain globally preferred coordinate sys-
tems near event horizons [5,8]. This understanding of the
phenomenon of acceleration temperature had distressing
implications, however, in that the results of local mea-
surements seemed to depend on global properties of
spacetime.

The analysis presented above confirms that global is-
sues arise only when they are explicitly invoked, in trying
to discuss the state of a quantum field over the entire
Rindler wedge. The thermal effects may be isolated from
the global problem by the use of influence functional
methods, which allow one to determine the properties of
the field as probed by a pointlike detector. The ultimate
source of the acceleration temperature is then seen to be
the relation between sines and cosines of the proper times
of inertial and accelerating observers. The Unruh effect
may be considered a distant cousin to the inertial forces
of Newtonian mechanics, in that it is a property of the
acceleration itself.

The calculations that lead to this result require a re-
duced density matrix for the initial state of the quantum
field within a region of space. In Minkowski space this
information is available because the correct ground state
is known. If these methods are to be extended to prob-
lems in curved spacetime, in particular the Hawking radi-
ation of black holes, some proposal for the field ground
state must be assumed. As suggested by Jacobson [10],
the ground state might be constrained to possess certain
properties measured by local observers; for example, a
static detector "near" the horizon might be required to
behave as an accelerating detector in flat space. This
gravitational quantum equivalence principle would pro-
vide the standard Hawking effect by means of the Unruh
effect.

One might hope to construct a quantum theory in
curved spacetime based on such a quantum equivalence
principle, plus some mechanism for propagating thermal
radiation from "near" regions out into flatter regions.
(This propagation process is obviously needed to let Un-

5The quantum-mechanical extension of the local equivalence
of gravitation and acceleration should not be confused with the
"quantum equivalence principle" of Refs. [24,25], which com-
pares radiation reaction and vacuum fluctuations.

ruh radiation generated at an event horizon be detected
far away as Hawking radiation. ) Yet the propagation of
the thermal radiation does not obviously have to interfere
with its generation via the naive quantum equivalence
principle. Unless this principle can be shown to be pecu-
liar to the neighborhood of a horizon, it should apply
equally well in the case of static detectors outside any
spherically symmetric matter distribution and at any dis-
tance. These applications of the principle would not
yield the standard results.

Even if one could establish the Hawking temperature
by appeal to the Unruh effect, it seems unlikely that a
gravitational quantum equivalence principle would pro-
vide the correct spectral density of the Hawking radia-
tion. While two heat baths with different spectral densi-
ties are both thermal environments, they may have
significantly different physical effects, which one would
want to understand. Furthermore, the one-to-one associ-
ation of local directions with orthogonal field modes, val-
id in inertial frames in flat space, has been seen to fail for
a constantly accelerating frame. These difficulties do not
imply that the gravitational quantum equivalence princi-
ple is wrong, but they do suggest that it will not be as
easy to use as one might hope. While the Unruh temper-
ature is a genuine property of acceleration per se, there is
more to acceleration than temperature. The idea of for-
mulating quantum theory in curved spacetime in terms of
observations made using local detectors would seem to
deserve further study. The technique of influence func-
tionals should be of use in this regard.
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APPENDIX: RINDLER CUTOFF
ON INERTIAL FRKQUKNCY

In D ) 1 spatial dimensions, ultraviolet-divergent fre-
quency integ rais can appear in accelerating detector
problems. Discarding the high-frequency limit by appeal
to the properties of physical detectors is perhaps sophisti-
cal, since any linear acceleration that produces a measur-
able Unruh temperature will destroy any ordinary ap-
paratus [4]. Nevertheless, it seems reasonable that the
most meaningful results are to be extracted from the
divergent integrals by imposing a cutoff at some high-
frequency I, in the frame of the accelerating detector.

Given a function f(x) with a Fourier transform F(k),
a cutoff on k may be imposed by changing

f(x)~fr(x)= I dk F(k)e'"

dz — f(x+z) .
1TZ

Thus one may impose a Rindler energy cutoff on the cou-
pling of the detector to the field, by substituting in (46):

ik
&
xo(w) —i cut0(w) oo SjnI Z ik

&
x0(~+z )—i cot0(7+2)

1 0 dz e
7TZ

(A 1)
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To obtain the regulated version of A in Eq. (52) of Sec.
VI, note that the 5 function 5(r—r') forces r=r'=r, so
that, in the ~ frame,

Because the z integral is now included in the coupling,
(52) is changed so that

c azxo(r+z )~ cosh
a C

c. azto(r+z )~—sinh
a x

f
2

oox dx ~ x dx Ic ( )I2
o ( 2+ 2)1/2 o ( 2+ 2)1/2

where

(A2)

Cr(x)—:f dz
. c2

exp i
a

x cos8 cosh —(x +m )'/ sinh

sinI z
dz

7TZ

. C 2 ~ 2 2 1/2
2 az

exp i (x sin 9+m )'/ sinh B(x)—
a C

(A3)

Here B (x) is defined for convenience, such that

sinhB(x):— x cosO

(x sin 8+ m )'

Using the identity [26]

~ ~ 2 QO KP 7'e'""""~=— dp K; (A, ) cosh cospg+i sinh sinpg
0 2 2

(A4)

(A3) may be written

C 2 2 2 1/2 az(x sin 8+m )' cosp B(x)Cr(x) =—f dz f dp K;„
oo 7TZ 0 a

(c/a)l C 2. 2 21/2 (t VT

dpK; (x sin 8+m )' cosp B(x)
0 a 2

(A5)

For fixed order and large argument, the modified Bessel functions of the second kind have the asymptotic behavior
[27)

' 1/2

K,„(k)- e [1+O(A, ')] .

Therefore the factor
I Cr(x) I

does suppress the ultraviolet divergence in A.
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