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We study the emergence of string instabilities in D-dimensional black hole spacetimes (Schwarzschild
and Reissner-Nordstrom), and de Sitter space (in static coordinates to allow a better comparison with
the black hole case). We solve the first-order string fluctuations around the center-of-mass motion at
spatial infinity, near the horizon, and at the spacetime singularity. We find that the time components are
always well behaved in the three regions and in the three backgrounds. The radial components are un-

stable: imaginary frequencies develop in the oscillatory modes near the horizon, and the evolution is like
(7 7p) (P )0) near the spacetime singularity r ~0, where the world-sheet time (~—~p) ~0 and the
proper string length grows infinitely. In the Schwarzschild black hole, the angular components are al-

ways well behaved, while in the Reissner-Nordstrom case they develop instabilities inside the horizon
near r ~0 where the repulsive effects of the charge dominate over those attractive of the mass. In gen-
eral, whenever large enough repulsive effects in the gravitational background are present, string instabili-
ties develop. In de Sitter space, all the spatial components exhibit instability. The infalling of the string
to the black hole singularity is like the motion of a particle in a potential y(7 7 p) where y depends on
the D spacetime dimensions and string angular momentum, with y )0 for Schwarzschild and
y(0 for Reissner-Nordstrom black holes. For (~—~p) —+0 the string ends trapped by the black
hole singularity.

PACS number(s): 04.60.+n, 11.17.+y, 97.60.Lf

I. INTRODUCTION

The study of the string dynamics in curved spacetimes
reveals new insights with respect to string propagation in
fiat spacetime (see for example Refs. [1—6] ).

The equations of motion and constraints for strings in
curved spacetimes are highly nonlinear (and, in general,
not exactly solvable). In Ref. [1],a method was proposed
(the "strong-field expansion" ) to study systematically
(and approximately), the string dynamics in the strong
curvature regime. In this method, one starts from an ex-
act particular solution of the string equations in a given
metric and then constructs a perturbative series around
this solution. The space of solutions for the string coor-
dinates is represented as

X"(o,r)=q "(cr,r)+ri"(cr, r)+g (cr, r)+ . , (1)

A =0, . . . , D —1. Here q (cr, r) is an exact solution of
the string equations and ri "(o,r) obeys a linearized per-
turbation equation around q "(cr,r). g "(o,r) is a solution
of second perturbative order around q "(cr,r ). Higher-
order perturbations can be considered systematically. A
physically appealing starting solution is the center-of-
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mass motion of the string, q (r), that is, the point parti-
cle (geodesic) motion. The world-sheet time variable ap-
pears here naturally identified with the proper time of the
center-of-mass trajectory. The spacetime geometry is
treated exactly, and the string fluctuations around q" are
treated as perturbations. Even at the level of the zeroth-
order solution, gravitational effects including those of the
singularities of the geometry are fully taken into account.
This expansion corresponds to low-energy excitations of
the string as compared with the energy associated with
the geometry. This corresponds to an expansion in
powers of (a')'~ . Since ct'=(lp&, „,k), the expansion pa-
rameter turns out to be the dirnensionless constant

= l Ph„,k /R, = 1/( l Pl,„ckM)

where R, characterizes the spacetime curvature and M is
its associated mass (the black hole mass, or the mass of a
closed universe in cosmological backgrounds). The ex-
pansion is well suited to describe strings in strong gravi-
tational regimes (in most of the interesting situations one
has clearly g (( I ). The constraint equations are also ex-
panded in perturbations. The classical (mass) of the
string is defined through the center-of-mass motion (or
Hamilton-Jacobi equation). The conformal generators
(or world-sheet two-dimensional energy-momentum ten-
sor) are bilinear in the fields il "(o,r). [If this method is
applied to Aat spacetime, the zeroth-order plus the first-
order Auctuations provide the exact solution of the string
equations].

This method was first applied to cosmological (de Sit-
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ter) spacetimes. One of the results was that for a large
enough Hubble constant, the frequency of the lower
string modes, i.e., those with ~n ~

(a'mH (a' being the
string tension and m its mass), becomes imaginary. This
was further analyzed [3,4] as the onset of a physical insta-
bility, in which the proper string size starts to grow (pre-
cisely like the expansion factor of the universe). The
string modes couple with the background geometry in
such a way that the string infIates with the Universe it-
self. The same happens for strings in singular gravita-
tional planes waves [5,6] (see also Ref. [7] ), and the re-
sults of this paper here show that this is a generic feature
of strings near spacetime singularities.

For black hole spacetimes, such unstable features had
not been yet explored. The string dynamics in black hole
spacetimes is much more complicated to solve (even
asymptotically and approximately). In Ref. [2], the study
of string dynamics in a Schwarzschild black hole was
started, and the scattering problem was studied for large
impact parameters. The stable oscillatory behavior of the
string was found for the transversal (angular) com-
ponents; scattering amplitudes, cross section, and particle
transmutation processes were described and explicitly
computed in an expansion in (Rs /b), Rs being the
Schwarzschild radius and b the impact parameter. The
aim of this paper (and of a subsequent one [8]), is to find,
and then to describe, the unstable sector of strings in
black hole backgrounds. By unstable behavior we mean
here the following characteristic features: nonoscillatory
behavior in time, or the emergence of imaginary frequen-
cies for some modes, accompanied by an infinite stretch-
ing of the proper string length. In addition, the spatial
coordinates (some of its components) can become un-
bounded. Stable string behavior means the usual oscilla-
tory propagation with real frequencies (and the usual
mode-particle interpretation), the fact that the proper
string size does not blow up, and that the string modes
remain well behaved.

We express the first-order string Auctuations
(p=O, . . .D —1) in D-dimensional Reissner

—Nordstrom —de Sitter spacetime, as a Schrodinger-type
equation for the amplitudes X~=q g", q being the radi-
al center-of-mass coordinate. We find the asymptotic be-
havior of the longitudinal and transverse string coordi-
nates (X,X,X') with i =2, . . . , D —1, at the spatial
infinity, near the horizon and near the spacetime singu-
larity. Plus and minus stand for the longitudinal (tem-
poral and radial) components respectively, and i for the
transverse (angular) ones. We analyze first a head-on col-
lision (angular momentum I. =0), that is, a radial infall
of the string towards the black hole. Then, we analyze
the full L WO situation. We consider Schwarzschild,
Reissner-Nordstrom and de Sitter spacetimes (described
here in static coordinates that allow a better comparison
among the three cases). In all the situations (with and
without angular momentum) and for the three cases we
find the following results.

The time component X+ is always stable in the three
regions (near the infinity, the horizon and the singulari-
ty), and in the three cases (black holes and de Sitter
spacetimes).

The radial component X is always unstable in the
three regions and in the three backgrounds. In the
Schwarzschild case, the instability condition for the radi-
al modes, which develop imaginary frequencies near the
horizon, can be expressed as

a'm V'D —3n( D —2—
Rs

2
D —3 m

2 E2

where

2(D —3) 8mGQ 2

(D —2)(D —3)
and A is the cosmological constant. That is why the
transverse modes (X') are well behaved in the
Schwarzschild case, and outside the Reissner-Nordstrom
event horizon. But close to q ~0, aRN (0 (Reissner-
Nordstrom spacetime has a repulsive inner horizon), and
the gravitational eff'ect of the charge overwhelms that of
the mass; in this case instabilities develop. In the
Reissner —Nordstrom —de Sitter spacetime, unstable
string behavior appears far away from the black hole
where the de Sitter solution dominates, and inside the
black hole where the Reissner-Nordstrom solution dom-
inates. For M =0 and Q =0, we recover the instability
criterion [1,3] a'MA/6) 1 for a large enough Hubble
constant; this is in agreement with the criterion given in
Ref. [9].

We find that in the black hole spacetimes, the transver-

where o.', I, and E are the string tension, string mass,
and energy respectively. The quantity within the square
brackets is always positive; thus the lower modes develop
imaginary frequencies when the typical string size
a'm v'D —3 is larger than the horizon radius. Notice the
similarity with the instability condition in de Sitter space.
n (a'm /rH, rH being the horizon radius.

In the Schwarzschild black hole, the transverse modes
X' are stable (well behaved) everywhere including the
spacetime singularity at q =0. In the Reissner-
Nordstrom (RN) black hole, the transverse modes X' are
stable at infinity and outside the horizon. Imaginary fre-
quencies appear, however, inside a region from
r (q (r+ to q ~0, where r+ =Rz[(l+4P)/
2]'~' ' Rz and P being given by Eqs. (5) and (34), re-
spectively, in particular for D =4, r+ =M+PM~ —Q2,
M and Q being the mass and charge of the black hole, re-
spectively. For the extreme black hole (Q =M), instabili-
ties do not appear. There is a critical value of the electric
charge of a Reissner-Nordstrom black hole, above which
the string passing through the horizon passes from an un-
stable to a stable regime. In the de Sitter spacetime, the
only stable mode is the temporal one (X+). All the spa-
tial components exhibit instability, in agreement with the
previous results in the cosmological context [1,3,4]. A
summary of this analysis is given in Table I.

Imaginary frequencies in the transverse string coordi-
nates (X') appear in the case in which the local gravity,
i.e., B„a/2, is negative (that is, repulsive effects). Here,

a(r)=1 —(R&/r) +(Q /r ) + r—2 2 D —3 + 2

3
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TABLE I. Regimes of string stability in black hole and de Sitter spacetimes: Here stable means
well-behaved string Auctuations and the usual oscillatory behavior with real frequencies. Unstable
behavior corresponds to unbounded amplitudes (X—,X') with the emergence of nonoscillatory behavior
or imaginary frequencies, accompanied by the infinite string stretching of the proper string length. X+,
X, and X', (i =2, . . . , D —1), are the temporal, radial, and angular (or transverse) string components,
respectively.

Region

qR 0

Mode Schwarzschild

Stable
Unstable

Stable

Reissner-Nordstrom

Stable
Unstable
Unstable

de Sitter

Stable
Unstable
Unstable

R qR Stable
Unstable

Stable

Stable
Unstable/Stable

Stable

Stable
Unstable
Unstable

Stable
Unstable

Stable

Stable
Unstable

Stable

Stable
Unstable
Unstable

sal first-order fluctuations (X') near the spacetime singu-
larity q =0, obey a Schrodinger-type equation (with r
playing the role of a spatial coordinate), with a potential
y(r —ro) (where ro is the proper time of arrival to the
singularity at q =0). The dependence on D and L is
concentrated in the coe%cient y. Thus, the approach to
the black hole singularity is like the motion of a particle
in a potential y(r —ro) ~, with P=2. And, then, like the
case P=2 of strings in singular gravitational waves [5,6]
(in which case the spacetime is simpler and the exact full
string equations become linear). Here y )0 for strings in
the Schwarzschild spacetime, for which we have regular
solutions X, while y (0 for Reissner-Nordstrom, that is,
in this case we have a singular potential and an unbound-
ed behavior [negative powers in (7 rp)] for XaN. The
fact that the angular coordinates X~N become unbounded
means that the string makes infinite turns around the
spacetime singularity and remains trapped by it.

For (r —ro)~0, the string is trapped by the black hole
singularity. In Kruskal coordinates (u&(cr, )r, u&( ,o)r),
for the Schwarzschild black hole we find

lim(, , ) ou&u& =exp[2KC(o )(r—ro) ],
where K = (D —3 ) /(2Rs ) is the surface gravity, P )0 is
a determined coe%cient that depends on the D dimen-
sions, and C(o ) is determined by the initial state of the
string. Thus u(, v&~1 for (r —ro) —+0. The proper spa-
tial string length at fixed ( r —ro) ~0 grows like
( )(D —1)P

It must be noticed that in cosmological inAationary
backgrounds, the unstable behavior manifests itself as
nonoscillatory in (r —ro) [exponential for (r —ro)~ ~,
powerlike for (r—ro)~0]; the string coordinates g' are
constant (i.e., functions of o only), while the proper am-
plitudes X' grow like the expansion. In the black hole
cases, and more generally, in the presence of spacetime
singularities, all the characteristic features of string insta-
bility appear, but in addition the spatial coordinates g
(or some of its components) become unbounded. That is,
not only the amplitudes X' diverge, but also the string

coordinates g', which appears as a typical feature of the
strings near the black hole singularities. A full descrip-
tion of the string behavior near the black hole singularity
will be reported elsewhere [8]. This paper is organized as
follows. In Sec. II we formulate the problem of string
Auctuations in the Reissner —Nordstrom —de Sitter space-
time and express the equations of motion in a convenient
Schrodinger-type equation. In Sec. III we treat the
head-on collision. In Secs. IV and V we describe the full
~ dependence and the noncollinear case, respectively, and
discuss the conclusions and consequences of our results.

II. FORMUALTION OF THE PROBLEM

gD —3
S

Q
2(D —3)

D/2
O,D=

I (D/2)
16~GM

(D —2)OD

8~GQ
(D —2)(D —3)

the equations of motion of the first-order Auctuations
read

d2
2

+n q„"(r)+23~ (r)r) „(r)+B~"(r)rl„(r)=0 .
d~2

Here we have expanded the first-order string perturba-
tions in a Fourier transform:

g "(o., r)= g e'" r)„(r), (7)

de Vega and Sanchez [1] have obtained the equations
of motion of fundamental strings in curved backgrounds
by expanding the Auctuations of the string around a given
particular solution of the problem (for example, the
center-of-mass motion). For the case of a black hole
background [2] with mass M, charge Q, and cosmological
constant A,

ds = —a(r)(dX ) +a '(r)dr +r dQD 2,

a (r) =1—(Rs/r) +(Q ~/r ) +—r
—2 ZD —3 & 2
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being the vector

i =2, 3, . . . , D —1

and AR (r) and BR"(r) the components of the matrices

(8)

III. HEAD-ON COLLISION

Let us start with the simpler case of a radial infall of a
fundamental string towards a black hole. In this case the
transversal components of the center-of-mass motion are
zero, i.e., q'=j '=0.

A. Transverse coordinates

a g
2a

a'Ea '

2Q

0

cz'Ea '

2a

a g
2a

0

Rq j
~ R

5'~+q'q '
g

(9)

They uncouple from the radia1 ones and from each oth-
ers giving rise to the equation

~ R
q'„+n'g'„+2 ~, g'„=0 .

By making the transformation

with

a'Ea "q ~

0 —S

0 2j'

0

0

cx L
pe

(qR)2

(10)

=n =9' '9n ~

Eq. (17) yields

:- „'+(n —
q /q ):-'„=0 .

And by use of the geodesics, Eqs. (13), we find

2 (a'rn ) a'(q )

(18)

(19)

(20)

r 2

S= a ~(qR)2+~ 2E~]
2a (q )

Here the dot stands for 8/Br and a prime denotes i)/Bq
The solution for the string coordinates is given by the ex-
pansion

X"=qi'+rj"+@+ . , @=0,1, . . . , D —1, (12)

q"(~) being the center-of-mass coordinates (zeroth-order
solutions), which follow the geodesics of the background
spacetime, i.e.,

2
. 0 a'E, . ;,2 cz'Liq'i =

a (qR)2
(13)

+ — +m
~& 2a (qR)2 a

%"e have identified the proper time of the geodesic with
the world-sheet ~ coordinate.

To study the equation of motion of the first Auctua-
tions, Eq. (6), it is convenient to apply a transformation
to the vector g . Let us purpose

where a prime denotes 8/Bq
From the form of this equation we can see that when

the quantity in square brackets is greater than zero we
will have the typical oscillatory motion of strings, but
when the quantity in square brackets reaches negative
values, this equation suggests the onset of instabilities.
%'e can have imaginary frequencies only in the case in
which the local gravity, i.e., a /2, is negative (repulsive
effects). We know that for Schwarzschild black holes we
have

D —3
D 3 Rs

as(q') = (21)

which is always greater than zero for D &3. Thus, we
can conclude that the transversal modes are stable in the
case of a radial infall towards a Schwarzschild black hole.

The case of a charged black hole gives the same result
concerning the stability outside the event horizon, al-
though, close to the singularity (q ~0), we will have
negative values of a' (it is known that the Reissner-
Nordstrom solution has a repulsive inner horizon [10] ).
In fact,

where the matrix 6 is chosen to eliminate the term in the
first derivative in Eq. (6), i.e.,

6 =I' exp — 3 z' dw'

D —3a,'N(q') =

D —3

g

—2
g

2(D —3)

g

2(D —3)

R

(22)

where P is a constant normalizing matrix. Thus, Eq. (6)
transforms into

:-„+G '(n +B—A —A )G:-„=0, (16)

which is a Schrodinger-type equation with ~ playing the
role of the spatial coordinate.

We see that the onset of the instabi1ity appears within the
event horizon. As the string falls towards the singularity
q ~0, the first mode (n =1), begins to suffer instabili-
ties, then the second mode does too, and so on. In this
Reissner-Nordstrom case, the presence of a second inner
horizon (usually denoted as r ), implies a ' (0 from
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somewhere in the region r (q (r+ to q ~0, where
1/(, D —3)I+&I —4Pr+ ——Zs

[see Eq. (34)]. Including a positive cosmological constant
will again produce instabilities. In fact, for de Sitter
space,

(23)

from the black hole, where the cosmological solution
dom. inates and inside the black hole, where the Reissner-
Nordstrom solution dominates.

In the analysis above we have considered q as a pa-
rameter, but in general it will be w dependent. However,
in the approximation of first-order fluctuations we are
considering we can take q as parametrizing the trajecto-
ry in an adiabatic approximation. We will see in the next
section that this is indeed the case, when we include in
detail the time dependence of q

And thus, in particular for M =0 and Q =0, we recover
the results [1,3] about the onset of instabilities generated
by the expansion of the de Sitter universe, for large
enough cosmological constant, i.e., a'mA/6& 1. Obvi-
ously, the anti —de Sitter universe (A(0) will not gen-
erate instabilities. Thus, for the complete case of a
Reissner-Nordstrom black hole immersed in a de Sitter
universe, we will have the possibility of instabilities far

B. Radial coordinates

Let us study now the radial coordinates of the string.
Here we have a coupled set of equations for the fi.rst-
order perturbations g and g . To eliminate the erst
time derivative appearing in the equations of motion (6),
as we have seen, we can apply the matrix transformation
G given by expression (15), which in our case, by use of
the matrix A (r), Eq. (9), takes the form

6 a1/2 +E ma +E—1—
2 1/2

+E ma +—E

(24)

Here we have used the geodesic equations (13), as well as
[11]

f da 1 )/E ma E— —
a ')/E am E — ')/E ma +E— (25)

It is not difficult to compute A and 2 from expression
(9). Thus, we have all the elements to write down explic-
itly the first-order perturbations equations (16):

:-„+M:-„=0, M=G '(n +B—A —A )G; (26)

the matrix M is given explicitly by

nalizes the matrix M:

M= TMT

Thus, M reads

0
M=

where the eigenvalues A.+ are given by

A~= —,'ID+ A+[4BC+(D —A) )' ]+n
and we have written, for the matrix M in Eq. (27),

(31)

(32)

2(1 —g )

c —e+n
8 +e

G ge

c +ge +n M= C D
where

c =[(2E —am )(a'/a) +E (a "/a)](g~ —1),
d = [E+E am [2(a'/a) +—(a "la)]I(g —1),
e =(a "/a)[2E(/E am —g(2E —am—)],
and

't/E ma +E—
(29)

Now, Eq. (26) represents a set of two coupled equations
for the components of the vector

~o
n

(30)
n

In order to uncouple and better analyze Eq. (26), we
apply the following unitary transformation, which diago-

Thus, explicitly the eigenvalues (32) are given by

[2(a'/a) (2E —am )+m a"(a')'

++16E (E —am )(a'la) +m (a") ]+n
(33)

Now, this diagonalized expression allows us to analyze
the stability of the fluctuations around the center of mass
of the string. By looking for negative values of A. +, we
can scan the possibility of the onset of instabilities in the
motion of strings. The analysis of Eq. (33) for every value
of q, can be made by replacing there the expression for
a (q ) given by Eq. (5).

It is convenient, in the Reissner —Nordstrom —(de Sit-
ter) case, to write expressions in terms of the following
variable
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Rs
D —3 2{D—3)

13=
Rs

(34)
that the modes with coefficient k+, being definite posi-
tives, are stable in Schwarzschild and Reissner-
Nordstrom black holes, i.e.,

Thus, Eq. (5) reads

a (x)=1——+ + ——(q~)2
x x 3

(35)

2 2 2

lim A,
BH=(a) (D 3)22E —m +n2

(qR)2 2

as well as in de Sitter spacetime, i.e.,

It can be seen that, for m =0,
2

n 2+ 2cxi2 E2+ a

=n
(36)

that is, for m =0 the evolution is stable in the three cases:
Schwarzschild, Reissner-Nordstrom, and de Sitter space-
times. A, + (and then X ) is always stable (this is so, even
for m&0) and X is as in flat spacetime; the first-order
fluctuations for the massless string always oscillate.

C. Analysis

To simplify the analysis, we will see what happens in
three important regions of the black hole space: far away
from the black hole, close to the event horizon, and ap-
proaching the singularity in the Schwarszchild,
Reissner-Nordstrom, and de Sitter spacetimes.

(i) q ~ oo. In this case the terms proportional to a"
dominate over those proportional to (a'/a) and thus we
have

lim A. + = [2(a'/a) (2E —am 2)
(a')'

4

+m ( a+~a" ~)]+ n (37)

Thus, from expressions (34) and (35), we can conclude
I

lim A, '=2(a') +
q ~oo (q )

+n (39)

And for the de Sitter case,

lim A, = — m A+n
(a')'

~ oo

(41)

We observe that in A, appears a fundamental
difference with respect to A, +. The term proportional to
m is here negative. This allows the possibility of the on-
set of instabilities for values of m large enough to unsta-
bilize successively the modes n =1,2, . . . and so on. In
the case of the Schwarzschild or Reissner-Nordstrom
black holes, for large values of q, we have stability, even
for the k modes, as one would have expected due to the
asymptotic Aatness of the spacetime.

(ii) q ~q„„;„„.In this case the terms proportional to
(a'/a) dominate over those proportional to a", and we
have

The other eigenvalue A, , however, would indicate the
emergence of an instability for not so large values of q
In fact, in this case we have, for the Schwarzschild and
Reissner-Nordstrom black holes,

lim k = (D —3)(D —2) +n . (40)
(a') m

R 2 (qR)2x

lim A, +=n + [2(a'/a) (2E —am +2E+E am )+m a"—] .H
4

(42)

Again, we will see that the modes A, + yield stable Auctua-
tions around the center of mass. In fact, for black holes
and de Sitter cases,

lim A, + =n +(a')(a'/a) (2E —am ),
R R

q ~q~

ative for D 3, this indicates that we have the possibility
of an unstable regime (depending on the value of m /8, )

for the first excited modes. The instability condition can
be written as

which is always a positive quantity.
The other mode A, carries again the possibility for the

emergence of instabilities. For the Schwarzschild black
hole we have

1/2S D —3 m

Rs 2
(45)

2+(a')(D —3) m +D —3 m

(a') m=n
2R,

m1—
4E

for D =4. (44)

As the term between the square brackets is always neg-

where the quantity between the square brackets is always
positive and S=a'm&D —3 is a measure of the string
size. Thus, if the string is larger than the horizon radius,
it becomes unstable. This is similar to the instability cri-
terion in de Sitter space, i.e., n &u m/rH, rH=H be-
ing the horizon radius.

This is not the case, however, for the extreme
Reissner-Nordstrom black hole. In fact,
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2
gERN (ar )22(D +1)l(3—D)(D 3 )2 + n 2

2R R Rs
And finally, the de Sitter space-time also gives an unsta-
ble solution:

(46) lim A, = —
—,'(a') Am +n

R
q ~0

(54)

which is always a positive quantity and does not develop
instabilities at first perturbative order. This shows that
there is a critical value of the electric charge of the
Reissner-Nordstrom black hole above which the string
on the horizon passes from the unstable to the stable re-
gime. This critical value can be found by making vanish

in Eq. (42).
For the de Sitter space

—1 +n (47)

As the quantity between the parentheses is always nega-
tive for the radial orbits we are studying, we could have
the onset of instabilities, again this depending on having
large enough values of I A.

(iii) q —+0. This limit gives the approach to the singu-
larity. Here, terms proportional to a" dominate over
those proportional to (a'/a) . We have, then, in this lim-
it

lim A,+= [2(a'/a) (2E —am )
()

(a')'
4

+m (a "+~a" ~() ]+n (4&)

We will see, again, that as q ~0, ~+ remains positive,
thus giving stable first-order Auctuations.

In fact, for Schwarzschild black holes

(a') (D —3) m 2lim A, += ~2 +"
&"-o 2 (q )x

which is always positive. Thus, producing stable first-
order fluctuations.

The same happens for the Reissner-Nordstrom black
hole:

(a') (D —3)(4D —10)gm
im XR+ +n

( R)2 2

and also for the case of the de Sitter space,

ljm lds2(a)2A2(qR)2(2E2m2)+n2
q ~0

(50)

(51)

~s (a') (D —3)(D —2)m
lim A, +n
,'-o 2 (q )'x

(52)

the first-order oscillations will be bounded.
Again, the situation changes when we study the mode
. For the Schwarzschild black hole we have

We remark again the similarity with the result Eq. (41),
valid for q

Several remarks are worth making here. First, we ob-
serve from Table I that the longitudinal modes A, + always
give stable Auctuations, while the A, modes almost al-

ways suggest the existence of instabilities. By choosing
an appropriate gauge in the = and:-' coordinates, we
can interpret the mode k+ as the temporal coordinate
and the mode proportional to k as the radial coordi-
nate. As for the cosmological backgrounds [3], the string
time coordinate is well behaved.

We have already remarked that in the Schwarzschild
and de Sitter spacetimes the modes A, and:-' are quite
similar in the limit q —+0 and q ~(x). This property
has also been found in cosmological backgrounds [12].

We have studied separately the cases of black holes and
de Sitter space. %'e have done so for the sake of simplici-
ty and for the importance of de Sitter space in itself, but
it is straightforward to observe the regimes in which one
case predominates over the other when we study a black
hole embedded in the de Sitter spacetime: At large dis-
tances from the hole, the cosmological term dominates,
while not far from the black hole its contribution can be
neglected.

Here, as remarked in Refs. [1,3], in order to discuss the
constraints imposed to the string equations of motion,
one has to go to second-order string fluctuations. To first
order, constraints are satisfied consistently with the equa-
tions of motion only for stable modes.

It is important to stress that the perturbative analysis
of the equations of motion we have done, is strictly valid
in the stable regimes and allows us to discover the pres-
ence of instabilities. In the unstable cases, one has to de-
scribe the unstable nonlinear regime, nonperturbatively.
Asymptotic solutions describing the highly unstable
string regime are under study by the present authors and
will be published elsewhere [8].

IV. EVOI.UTION WITH TIME

In the last section we have considered q, the coordi-
nate of the center of mass as a parameter. This allowed
us to analyze the stability of the fluctuations of funda-
mental strings. Now, in order to see the evolution with
the proper time ~, let us consider q (w) and integrate the
resulting differential equation for =(r):

which suggests the onset of instabilities. We remark here
about the similarity between this expression and Eq. (40)
for the case q

The Reissner-Nordstrom case yields also the possibility
of instabilities:

:- "„+[n +V]:-~=0,
where

(55)

2 2
~RN 2(, )2 (D —3) Pm

,'-o (q )'x' (53)
(a'm ) a'(q )

A,
—=A,+ —n,

2 q
R

(57)
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We can obtain the time dependence of q from the geo-
desics equations, (13). Thus,

R

(58)

solved in terms of exponentials: i.e.,

(a'm )
n

:-' (r) =exp . +i n — A

1/2

Let us now study the diA'erent curved backgrounds we
are interested in.

A. de Sitter space

ds 6
(59)

Thus, Eq. (55) for the transverse modes can be easily
I

This case is the simplest for analyzing, due to the con-
stancy of A.'.

VVe see that for a cosmological constant positive and
bigger than 6/(a'm ), the first mode =', (r) will begin to
grow exponentially with time. For even bigger values of
A further modes can be excited. Negative values of A
(anti —de Sitter space) give bounded Iluctuations.

The analysis for the longitudinal modes is quite more
complicated, because of the time dependence of Xds.
Thus, we will consider the two asymptotic regions q —+0
and q

q (r) can be obtained explicitly by integrating [11]Eq.
(58),

1/2
1 3

m A
m A

arcsinh
E —m2

' 1/2

q for A)0,
a'(r —r()) = '

1 3
1/2 1/2—APZ

arcsin
E m—2 q for A&0,

(61)

where ~o is the proper time of arrival to q =0.
In the limit q ~ ~, the eigenvalues wads are given by

Eqs. (39) and (41) and thus, have constant values:

2(a'm )
ds 3

(j+2)(j+1)K, ,+n'K +CK,=O,

j =0, 1,2. . . , K =0 for j &0,
and Eo =:-oand JC1 =@+are the initial data.

B. Schwarzschild black hole

(66)

(a'm ):-„ds—+exp . +i n — A
3

(63)

On the other hand, from Eqs. (51) and (61), we find that

(a'm )
ds 3

With these constant values, Eq. (55) can be easily solved
for the "+—coordinates, again in terms of exponentials.
The same analysis and the same condition of instability as
for the transversal modes apply here for A, . This is so
because we have negative values of A, for A) 0. For A, +,
instead, we have bounded solutions.

In the limit q —+0 we must use expressions (51) and
(54). Again A, gives a constant negative value, which in-
dicates the emergence of instability. = behaves like

1/2

This case is somewhat more complicated algebraically
than the de Sitter one, but it can be analyzed in the two
interesting asymptotic regions q ~0 and q

When q —+0, the geodesic path can be approximated
by

2/(D —1)

q, (r) a'Z, m (r—r, )
R (D 1 ) (D —3) I2

2

0(r) (r )2(D 1)j(D+1) 0,
where zo is the proper time of arrival to the singularity at

R 0
Replacing this path, qs (r), into Eq. (55), we have for

the transversal coordinates

Ads= —,'(a') A (E —m )(r—r()) ='C(r —r0) (64)
2+2(D —3)(

)
2; 0

(D —1)

for which we find the power-law solution

(68)

which inserted into Eq. (55) gives a regular behavior for
:-„+in terms of a power series of (r—r0), i.e., 1/2

1 1 2(D —3)(r)- [n(r r)], P' =—+-
n, S 0 s 2

—
4 (D 1)

:-„ds(r)= $ K (r r0)~ . . —
j=0

Here E can be found from the recursive formula

(65)
(69)

For D ~4, P is always real and positive. Thus, in the re-
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1 1 D —3P =—+ ——2
2 4 D —1

2 1/2

(70)

This gives complex solutions for D ) 5, but anyway
bounded as (r —ro)~0.

On the other hand,

gime studied, (r —ro) small, we have regular and bounded
solutions X . This confirms that there are not instabilities
in this region.

From expressions (49) and (52), we observe that A,
—

produce equations analogous to Eq. (68) and powerlike
solutions as in expression (69). Only the value of P
changes:

q (r) —+[a'(D —2)m(r —ro)Q ]' ' (76)

Plugging this expression into Eq. (55) and using (22) and
(57), we obtain

~ ~

w + n
D —3 (r —ro):-'„=0,

(D —2)
(77)

1 1 D —3
, RN(r) [n (r ro) ] RN — +

(D —1)

1/2

this is as Eq. (68) for the transversal oscillations in a
Schwarzschild black hole, but the coeKcient in front of
(r—ro) now has a negative value. This means that the
solution

1 1 2(D —3)(D —2)
4

(71) (78)

gives a solution, which with the minus sign in front of the
square root is unbounded as (r —ro) —+0. Thus, being
consistent with the results of the last section [see com-
ments made after Eq. (52) about the possibility of having
instabilities in this longitudinal mode of the string].

The same kind of analysis can be made in the region
q —+ ~. The geodesic equations in this case yields

allows a solution (that with minus sign in front of the
square root) which is unbounded as (r—ro) ~0, and indi-
cates an instability as seen in the analysis of the preceding
section.

From Eqs. (50) and (53) for A,
—we see that the longitu-

dinal coordinates of the string in the Reissner-Nordstrom
background, as they fall toward the singularity at r =0,
will behave like a power P+ of the proper time:

qs (r)~a'+E m(r —r—o) .

Thus, the equation for the transversal modes is

:- '„+[n +D'(r —ro)' ]:-'„=0,

(72)

(73)

1 1P = —++
RN 2

—
4

1/2
(D —3 )(4D —10)P

2(D —1)
(79)

where

~ D —3 m R,
(E'—m') a'&E' —m'

L

D —3

For D ~ 4, this exponent becomes complex (for big
enough P), but still produces the fluctuations =+ to van-
ish as (r —ro)~0.

The case for = is different because
1/2

while for the longitudinal modes we have

:-„+[n +D (r —ro)' ]:-, =0, (74)

1+ 1 (D —3) /3

4 (D —1)
(80)

D —3 (D —2)m Rs
D

2 (E'—m') a'&E2 —m'

= ++ [n +D+(r —7. ) ]-„+=0,

D —3

allows again one solution that is unbounded as
(r—ro) —+0, thus confirming our analysis of the last sec-
tion for the Reissner-Nordstrom black hole in this region.

The time evolution in the intermediate region between
the two asymptotic ones studied can be analyzed from the
results obtained in the last section. In fact, on the event
horizon we have the behavior

where

+ (D 3)
( p)6 —2D 2E m ~2(g) —3)

(E2 m 2)D —2

Equations (73)—(75) can be solved in terms of Laurent
series [negative power series of (r—ro)], that in the limit
(r —ro) —+ ~ makes them convergent solutions. Only the
negative value in D suggests that for (r—ro) not so
large, some kind of instabilities could occur.

C. Reissner-Nordstrom black hole

For charged black holes, in the limit of q ~0, the
gravitational effect of the charge overwhelms that of the
mass. In that limit, from Eqs. (5) and (58), we obtain

:-"„H(r)-exp I+i [n +V~]'~ (r —ro) J,
where X)II can be found from Eqs. (43)—(47). A, H is always
positive, while XII and A,H can take negative values de-
pending on the string and black hole parameters. We can
thus draw the same conclusions as before about the con-
ditions of stability: Near the horizon, the string behavior
is stable and oscillatory for the time coordinate X+ and
for the higher n modes of the radial and transversal com-
ponents; the lower X and X' modes being, however, un-
stable.

In summary, the time-dependent analysis confirms
completely the results about stability and about the onset
of instabilities obtained in the last section on the grounds
of an adiabatic study.
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V. NONCOLLINEAR COLLISION AND DISCUSSION

It is interesting to investigate how the picture changes
when the infalling string has an orbit with nonzero im-
pact parameter. It is simple to analyze the first-order
fluctuations in the transversal coordinates. In fact, for
i )2, the matrices A and B given by Eqs. (9) and (10) are
diagonal,

where we have integrated the expression (13)

qs (r)~ - a'Rs ' L (r—ro)R D + l I (D —3)/2 (88)

a'(r —ro)=f, (87)
')IE m—a (q )

—a(L /q )

in order to obtain the behavior
2/(D + 1)

~ R rL
g lj —U Qlj g lj Qlj

R '
( R)2

(82) Equation (84) has, then, a powerlike solution in the limit
R 0

aL
=n

(q )
R 2

2
~ R
q ==0

R

then the equations for the first-order Auctuations are

(83)

1 1 2(D —1):-'„s(r)—[n(r —ro) j, &s= —+
2 4 (D+1)'

(89)

This is the generalization of Eq. (19) for LAO.
By use of the geodesic equations (13) we can rewrite

Eq. (83) as

(a') a'(q )m
R2

2

+2 (1—a+ —,'a'q )
(qR)2

That vanishes for (r —ro) —+0.

B. de Sitter spacetime

This case is very interesting because replacing expres-
sions (5) and (23) into the first-order fiuctuations equa-
tions with LAO, Eq. (84), we obtain that the L depen-
dence disappears. This gives, in fact, the equation

=0 . (84) (a'm )
n 6

w' —0 (90)

Thus we are now able to analyze particular cases we are
interested in

A. Schwarzschild black hole

Plugging Eqs. (5) and (21) into (84) we obtain

I 2

( )' (D —3) +(D —1)
2

(85)

We observe that for D ~ 4, ks & 0, thus producing stable
first-order fluctuations. In fact, when we study the time
evolution we obtain

The solutions to this equation are exponentials in the
proper time r and are given by Eq. (60). The same con-
clusions about the possibility of instabilities given after
Eq. (60) can be drawn here.

The fact that the solutions should be L independent
could have been guessed from the symmetries of the de
Sitter space. This metric has no preferred point to which
to refer the angular moment as in the black hole cases
(there is no singularity at r =0). This allows us to say
that the components X, X+, and X' will behave as the
ones already studied for the case L =0.

C. Reissner-Nordstrom black hole

2(D —1)
lim A,s= (r

q' 0 (D+1)' (86) From the metric coefficients (5) and its first derivative
we find that Eq. (84) reads

(a') (D —3)m

( R)2
1 — + (D —1)— (D —2)213 L 2P

x(q ) X
, wl =0

n (91)

lim X'„,= ' " ' ' '+(D —1)
q ~q~R R RS R4S

(92)

We observe that as q ~~, the term proportional to L
vanishes faster than the other terms. Thus, in this limit
we recover the L =0 results. As we approach to the
black hole, and arrive to the horizon, we have, for the
Schwarzschild black hole,

gi (
I )2 4/2(D —3) L

'm „H,ERN ~4
~q~

(93)

Again, it is always positive. Thus, we see that the insta-

which is definite positive, and does not produce instabili-
ties.

For the extreme Reissner-Nordstrom black hole we
have
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bilities do not appear yet. The time-dependence of the
solutions close to the horizon will be oscillatory with the
squared frequency given by XH

However, the picture changes when we go closer to the
singularity. For the Reissner-Nordstrom black hole,
when q —+0, we have

black hole one, and the exact full string equations become
linear. )

The solution of Eq. (84) with a potential proportional
to y(r —ro) can be given in terms of Bessel functions:

:-'„(r)=g(r —ro) I V„'J,[n(r —ro)]

(D —2)P L
lim A,o RN= —(a')

q ~0 (q )
(94)

+ W„' J [n (r—ro)]], (98)

where V„' and 8'„' are arbitrary constants coefficients and

As this squared frequency takes negative values, this al-
lows the possibility that instabilities develop in the string
transversal coordinates. In order to find the time depen-
dence in the coordinates we integrate first the center of
mass motion, Eq. (13). Then, as q ~0, we obtain

(95)

Plugging this expression into Eq. (94), we have

D —2 —2lim Ao RN~ (r ro)
R 0 (D —1)'

And the solution of the first-order fluctuations is again a
powerlike one:

:-',RN(&) —[n(&—&o) ]'
1/2

1 1 (D —2)P' =—+ —+
2 4 (D 1)2

(97)

We here have that the solution with the minus sign in
front of the square root produces an unbounded solution
as (r—ro)~0, thus, suggesting the existence of instabili-
ties.

It is worth remarking that the solutions (97) and (89)
for the time dependence of the transversal coordinates for
the Reissner-Nordstrom and Schwarzschild black holes,
respectively, are independent of L. They are, however
different from those of the case L =0 [Eqs. (78) and (70)].
This is so because even if the L dependence cancels out
from the final Eqs. (97) and (108), the approach to the
singularity, q ~0, is different if LAO, thus producing
difterent final coefficients.

Another interesting feature of the equations for the
transversal first-order modes is that for black hole cases
(Schwarzschild or Reissner-Nordstrom; orbit of the
string center of mass with or without angular momen-
tum) the time dependence of k' appears to be (r —ro) as

q ~0. The behavior of k' as a function of q is different
for each case, but the ~ dependence of the orbit in each
case exactly compensates for such difference.

Thus, for the linearized string Auctuations, the ap-
proach to the black hole singularity corresponds to the
case p=2 of the motion of a particle in a potential
y(r —ro) . This is like the case of strings in singular
plane-wave backgrounds [5,6]. In fact, the linearized
first-order string fluctuations produce a one-dimensional
Schrodinger equation, with ~ playing the role of a spatial
coordinate. The potential term in Eq. (84), can be written
fully ~ dependent, as we have seen, by plugging into it the
center-of-mass trajectory q (r). (In the case of gravita-
tional plane waves, the spacetime is simpler than in the

v=Q —' —y, i.e. , v=P' (99)

Vs

2(D —3)
(D —1)
2(D —1)
(D+1)

for the Schwarzschild black hole, and

XRN

—2(D —3) L=0
(D —2)'

—2(D —2)
(D —1)'

for the Reissner-Nordstrom black hole.
Near the spacetime singularity, the dependence on the

D spacetime dimensions is concentrated in y. Notice the
attractive singular character of the potential y(r —ro)
for the Reissner-Nordstrom black hole, in agreement
with the singular behavior of the string near q =0, while
for the Schwarzschild black hole y is positive, and the
string solutions X' are well behaved there.

The approach to the black hole singularity is better an-
alyzed in terms of the Kruskal coordinates (uk, uk ):

aus ~'s
Qg =e, Uk =e

u and U being null coordinates, and K the surface gravity
of the black hole [K =(D —3)/(2R, ) for Schwarzschild].
From Eqs. (69)—(71) we have [C—(o. ) being coefficients
determined by the initial state of the string]:

where P'(D, P)'s are defined in Sec. IV.
For y (0 we have Bessel functions (those with negative

index) with a divergent behavior as (r—ro)~0, indicat-
ing the existence of string instabilities. We would also
like to stress that for black holes, what determines the
possibility of instabilities is not the type of singularity
(Reissner-Nordstrom or Schwarzschild), nor how it is ap-
proached (L =0 or LAO), because we have seen that the
time dependence of the potential is always (r —ro), but
the sign of the coefficient y in front of it, i.e., the attrac-
tive character of the potential (r —ro) . Thus, we can
conclude that whenever we have big enough repulsive
effects in a gravitational background, instabilities in the
propagation of strings on the spacetime background will
appear. The coefficient y is given by



STRING INSTABILITIES IN BLACK HOLE SPACETIMES 4509

p+
uk(cr, r) =expIE[C+(cr)(r —ro)

C (o)(r—r )

p +
vk(o, r) =exp I E[C+(o )(r—ro)

+C (o)(r—r ) ' 'jI

(100)

and thus, ukvk~l for (r—ro)~0. That is, for
(r—ro)~0, the string approaches the spacetime singular-
ity ukvk= 1, and it is trapped by it. The proper spatial
length element of the string at fixed (r—ro)~0, between
(o, r) and (o +do, r), stretches infinitely as

~ [C
—

( o ) ]'2d o 2( r r )
~D —

& ~
—IP

0

where P is given by Eq. (71). Here, ro is the (finite)
proper falling time of the string into the black hole singu-
larity. Stretching of the string also occurs for uniformly
accelerated strings in fiat space time [13].

The fact that the angular coordinates X' become un-
bounded in the Reissner-Nordstrom case means that the
string makes infinite turns around the spacetime singular-
ity and remains trapped by it.

The same conclusions can be drawn for the quantum
propagation of strings. The ~ dependence is the same be-
cause this is formally described by the same Schrodinger
equation with a potential y(r —ro), the coefficients of
the solutions being quantum operators instead of c num-
bers. The ~ evolution of the string near the black hole
singularity is fully determined by the spacetime
geometry, while the cr dependence (contained in the
overall coefficients) is fixed by the state of the string.

For the modes ",=+, and:-' we can conclude that
they should behave as in the case L =0 far from the
black hole, where the inhuence of the angular momentum
vanishes. Then, =+ and:-' will oscillate with bounded

amplitude outside the horizon, while = will present an
unbounded behavior. The approach to the singularity
with LAO should not change qualitatively from the pic-
ture for L =0. The analysis can also be made in terms of
the geodesic orbit followed by the center of mass of the
string. For a given energy E, there is a critical impact
parameter b, that determines whether the string will fall
into the black hole or not. From our results here for
L =0 (see Table I), and for LAO, we can draw the follow-
ing picture: For large impact parameters 6 )b„ the
transversal:"' and temporal:-+ modes will be stable,
while the radial modes = begin to suffer instabilities.
For small impact parameter, b &b„ the string will fall
into the black hole and, for a Reissner-Nordstrom back-
ground, also the transversal coordinates suffer instabili-
ties.

It can be noticed that in cosmological inflationary
backgrounds, for which unstable string behavior appears
when (r—ro) ~0, the string coordinates ri', remain
bounded. In the black hole cases, all the characteristic
features of string instabilities appear, but, in addition, the
string coordinates g' become unbounded near the r =0
singularity. This happens to be a typical behavior of
strings near spacetime singularities, describing the fact
that the string is trapped by it.
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