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We consider a renormalizable two-dimensional model of dilaton gravity coupled to a set of conformal
fields as a toy model for quantum cosmology. We discuss the cosmological solutions of the model and
study the effect of including the back reaction due to quantum corrections. As a result, when the matter
density is below some threshold new singularities form in a weak-coupling region, which suggests that
they will not be removed in the full quantum theory. We also solve the Wheeler-DeWitt equation. De-
pending on the quantum state of the Universe, the singularities may appear in a quantum region where
the wave function is not oscillatory, i.e., when there is not a well-defined notion of classical spacetime.

PACS number(s): 04.60.+n, 98.80.Hw

I. INTRODUCTION

Two situations in which quantum gravity effects are
expected to be important are the late stages of black hole
evaporation and the early Universe. The analysis of these
problems in realistic models is a very difficult task. In
particular, all the attempts to address the questions of the
final state of black holes, or the evolution of the Universe
near Planck scale, have to deal with the nonrenormaliza-
bility of quantum gravity in 3+ 1 dimensions.

For this reason it is of interest to consider solvable toy
models in which some of the difficulties of the realistic
problem are not present. In the last months there has
been considerable progress in the understanding of
Hawking radiation and black-hole evaporation. The fun-
damental observation, done by Callan, Giddings, Harvey,
and Strominger [1], is that the (1+ 1)-dimensional renor-
malizable! theory of gravity coupled to a dilaton field ¢
and N conformal fields f;,

e [R+4(V¢)+41%]

1 —
SO:Z; f d’xV —g

N
-3 (Vf,-)z} , (1)
i=1

contains black holes and Hawking radiation. Some in-
teresting discussions on this model can be found in [5-9]
(for a review and more references see Ref. [10]).

In this paper we will focus on the cosmological prob-
lem. A generalization of the theory Eq. (1) to D dimen-
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'Discussions on the renormalization of this model can be
found in [2-5].

sions has been considered before by Tseytlin and Vafa
[11]. They coupled the theory to stringy matter and
study the cosmological solutions exploiting the duality
symmetry of the strings. The classical solutions were fur-
ther investigated by Tseytlin [12]. Our aim here is
different. We will consider the two-dimensional theory
defined by Eq. (1) as a toy model to understand the
influence of quantum effects in cosmological situations in
higher dimensions.

In fact, a similar model can be obtained by restricting
the four-dimensional (4D) action of general relativity to
the metrics with spherical symmetry:

ds2=gab(x0,x Ddxdx?+e *24’“‘0"‘1)(1'02 , a,b=1,2.
(2)
The reduced Einstein-Hilbert action reads

S_l

ed =5 [d*xv=ge 2[R +2V$12—2A+2¢24],

(3)

where A is the (four-dimensional) cosmological constant.
Note that the dilaton field in the two-dimensional theory
is related to the radius of the two-sphere in the four-
dimensional metric, and that the cosmological constant
gives an exponential contribution to the dilaton potential.
We will consider model 1 because the classical and semi-
classical analysis is simpler. Moreover, unlike the re-
duced action 3, the theory 1 is renormalizable. Model 1
is analogous to the reduced model 3 with A =0. Indeed,
as far as the black-hole physics is concerned, the semi-
classical behavior of the Callan-Giddings-Harvey-
Strominger (CGHS) model was shown to be very similar
to the semiclassical physics of 4D Schwarzchild black
holes [10]. On the other hand, the model given by action
1 with the opposite sign in the A% term is analogous to
model 3 with A>0, i.e., standard 4D de Sitter gravity.
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Although in this case there is no black-hole formation in
the Universe of model 1, the cosmology presents some in-
teresting features which deserve some attention.

An interesting particular class of spherically symmetric
metrics is the Kantowski-Sachs minisuperspace

matter and metric fluctuations. As we will see, it is possi-
ble to include these effects in the model Eq. (1), which can
be considered as a rfoy Kantowski-Sachs cosmological
model after identifying the dilaton with the radius of the
two-sphere.

The paper is organized as follows. In the next section
we discuss the exact solutions to the back reaction prob-
lem. That is, we find the time-dependent solutions of the
equations of motion which follow from the one-loop
effective action. In Sec. III we quantize the effective
theory. We find different solutions to the Wheeler-
DeWitt equation and discuss whether or not they predict
classical behavior.

ds*=a*(t)(—dt®’+dx?)+bX1)dQ?, 4)

which describes a Universe with a S!'XS? spatial
geometry. This minisuperspace has been investigated
both at the classical and quantum levels in Ref. [13].
However, because of the nonrenormalizability of general
relativity, it is difficult to include quantum effects due to

II. THE BACK REACTION PROBLEM

In the conformal gauge g, . =g__=0,g,_ =—1le 2, the classical action S, becomes

N
SOZ% fdzx e (20,0 _p—40,¢0_¢+A%*)+L 3 9, fi0_f; | . 5

i=1

The classical equations of motion can be put into the form

9,9 f,=0, 3,0_p=03,0_¢, 23,0_¢—43,43_¢=A%>, (6)
N
0=e (40,93, —20%4)+ 1 3 3./,34/ , @)
i=1
where we have included the equations of motion associated to the vanishing metric components g, and g__. The

general solution to the classical equations is [1]
fi:f,»+(x+)+f,~_(x_) ,
e #=j—22 [dx* [ dx e,

(8)

p=¢+h,

N ’ ’ ’ ’
0=3 3 fisfix it —2jLhy ,
i=1
where h=h  (x ")+h_(x")and j=j (x T)+j_(x ") are free fields.
A particular one-loop quantum effective action including the conformal anomaly was introduced in Ref. [7]:
—q K 2l plp_
S=So—— [ d’x R_GR—2R |, ©)

where k=(N —24)/12 is assumed to be positive. The first (nonlocal) quantum correction in Eq. (9) is the usual anomaly
term. The second term is local and covariant and makes the theory exactly solvable.

By using a free field representation [9], it is easy to find the general solution to the semiclassical equations of motion.
We will follow closely Ref. [7]. Introducing new fields

Q=%¢+e724’ , X=Kp—§¢+e_2¢ , (10)
the effective action becomes

-1 2 |1 1 2 20—y L 3 f 11
S=— [ d* 9. xd_x+-3,00_0F1’ +2i§18+f,a_f, , (11)

2In the conformal gauge this term renders the effective action a conformal invariant field theory with vanishing central charge,
which is a consistency requirement if the path integral is to be regularized by a naive, field-independent cutoff [14] (discussions on this
point in the present context can be found, e.g., in Refs. [2,9,10,15]).
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and the semiclassical equations of motion are

0,0_0=0,0_x= — A2~/

1 1 1 J
ti:—;ai)(ai)(-f“ai)(—i-;aiﬂaiﬂ'l"? 2 aifl-aif,» .

i=1
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(12)

(13)

The arbitrary functions ¢ (x *) reflect the nonlocality of the effective action. They are fixed by the boundary conditions
necessary to define univocally the two-point function 1/V? (see below).
The general solution to the above equations can be written in terms of two free fields 4 and j:

Q=j—k2fdx+ fdxfez”’*j)/“ ,
XIh_}\Zfdx#*fdx*eZ(h*j)/K’
1
K

1 N 1 ! ”n ! !
t,t:?‘z fiofis +hi+=(G2—h?).

i=1

Note that the terms proportional to A? have canceled out in the constraint.
From the general classical and semiclassical solutions [Eqgs. (8) and (14)], it is easy to find time-dependent cosmologi-
cal solutions. Let us consider coordinates o~ =7+0 and a two-dimensional metric of the form

ds?=—e*dotdo™ .

(15)

An homogeneous matter distribution is f;=f;(7). From the equation of motion for the f; fields, 3, 9_f; =0, it follows

that fi :pi7-+bi’ pi’bi:

choice here is to impose the matter energy-momentum tensor to vanish in Minkowski space [p(7)=0].

t, =0in o™ coordinates.” From Egs. (8) and (14) we find

672(»:

a=—e?+2eAr+ 2L y=0Qtihr, p=gtir,

where e=m?—«/4 and the parameter M is arbitrary.
We have chosen the coordinate 7 in such a way that
p=¢+At both in the classical and semiclassical solu-
tions.*

As can be seen from the structure of the propagators,
quantum loop corrections to the above solutions will be

. — 2¢ .
suppressed by the coupling g =e“?, or by the effective
coupling
e??

1—(k/4)e?|
if the path integration is performed by using the effective
action which includes the anomaly term (which implies a

resummation of diagrams of standard perturbation
theory; see, e.g., [2]). Thus solutions (16) and (17) can be

g%ﬂ‘: |

3This condition is not correct if the spatial coordinate is com-
pact, i.e., if O<o<L. In this case, the matter energy-
momentum tensor contains a vacuum polarization term even
when p=0. This term is given by ¢4+ =N /48L? and will appear
in the next section where the theory is quantized on a cylinder.

‘As p—¢ is a free field we have p—¢=ar+b. The above
choice is possible as long as a is different from zero. If a =0, Q
is quadratic in 7. We will not consider this particular solution
in what follows.

—62)‘7+2m2k7+%, p=¢+Ar, mi=——

constants. The functions 7, depend on the quantum state of the matter fields. The natural

This gives

Spls (16)

trusted only in the regions in which g2 and g2; are small.

Equation (10) implicitly defines ¢ in terms of
Q(xt,x 7). There is a critical point
Q,.=(«k/4)[1—In(k/4)] at which dQ)/d¢$=0. This tran-
scendental equation (10) has no solution for € <Q,, and
two solutions for Q> ., the “Liouville theory” branch
and the “string theory” branch. In the Liouville branch
#E(¢., o), and hence the anomaly term in the effective
action dominates over the classical “string effective ac-
tion” kinetic terms. Far from &, g2z ~4/k and hence
the 1/N expansion is applicable. In the “string theory”
branch ¢ €(— 0,6, ), so that the anomaly term is always
dominated by the classical kinetic terms. Far away from
b, 825 ~e??, and the weak-field expansion is applicable.

We will now analyze the physical behavior of classical
solutions (16) and semiclassical solutions (17). We will re-
strict ourselves to the case M > 0; other cases can be stud-
ied in a similar way.

Let us first consider the classical solutions (16). We
can distinguish two cases.

(i) m?=0. The solution describes an expanding
Universe, evolving from 7= — o to 73. The curvature
and the coupling g>=e?? are regular at 1= — 0, but the
scale a?=e? is zero. At 7=r7,, all the curvature, the
scale, and the coupling e2? diverge. The corresponding
Penrose diagram is illustrated by Fig. 1(a). This
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geometry can also be interpreted as the interior of a black
hole.

(ii) m2>0. The solution begins at a finite value of
7=, at which there is a curvature singularity, and the
scale and the coupling e?¢ diverge. The Universe con-
tracts, the coupling becomes weaker, and then reexpands.
At finite time 7=7, there is another curvature singulari-
ty, with infinite values for the coupling and the scale as
well [Fig. 1(b)].

The semiclassical solutions can be separated in three
different classes. .

(i) e=0, M >AQ,. Replacing g2 by g2, this case is
qualitatively the same as the classical case m 2=0, but the
scale is finite at 7y=7_ [the two branches of Eq. (10)
behave in fact in a similar way].

(ii) €>0, M > A, +Ae(1—Ine): This case behaves in a
way that is similar to the classical case m2>0, with g
diverging at initial and final times 7, ,, except by the fact
the scale takes finite values at 7, ,.

(ili) —k/4 <e<0. Now the two solutions given by the
two branches of Eq. (10) must be separated.

“Liouville theory” branch. At 7=— 0, g%ﬂ’=4/K,
a2~e2 g=4m?/k, and R ~const X e21720M7 54 the
scale goes to zero (m270) and there is a curvature singu-
larity if a>. At 7=7, the curvature is infinity, the
scale a is finite, but the coupling g2; diverges.

“String theory” branch. At r=— o, a =0, R=— o0,

(b) T= Ty

T=T,

FIG. 1. (a) Penrose diagram for the classical solution (i).
Solid and dashed lines indicate curves of constant 7 and o re-
spectively. (b) Penrose diagram for the classical solution (ii).
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g2¢=0. At 7=7, the curvature is infinity, the scale a is
finite, but the coupling g2 diverges.

A disappointing fact is that in both cases there is a cur-
vature singularity in a region of weak coupling. There-
fore in this case it is very unlikely that this singularity
will be removed in the full quantum theory. These kind
of singularities could only be removed by an ad hoc re-
striction of allowed initial conditions (see below).

It is interesting to repeat the analysis for the model
with the opposite sign in the A% term. These solutions are
similar to the static solutions in the CGHS model inter-
changing o and 7. There are solutions where the
Universe expands, the coupling goes to zero, and the
metric approaches to Minkowski metric as 7— « [see
Figs. 2(a) and 2(b)]. In some solutions ¢ never reaches
¢.. In particular, there is an interesting case with
—Kk/4<e<0: att=—o0,a =0,¢=—0,and R = 0; at
7=, a=1, R =0, and ¢=— « [Fig. 2(a)]. Also, here
the coupling goes to zero even in the region near the

¢ = ¢¢

FIG. 2. Penrose diagrams for semiclassical solutions of the
model with A2<0. (a) A typical solution in which ¢ never
reaches the critical value. (b) The solution starts from ¢. where,
generically, there is a curvature singularity. Natural boundary
conditions select the only solution with regular curvature at

¢=¢..
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singularity, which makes it very unlikely that more quan-
tum effects could wash this singularity away.

Now we can state the more important effects of includ-
ing the matter loop correction or back reaction.

(I) There is a doubling in the number of solutions, due
to the presence of the ‘“Liouville theory” and ‘“‘string
theory” branches. All the semiclassical solutions with
A2>0 reach the critical point =4, that separates both
branches. There is a strong-coupling singularity there.
Some of the solutions with the opposite sign of A? never
reach this point; i.e., they are always in a weak-coupling
region.

(IT) There appears a threshold in the matter density
m?, m3=x/4. Above the threshold the cosmologies are
essentially similar to the classical cosmologies, and the
singularities appear in the strong-coupling regime. Below
the threshold, —1 <& <0, singularities also occur in a
weak-coupling region. This suggests that they will still be
present in the full quantum theory.

It is important to see whether these singularities can be
removed by proper boundary conditions. In Ref. [16] it
was shown that timelike, naked singularities at § =¢_, can
be removed by the reflecting-type boundary conditions on
the matter energy-momentum tensor. The analysis is
simpler in “Kruskal” coordinates x*, where ¢=p and
t, =k /4x*? (see, e.g., [7]). Since

4
R=—"—"—"—+[A—(V4)],
=k ez VO]

it can be finite at ¢ =¢, only if a+a|¢=¢c=a_n|¢=¢c =0.
To see under which circumstances these boundary condi-
tions can be applied it is interesting to consider solutions
with general matter distributions f;. They are given by
Eq. (14). Note that A, =j, in Kruskal coordinates.
Regularity of the curvature at ¢ =¢, requires
Jhx =A%, jL(x T )=AxT,

(18)

VxEt sxtxT)=4, .

Equation (18) defines the shape of the boundary curve
x T=3%"(x ") and implies a relation between the left- and
right-moving components of the matter energy-

momentum tensor. Using Eq. (18) we find

A+ 4
ME i (x =
dx ]+(x )

Here the boundary is spacelike, therefore it is possible to
have a regular curvature at ¢ =¢, only if j§ <O, i.e. [see
Eq. (14)],

K A
m<%_2 ficfis . (19)

i=1
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For homogeneous solutions, this is satisfied in the case
€>0 discussed above. But condition (18) implies
M=AQ,.+Ae(1—Ine). In this limiting value of M, 7, is
equal to 7, and there is no cosmological evolution.

This result can be generalized to arbitrary matter con-
tributions. The conclusion is that these type of boundary
conditions cannot be implemented on spacelike boun-
daries. In contrast, in the model with the opposite sign of
the A2 term this type of boundary condition can in fact be
implemented on spacelike curves. This permits cosmolo-
gies free of singularities starting at ¢ =¢_, in which the
Universe expands up to a =1, and the curvature and the
coupling constant go to zero as 7—  [see Fig. 2(b)].

More problematic, however, is the appearance of a
singularity in a weak-coupling region. To eliminate this
singularity, a possibility is to postulate that only matter
densities with € >0 are allowed. Then no statement could
be made about the presence of singularities at this semi-
classical level; the only remaining singularities would be
in a strong-interaction region where additional quantum
effects will be important.

III. THE WHEELER-DeWITT EQUATION

We will now quantize the effective theory defined by
Eq. (11). In doing this we will ignore boundary effects
due to the fact that the transformation (10) is defined for
Q=>Q,. It is presently unclear what are the correct
boundary conditions to impose (see Ref. [16]).

Assuming that the spatial coordinate o is periodic we
can expand the fields and their derivatives as

Q(0,0)=Q,(0,0)+Q_(0,0) ,

0.,(0,0)=10+1Pgo—i 3 Laretino (20)
n#0
9.00,0)= 3 QFfe*ino,
n=—o0

with similar expressions for y and f;. The commutation
relations are (Q7 =1Pg)

. K
[Q0Pal=i7 , [Q,051==78, ,
. K
o P J=—i% DX 1= 580 @

[in,Pf,.]:i ) [fi:lla ,-i,;l]=—n8n’ﬂm

[we are omitting a factor = which comes from the global
factor in the action (11)].

The Virasoro generators L are defined as usual as the
Fourier modes of T, —«k/2, where T, are defined as
twice the right-hand side of Eq. (13). Using the equations
of motion to eliminate the second time derivatives we find
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2, _
L= | Q505 —xixh S S | F2inxE = 50,0= 25 [P ag e e 2)
Assuming the ghosts to be in their ground state |0 )y, the physical states must satisfy
LY|phys)=8,,lphys) , n>0. (23)

This set of equations is equivalent to the functional Hamiltonian and supermomentum constraints [17]. The nonvanish-
ing right-hand side in the physical state condition for » =0 [combined with the shift —(«x/2)8,,, in the Virasoro genera-
tors] represents the vacuum polarization of the physical degrees of freedom on the cylinder.

The zero modes Y, and Q, do not decouple from the other modes in the constraints. To find the physical states, we
will adopt here the minisuperspace approximation, and neglect the coupling between the modes. It should be stressed
that this is an improved minisuperspace approximation, since we are performing the approximation into the effective ac-
tion Eq. (11), not in the classical action Eq. (5) [15]. Assuming the quantum matter fields f; to be in their ground states,
the physical states are given by |[phys) =[0)® |¥ ), where |0) is the state annihilated by x;, QF, and f;f, for n >0, and

the state | W) satisfies the Wheeler-DeWitt (WD) equation
k3 k&
i af120

This equation can also be obtained by linearizing the
tachyon S function, as observed in Ref. [18] in the con-
text of noncritical theory. In that paper the authors
point out that nonlinear terms may play an important
role in the cosmological constant problem.

At this point one would like to have a criterion to
choose a particular solution to the WD equation and con-
sider this particular state as the ‘“‘quantum state of the
Universe.” Although there are several proposals to select
a wave function [19-21] and to extract physical predic-
tions from it [22], none of them is completely satisfacto-
ry. Here we will analyze some particular solutions which
are the two-dimensional analogs of some of the wave
functions proposed in 3+ 1 quantum cosmology. We will
consider the simplest interpretation of the wave function;
i.e., we will assume that it predicts classical behavior only
in the regions where it is oscillatory. The classical trajec-

tories associated with a wave function of the form ¥ =¢S5
are obtained through the identification
as 2. as 2. as .
—_ = — . —_— , -_— = i0 » 25
e k00 a0, kM0 ap, T @Y

where the dot denotes derivative with respect to 7. It is
important to notice that, in this context, this is the

2xg— Q) /K
—gpZe XTI o

=0. (24)

definition of classical time 7 in terms of the quantum de-
grees of freedom [23,24].

A basis for the solutions to Eq. (24) is
given by W,=exp(iZp;fio)¥, where [x;=xo+Qy,
X-=(Xo—Q) /K]

(3,8_—a—arke X)W, =0, az%—%zp?, (26)
i.e.,

v, =e, wEP7X++P+X——12%262X—, 27
with pyp_=—a. When the numbers p;,p, are large

and real, this wave function is rapidly oscillating and im-
plies classical behavior. The classical trajectories can be
found from Eq. (25). In terms of Y, this reads
0.8=—xx. From S=p,f; +w we find

X-=—p_7, fi=p;7+b;,

2
X+=—p+r—%e 2p"T-f—const .
p

(28)

Equation (28) reproduces the semiclassical solutions (17)

FIG. 3. Classical trajectories defined by Eq.
(28) (solid lines). The dashed-dotted line corre-
sponds to Q=Q.. The trajectories are physi-
cal above this line. (a) Trajectories for a <O0.
(b) For a> 0.
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studied in the previous section. The only difference is the
vacuum polarization contribution N /12 contained in a.
Figure 3 shows the classical trajectories in the plane
(X +7X —).

Next we consider a popular choice: the Hartle-
Hawking state |HH ), defined by the Euclidean path in-
tegral with only one boundary [19]. As noted in Refs.
[25,26], the two-dimensional analog of this state is the
[sl(2,C) ) state, defined by

LE|sl(2,C))=0, n>—1. (29)

Let us consider the case A=0. Taking into account that

LT =x%, 2+"‘]+Q—1aﬂ +2f_18f, s
(30)

it is easy to show that [25]
Isl(2,C))=[0)e 0. (31)

This state is not physical, because it satisfies a different
n =0 condition. However, it becomes a physical state in
the limit N — . Indeed, in this limit, it coincides with

2

HH) =0 S S
IHH) =[0)exp | — Ta="rmsx

(32)

which is a particular exponential solution to the WD
equation. In fact, this corresponds to the solution ¥,yy
(A=0), with

Puu=™ {pz :pr— :i‘/a/K:P+ =l\/E(} .

This is our analog of the Hartle-Hawking state, which is
naturally extended to the A0 case by the solution ¥ pHH-
Note that this wave function is a real exponential. As a

FRANCISCO D. MAZZITELLI AND JORGE G. RUSSO 47

consequence it does not predict classical behavior. If this
were the physical state our toy universe would never exit
the quantum era!

Let us now consider other classes of physical states,
which are similar to the tunneling wave functions defined
in terms of the Lorentzian path integral in Kantowski-
Sachs cosmology [27]. They are solutions of the form

2 22X

v, =J(z), z?=—4x;—a)ax_+2A%e""—b). (33)

Inserting the ansatz (33) into the WD equation it is easy
to show that J(z) must be a linear combination of the
Bessel functions J,(z) and Y(z). This class of wave func-
tions is oscillating when z is large and real. Indeed, using
the asymptotic form of the Bessel functions we find

VZJ(z)~aeZ+Be 7, |z|>>1, (34)

i.e., in this region of the plane (Y ,Y_) the wave function
is a linear combination of WKB solutions with a
Hamiltonian-Jacobi function S==*z. From Eq. (25) we
see that both WKB components of the wave function (33)
are associated with the family of classical trajectories:

_S dx. (xs—a)a+4r2e™)

a+S=dX*: aX‘+2}»2e2X_—b ’ G
i.e.,

(X+—a)=Clay_+2r%*—b), (36)

where C is an arbitrary negative constant (it must be neg-
ative because in the classical region z2>0). Figure 4
shows these trajectories in the plane (xy,x¥_). The plane
is divided into classical (z2>>1) and forbidden (z2<1) re-
gions.” We see that in general the classical trajectories
leave, at some time, the classical region. We should also

X- o X-- Xx-(0)

FIG. 4. The classical trajectories defined by Eq. (36). The solid lines are the part of the classical trajectories contained in the clas-

sical region. The dashed lines are the part contained in the forbidden region. Same conventions for the line Q=Q
—a/4A\?)—1]. (b) The case @ <0 and b > (a/2)[In(

—b. A typical case where the line 3 =}, is completely contained in the forbidden region.

a<0, b <(a/2)[In(
2
tion ay_ +2A% *-

.- (a) The case
—a/42\*)—1]. (c) The case a>0. x'? is the zero of the func-

SA more precise definition of the forbidden region is z2 < j}, or y3;, where j3, and y}, are, respectively, the first zero of the Bessel

function J, and Y,,. For a similar discussion see Ref. [28].
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stress that, due to the relation between Y and the origi-
nal variables ¢ and p, the above trajectories are meaning-
ful only in the region Q> Q,_, i.e., when x, >«ky_+2Q..
This is also illustrated in Fig. 4.

The semiclassical solutions of the previous section con-
tain two different classes of singularities: weak-coupling
singularities at 7= — o0 (Y. = — o) and strong-coupling
singularities at the critical ~ point Q=Q,
(x+=kx_1+29Q,). From Figs. 4(a) and 4(b), and compar-
ing with the results of Sec. I, we see that the singularities
that occur at weak coupling [see (iii)] are present in the
classical region where the wave function is oscillatory.
However, the strong-coupling singularity may be avoided
in the case a>0. Indeed, as shown in Fig. 4(c), for par-
ticular values of the constants a and b in Eq. (33), the
curve Q=Q, is contained completely in the classically
forbidden region.

To summarize, we have shown extreme examples
where the whole plane is classically forbidden (Hartle-
Hawking state), or allowed [exponential solutions in Eq.
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(27)]. We also found more interesting solutions where
there are both classically allowed and forbidden regions
(tunneling solutions). For some wave functions, the semi-
classical singularities are present only in the forbidden re-
gions. It is in this way that the choice of the quantum
state may solve the problem of the singularities; they may
take place where there is not a well-defined notion of
spacetime.

Note added. We have received a paper in which the
Wheeler-DeWitt equation is studied in the same model in
the context of black holes [29].
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