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Unitary equivalence of the metric and holonomy formulations
of (2+ 1)-dimensional quantum gravity on the torus
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Recent work on canonical transformations in quantum mechanics is applied to transform between the
Moncrief metric formulation and the Witten-Carlip holonomy formulation of (2+ 1)-dimensional quan-

tum gravity on the torus. A nonpolynomial factor ordering of the classical canonical transformation be-

tween the metric and holonomy variables is constructed which preserves their classical modular trans-
formation properties. An extension of the definition of a unitary transformation is brieAy discussed and

is used to find the inner product in the holonomy variables which makes the canonical transformation
unitary. This defines the Hilbert space in the Witten-Carlip formulation which is unitarily equivalent to
the natural Hilbert space in the Moncrief formulation. In addition, gravitational 0 states arising from
"large" diff'eomorphisms are found in the theory.

PACS number(s): 04.60.+n, 03.65.Ca

I. INTRODUCTION

The theory of (2+1)-dimensional quantum gravity for
the spatial topology of the torus is quantum mechanical
rather than field theoretic. As a consequence, it can be
exactly solved and serves as an excellent toy model in
which to study time in quantum gravity. Among the
several treatments of 2+1 quantum gravity, there are
essentially two contrasting classes of formulation: that of
Witten [1,2] in terms of holonomies and that of Moncrief
[3,4] in terms of the Arno witt-Deser-Misner (ADM)
metric decomposition and the York extrinsic time. The
most striking distinction between them is that Witten's
formulation is dynamically sterile —the holonomies are
constants of the motion —while, in Moncriefs formula-
tion, the two-metric evolves as the York time progresses.
This difference highlights the ambiguity in defining time
in quantum gravity. The natural question is whether the
two theories are equivalent, and, if so, what this means
about time.

Carlip [5] has proven the classical equivalence of the
two formulations by defining variables which reAect the
holonomy of the torus and then giving the canonical
transformation between his variables and the metric vari-
ables of Moncrief. He finds that the canonical transfor-
mation is a time-dependent one which trivializes
Moncrief's Hamiltonian and thereby transforms the
time-dependent metric variables to time-independent
ones. Carlip goes on to discuss the quantum equivalence
of the formulations by undertaking the formidable task of
factor ordering the classical canonical transformation.
This procedure is not well controlled; it is dificult to find
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an ordering that takes one between two chosen Hamil-
tonians. Indeed, Carlip does not obtain the Moncrief
Hamiltonian, but rather one close to it, which he calls a
Dirac square root [6].

The purpose of this paper is to use recent work on
canonical transformations in quantum mechanics [7] to
prove the unitary equivalence of the metric and holono-
my formulations. A general canonical transformation
can be implemented in quantum mechanics as a product
of elementary canonical transformations, each of which
has a well defined quantum implementation. This is

briefly reviewed in Sec. II. In general, the sequence of
elementary canonical transformations that takes one be-
tween two Hamiltonians classically is not the same se-
quence which does so quantum mechanically because of
terms that arise from factor ordering. This implies that,
in general, there is no simple (i.e., polynomial) factor or-
dering of the classical general canonical transformation
between two Hamiltonians which relates their quantum
variables. This is the reason that attempting to factor or-
der a classical result is uncontrolled: the practical restric-
tion to polynomial factor orderings means that one can
only relate those Hamiltonians for which the classical
and quantum sequence of elementary canonical transfor-
mations are essentially the same.

The quantum canonical transformation between the
metric and holonomy variables of 2+1 gravity on the
torus will be found explicitly. First, in Sec. III, the classi-
cal solution of the metric super-Hamiltonian and the
classical transformation to Carlip's holonomy variables is
reviewed. In Sec. IV, a sequence of elementary canonical
transformations which transform the metric super-
Hamiltonian to a massive relativistic free particle is
given. The sequence of transformations which complete
the trivialization of the super-Hamiltonian is then given
in Sec. V, followed in Sec. VI by the sequence which
transforms the variables of the trivialized super-
Hamiltonian into those of Carlip. A nonpolynomial fac-
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tor ordering of the classical canonical transformation is
found. Carlip [5,6] emphasizes the importance of the
modular transformation properties of the metric and
holonomy variables. In Sec. VII, the quantum canonical
transformation between the metric and holonomy vari-
ables is shown to preserve their classical modular trans-
formation properties.

In Sec. VIII, the familiar definition of a unitary trans-
formation as a linear norm-preserving isomorphism of a
Hilbert space onto itself is extended to transformations
between Hilbert spaces. Given a canonical transforma-
tion and the measure density for the inner product of the
original Hilbert space, a transformed measure density
defining the inner product of the new Hilbert space is
found which preserves the values of inner products be-
tween states. This is used to construct the measure densi-
ty of the inner product in the holonomy variables from
the natural measure density in the metric variables. This
defines the Hilbert space in the Witten-Carlip holonomy
formulation. With this choice of Hilbert space, the
metric and holonomy formulations of (2+ I)-dimensional
quantum gravity on the torus are unitarily equivalent.

In Sec. X, the role of modular transformations is con-
sidered from the standpoint of the wave function. It is
found that, in analogy to the 0 vacua of Yang-Mills
theory, there are 0 states in 2+1 gravity on the torus
which arise from "large" diffeomorphisms. Finally, in
the conclusion, the implications about the nature of time
following from the quantum equivalence of the metric
and holonomy formulations of 2+ 1 gravity on the torus
are discussed. In an appendix, solutions of the metric
super-Hamiltonian constraint are constructed using the
canonical transformations found in Sec. IV.

II. CANONICAL TRANSFORMATIONS

The use of canonical transformations in quantum
mechanics has been recently systematized [7]. This al-
lows quantum systems to be solved by transforming to
simpler systems whose solutions are known. Since time-
dependent canonical transformations are of interest, it is
useful to work with the super-Hamiltonian in extended
phase space, where (qo, po) have been adjoined to the spa-
tial variables. A canonical transformation P is an opera-
tor transformation between two super-Hamiltonians:

This gives the solutions of gf' 'P' '=0 in terms of those
of &'g'=0 as g' '=P 'p'. It has been conjectured that
all integrable super-Hamiltonians &' ' can be reduced to
trivialized form, where &'=pa. There may be more than
one independent reduction to triviality, and together
these give all independent solutions of &' '.

Canonical transform ations exist independent of the
choice of Hilbert space. All solutions of one super-
Hamiltonian, including non-nor malizable ones, are
transformed to solutions of the other super-Hamiltonian.
The conditions under which a canonical transformation
is a unitary transformation are discussed in Sec. VIII.
Canonical transformations are useful even when they are
not unitary [8]. In such cases, it is most natural to im-

pose boundary conditions and normalizability at the level
of &~ ', rather than upon the solutions of &'.

For completeness, a brief review of the use of canonical
transformations in quantum mechanics follows. In prin-
ciple, a general quantum canonical transformation can be
implemented as a product of three elementary canonical
transformations [7]: similarity (gauge) transformations,
point canonical transformations, and the interchange of
coordinates and momenta. Each of these is characterized
by its transformation of the phase-space variables and its
action on the wave function. Since the transformations
are canonical, the transformed variables may simply be
substituted in the Hamiltonian for the original variables,
respecting the original operator ordering.

A similarity transformation is a shift of the momentum
by a function of the coordinate

This transformation cannot always be expressed in terms
of a single exponential of a function, so it is denoted sym-
bolically by its action on the coordinate as Pf(q) Its ac-
tion on the wave function is

(4)

Each occurrence of q is simply replaced by f (q).
The interchange of coordinate and momentum is

g =p

This is implemented by the Fourier transform operator

I=, f dq e'qq
(2~)'"

and the wave function is transformed as

q( )( )
—qual( )(0)q

(6)

f dq'e'q qg' '(q') .
)
1/2 (7)

Using the interchange operator, analogues of the simi-
larity and point canonical transformations which involve
functions of the momentum are obtained by conjugation.
The composite similarity transformation is

q =q +~f(p'), . p =p'

and it acts on the wave function

(8)

where the comma indicates diff'erentiation with respect to
the subscript and latin alphabet superscripts indicate the
generation of the transformation. Under this transforma-
tion, the wave function changes by a factor

q(a)(q) e f(q)q( )(0q)

This transformation is often referred to as a gauge trans-
formation because of its role in the theory of a particle in-

teracting with an electromagnetic field.
A point canonical transformation is a change of vari-

ables

1
q =f(q'» p =

f (q')
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p( )( q )
—e f (p)p( o)( q ) Ie f (g)1 )g(o)(q )

The composite point canonical transformation is

1
p =f(p'» q=

f'(p')„. (10)

and is given by Pf(p) IPf(q)I
Many-variable transformations can be constructed by

using many-variable functions in the elementary canoni-
cal transformations above. Since independent variables
commute, all the variables not being acted on may be
treated as constant parameters. For example, the point
canonical transformation exp(iaq) p( ) generates the con-
formal scaling

qo = 2qo po po =2qopo

q, =2q p„p, =O,

'q2 2q2p2& p2 'q2(p) +p2)2 . = 2 2

(17)

Co
q(= tanh[2co(t —t o)+ c2]+ c»

P&
(18)

where the dot signifies differentiation with respect to the
affine parameter t. Clearly, p, is a constant. The general
solution for the other variables is found to be

2CO(t to )
qo=e

2CO(t —to)Po=coe

where

q Co

p)cosh[2co(t to )+c2]

g"(q„q~)=exp(iaq(p))g' '(q(, q2)

=g( '(e q„q ) .

If a=lnq~, then

q& =qzq i .
q2

(12)

(13)

When this transformation acts on (qz, p2), it is a similari-
ty transformation

p2= —p, sinh[2co(t —to)+c2] .

There are only five constants of integration because in ad-
dition to the six equations of motion there is one con-
straint, and this fixes one constant of integration. (Note
that the degenerate solutions of the equations of motion,
for which the momenta vanish and the coordinates are
constant, are included in this solution as the special case
p(~0, co~0, co/p) ~const. ) By eliminating t in favor
of qo, these become

co
po

qo

The wave function is transformed:

0"(q( qz) =exp[i(»q2)qlpl )4"'(q) q2)

=0'"(q(q»q» .

III. CLASSICAL SOLUTION

(14)

c() 1 —P q()

P) 1+P q()

2Pcoqo
q2-

p((1+P'qo )

p) (1 —P'qo)
p2=

(19)

To understand the relationship between the quantum
and classical canonical transformations between the
metric and holonomy formulations of 2+ 1 gravity on the
torus, it is important to have both the quantum and clas-
sical solutions at hand. The classical evolution has been
discussed in detail from a different perspective by Hosoya
and Nakao [9].

The super-Hamiltonian in the metric variables [4] is
the analogue of the Wheeler-DeWitt equation for 2+1
gravity on the torus:

(qopo)'+q~(p')+—p~) =0 .

1
C 1

b

a

c =ln-
Q

Cp
where p=e '. Comparing with Carlip [5], the
correspondence between the integration constants and
Carlip's holonomy variables is

p) = 2ak

c() = (ap Ab), — —
,

(20)

The ADM Hamiltonian

+quip')+pz)
qo

(16)

Carlip defines (a, )((, ) and (b, —
A, ) to be pairs of canoni-

cally conjugate variables. Using the Poisson brackets
defined in terms of the holonomy variables,

found by Moncrief [3] is a square root of this super-
Hamiltonian in a sense discussed by Carlip [6].

The classical solution of the metric super-Hamiltonian
follows from the equations of motion

[f,g]b =d.f d„g dg d.g 'dbf o~g+M—dbg—
the brackets among the integration constants in (20) can
be calculated. It is found that [c),p) ] b =2, [cz,co] b

=2
and all other brackets vanish. This implies that the
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transformation is an extended canonical transformation
[10]. That is, the transformation is canonical, but the
momenta have been rescaled during the transformation,
so the brackets between conjugate variables are not equal
to one.

The super-Hamiltonian becomes

(25)

The new wave function is given by the Fourier transform

IV. METRIC SUPER-HAMILTONIAN
TO FREE PARTICLE

(26)

&0
po =e 'po

0

qo=e

and a linear term in qzpz is introduced by shifting the
momentum

There is a straightforward sequence of elementary
transforrnations which reduce the metric super-
Hamiltonian (15) to a massive relativistic free particle [in
(1+1)-dimensional Minkowski space]. This allows the
solutions of %( ' to be constructed from the plane-wave
solutions of the relativistic free particle. Of course, the
constraint &( 'g' '=0 can be solved directly by separa-
tion of variables, but it is instructive to construct the
wave function by canonical transformation. This will be
done in the Appendix.

Here, the sequence of transformations and the super-
Hamiltonian after each transformation will be given. For
convenience, only the variable(s) changed by a transfor-
mation will be stated. A superscript indicating the gen-
eration of the transformation will change for all variables.

Beginning with the metric super-Hamiltonian, the time
dependence is simplified by a point canonical transforma-
tion

where the subscript on I2 indicates on which variable the
transform acts.

The super-Hamiltonian has not been reordered with
the momentum operators on the right to facilitate the ap-
plication of the transformation:

As a quantum operator, this can be expressed as

(27)

This is an especially useful composite similarity transfor-
mation. It is the realization of a first-order intertwining
operator as a canonical transformation [7], and it is an
example of a transformation whose behavior is simpler in
the quantum than the classical context. The transformed
super-Hamiltonian is

l
F2=Pa

2q2

giving

g2 2 2 2 2

The wave function is

q(a) —I/2p y(0)—q2

(21)

(22)

The wave function is

q(d) —
1 y(c)

where p2 is the integral operator inverse to pz = —i 8

The point canonical transformation

1
p~, q2 =sinhq2

coshq&

(29)

A conformal canonical transformation is made to ab-
sorb the momentum p &

into the coordinate q2.
reduces the super-Hamiltonian to the massive relativistic
free particle in Minkowski space

~(e) e + e2 2

4
(30)

This gives the super-Hamiltonian

&' '= —P0 +qZ +q2 P2 iq2P2+ —,
' —. (23)

The new wave function is

q(e) p q(d) (31)

The wave function is transformed

i(lnp( )q2p2—~(=e (24)

As a differential operator, the spatial part of (23) is the
operator in the modified Bessel equation. It can be
transformed to the operator in a Gegenbauer equation by
making the interchange

The original wave function is found by inverting the se-
quence of canonical transformations. It is given by

(0)— 1/2 i(lnP
& )q2P2 (e)=P)„qoq2 e I2 p2parcsinhq2 0 (32)

This will be evaluated in the Appendix.
The accumulated canonical transformation from the

original super-Hamiltonian to the relativistic free particle
is
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qo =exp(q o ),
po=exp( qo)po

2( h+ h +&)1/2 hj

(2( h+ h + & )1/2qh]( h+ h + i )1/2

tanh(q z )

p2+q)
p&

1

p; cosh(q z )

3l
pz = —p', sinh(q 2

)—
2q2

(33)

tanh(q,"+2p,'q," )
q&= pz+q&,

p&

h
p& =p]

h

p, cosh(q2+2p2qo )

p, = —p ", sinh(q,'+ 2p,'q,' )—
2q2

(38)

Note that a nonclassical term involving q2 appears in p2.
This will be discussed below.

There is a clear correspondence with (18) with the
identifications

V. TRIVIALIZING THE FREE PARTICLE

The next step in the transformation to the holonomy
variables is to trivialize the relativistic free particle
super-Hamiltonian. This can be done in many ways, but
the one which leads to the most classical transformation
from the metric variables to triviality is accomplished by
the sequence

qOh =& —tO,

p& =p»
P2 —

CO

h

q,"=c, .

(39)

o= po ~ qo= o o

2
pfo=p3+pg2 +-.' (34)

po qo= qo .

(In Sec. VII, this will also be found to be the transforma-
tion which preserves the classical modular transforma-
tion properties of the variables. ) These make the full
transformation

e
( h+ph + ] )1/2

P2 =P2 ~

q 2
—q 2h+2p 2hq Oh

The resulting super-Hamiltonian is

~(h) h
PO .

(35)

(36)

p:=v'p +-,' (37)

This signifies that the canonical transformation used here
is producing the solutions to this part of the full con-
straint. This corresponds classically to the ADM Hamil-
tonian (16). A second reduction would produce the solu-
tions to

p:= —v'p +-.'

That more than one reduction is needed to obtain all
solutions is evident because the second-order operator
(30) has been reduced to one of first order (36).

Substituting (35) into (33) gives

As an aside, note that after the constraint p o =0 is ap-
plied, Eq. (35) implies that

exp(q2+2pzqo ) =exp(q2 )exp( iqo )exp(2pzqt —) . (40)

An additional factor in the affine parameter has arisen.
Eliminating the affine parameter in favor of qo gives

The most evident differences between (18) and (38) are
a nonclassical term in p2 and the dependence of qo and po
on pz ( =co). Consider the latter first. When the super-
Hamiltonian constraint po =0 is imposed on physical
states, the argument of the exponential in the formula for

qo becomes —2(pz + —,
' )' qo, instead of the —2pzqt ex-

pected from (18) after the identification pz =co. The
difference lies in the quantum shift of —„which arose be-

cause the metric super-Hamiltonian is equivalent to a
massive rather than a massless free particle. The effect of
this shift is to make time How differently in the quantum
theory than in the classical.

The —shift also contributes (2iqz) to the nonclassi-

cal term in p2. When this contribution is removed, the
remaining (iqz) is the quantity needed to adjust the
momentum p2 so that it becomes self-adjoint in the
Petersson metric on moduli space. This is argued in Secs.
X and XI to be the natural inner product for 2+ 1 gravity
in a torus universe. Arguably, the self-adjoint momen-
tum operator, being observable, is the quantity which
should be compared with the classical momentum. Thus,
one sees that the —,

' shift introduces a quantum

modification to the physically observable momentum.
Further effects on the How of time in the quantum

theory arise because of the noncommutativity of q2 and

p2. If one wants to eliminate the affine parameter qo in

favor of the physical time qo, it is necessary to factor the
exponentials in the hyperbolic functions defining the spa-
tial coordinates and momentum. The Baker-Campbell-
Hausdorff (BCH) formula may be used to find
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VI. TRANSFORMATION TO HOLONOMY VARIABLES

To continue the transformation to holonomy variables,
it is necessary first to rescale the mornenta. It was ob-
served classically that the transformation between the
metric and holonomy variables is an extended canonical
transformation for which the Poisson brackets among
variables were not preserved but multiplied by a factor of
2. Rescaling of the momenta is considered a trivial
canonical transformation by Landau and Lifshiftz [10],
but it deserves a brief discussion because the quantum im-
plementation differs from the conventional classical treat-
ment.

Classically, when the momenta are rescaled by a con-
stant factor P =kp, Q =q, the Hamiltonian is rescaled by
the same factor [10]:

k(p dq Hdt)=P dQ H'd—t . —(42)

(in —p,")(p," +i'] '"
exp(q2+2p2q() ) =exp(q2 )qo

(Note that in this formula po has been set to zero. This
implies that the formula is valid only when applied to
physical states which satisfy the super-Hamiltonian con-
straint. This restriction is important because the pres-
ence of po would prevent the simple device of raising qo
to a power to replace qo. )

Equation (41) can be used to obtain a quantum ana-
logue of (19), but the result gives no additional insight.
The point is that the modified relation between qo and q 0,
together with the BCH factor, has significantly compli-
cated the quantum analogue of (19), giving the depen-
dence of the spatial variables on qo. It is the nonpolyno-
mial nature of these complications that stand in the way
of factor ordering the classical result, as Carlip attempt-
ed.

There is an important conclusion about factor ordering
to be inferred here. It deserves emphasis and will benefit
from restatement: When one attempts to factor order a
classical solution of a problem, one implicitly assumes
that the time dependence of the quantum version is essen-
tially unchanged from the classical. This is naively
justifiable because time is a c number and commutes with
the quantum position and momentum operators one is or-
dering. Closer inspection of time-dependent canonical
transformations in quantum theory reveals however that
details of the super-Hamiltonian sensitively affect the re-
lation between the affine parameter and the physical time.
For the time dependence of the ordered quantum opera-
tor to be the same as it is classically, the quantum rela-
tion between the affine parameter and the physical time
must be the classical relation. This occurs only for spe-
cial super-Hamiltonians.

There are of course additional obstacles to factor or-
dering involving nonpolynomial orderings of the spatial
variables. Generally, both of these problems arise when
the sequence of canonical transformations trivializing a
super-Hamiltonian are different classically and quantum
mechanically. As a rule, one cannot rely on the naive ap-
proach of looking for a polynomial factor ordering of a
classical formula to find a quantum version.

Clearly, this has the same effect of preserving the equa-
tions of motion. Quantum mechanically, however, only
the second procedure is consistent. The canonical com-
mutation relations induce a relationship between the
original coordinate and momentum operators which must
be respected. Since the coordinate does not change,
p = —iB = —id and therefore P=kp= —kiB . As

Q Q'
well, the form of the differential operator for the super-
Hamiltonian is unchanged when passing from q to Q, so
wave functions are preserved under the momentum re-
scaling

P(q)=f'(Q) . (44)

In the transformation to the holonomy variables, be-
fore making the rescaling, an interchange is used on p2-.

This enables the rescaling transformation to act on the
coordinate q 2. The rescaling transformation

p& =2p»

with the coordinates unchanged leaves the super-
Hamiltonian unchanged:

~(j)—p j (45)

Note the commutation relations for the new variables are
now [qj,p j ]=i/2 (a=1,2). An inverse interchange

switches the coordinate back to a momentum.
The next series of transformations serve to rearrange

the variables. They establish the correspondence with
Carlip's holonomy variables. There is a large amount of
freedom in choosing the canonical variables that are asso-
ciated with a given super-Hamiltonian. The classical
correspondence (20) between the integration constants
and the holonomy variables guides the choice. The trans-
formations are

q 1 =»q1 p 1 =q'd
1

q2 =lnq2, p2 =q~2,

The accumulated transformations from the h variables
are

The result is that Hamilton's equations do not change,
and the transformation is canonical. An alternative pro-
cedure is to leave the Hamiltonian unchanged but to re-
scale the Poisson brackets:

(43)
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pi =2qfpz ~

~f
qf p3

&2= —(q9 f+~Iq)»
q2 =ln( —p(/q f) .

(46)

T:q~q+ 1, T:p~p,

S:q~—1/q, S:p~q p .t2
(50)

These correspond to the transforrnations on the classical
holonomy q-variables:

Using (39), this agrees with the classical correspondence
(20) between the integration constants and Carlip's holon-
omy variables, where

qua=a Sf=I (47)

Using these in (38) and eliminating the affine parameter
in favor of the physical time with (41) gives the full trans-
formation from the metric variables to the holonomy
variables. For notational convenience, let

(
h +])—1/20!= pp

p (ph l)( h +1)—1/2

One finds

pi =2q9'»

qf +pe qo
(48)

1

, qo (q9 f+uIq)) .
+pe qo

In the classical limit, with the —, shift term dropped, both
a and /3 go to 1, so the transformation agrees with that
found by Carlip [5]. Quantum mechanically, a and P are
nonpolynomial ordering terms modifying the time depen-
dence as discussed above. Also note that, classically, if
one drops the quantum shift —,

' from the constraint (37),
one finds

(ap A—b)—,po=
qo

(49)

VII. MODUI. AR TRA.NSFORMATIONS

This is the classical expression that Carlip found for the
ADM-Moncrief Hamiltonian (16) in terms of the holono-
my variables.

(qf pf —sI»

(qf+~( ~I»

Sh.(q f,p f )~(q),P)),

~h:(qI P/) (
—qf —

S f) .

(51)

i 2q ~(p &~

T~ =e

' qz~& ' q&J'z '2qz&&

(52)

In the quantum theory, it is evident that the modular
transformations of q induce the correct corresponding
transformations of p, in the coordinate representation
where p&

= —iB and p2= —id . Thus, the classical

modular symmetry is consistently implemented quantum
mechanically.

It is not obvious however that the quantum q-variables
defined in terms of the transforrnations above have their
classical modular transformation properties. Modular in-
variance of the quantum super-Hamiltonian is clearly
maintained, but since the holonomy super-Hamiltonian is
trivialized, it imposes no direct condition on the transfor-
mation properties of its variables. Carlip s primary re-
quirement [5,6] in his approach to factor ordering the
classical solution was to find the quantum transformation
which preserves the classical modular transformation
properties of the holonomy variables. This, together with
the practical restriction to polynomial orderings, led him
to conclude that the metric super-Hamiltonian had to be
modified. Above, a nonpolynomial ordering was found
which transforms from the unmodified metric super-
Hamiltonian to the holonomy version. It remains to
check that the modular transformation properties have
been preserved.

The modular transformations (50) and (51) are them-
selves canonical transformations. By finding their expli-
cit representation as a product of elementary canonical
transformations, the problem of comparing them is great-
ly simplified. The canonical transformations producing
the modular transformations in the holonomy variables
are not dificult to find because they are linear canonical
transformations:

The metric super-Hamiltonian is invariant under the
symmetry of modular transformations of the upper-half
plane. This symmetry has its origin in the
diffeomorphism invariance of the original (2+1)-gravity
theory, as will be discussed in the next section. Defining
q q i + iq2 and p =p i + ip2, classically the modular
transformations on the metric variables are generated by

In the metric variables, in complex form q =q, +iq2,
p =p, +ip2, the canonical transformations are again
linear. There is a subtlety because the momentum opera-
tor conjugate to q is p = —2iB . Recognizing that (q,p )

and (qt, p) are two independent (commuting) sets of vari-
ables, one finds
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Tm =e
—iq p/2 —ip/2 —iq p/2 —iq p /2 —ip /2 —iq p /22=e e e e e e (53)

=exp[ —i [(qzi —
qz )p) +2q)qzpz] Ie 'exp[ —i [(q l

—qz)p) +2q) qzpz]I

Comparing these, the modular transformations are the
same if

pi =2qfp3 (54)

(q 1
—q2)pl+2qlqzpz = —2q9 f . (55)

Both conditions are satisfied by the transformation from
the metric to holonomy variables. The first is obvious as
it is one of the transformations. The second follows from
a computation most easily done by first passing from the
metric variables to the h variables and then to the q vari-
ables. One finds

)II

(qzi qz )Pi+2q)qzPz=q iP iq i
p&

2q$7(

Thus, the quantum canonical transformation given
here from the metric to the holonomy variables preserves
the modular transformation properties of each. A word
of caution should be raised: it is not difficult to find other
canonical transformations to other variables which have
the correct classical correspondence and which preserve
modular invariant quantities, but do not have the desired
modular transformation properties. This shows that
there is important information contained in the transfor-
mation properties of noninvariant quantities.

VIII. UNITARY EQUIVALENCE

Having constructed the canonical transformation be-
tween the metric and holonomy variables which
preserves their classical modular transformation proper-
ties, it is necessary to determine if the transformation is
unitary. If it is, this will complete the proof of the uni-
tary equivalence of the two quantum theories.

The familiar definition of a unitary transformation is a
linear norm-preserving isomorphism of one Hilbert space
onto itself. This definition can be naturally extended to a
linear norm-preserving isomorphism from one Hilbert
space to another [8]. Canonical transformations are not
in themselves unitary as they are defined independent of
the Hilbert space structure and transform all solutions,
not just normalizable ones, of one super-Hamiltonian
constraint to solutions of another. For a canonical trans-
formation to define a unitary equivalence, when restricted
to act on the Hilbert space of states of one theory, it must
be a unitary transformation to the Hilbert space of states
of the other theory.

In proving the unitary equivalence of the metric and
holonomy formulations of 2+1 gravity on the torus,
there is a difficulty because Witten (and his successors)

( y(a)
l

q(a) )
p

(58)

The transformed measure density is

(0)
(
"(q p) =c 'v"'(q p)c . (59)

Here, C is the adjoint of C in the trivial measure densi-
ty.

For functions of q and p, the adjoint in the trivial mea-
sure density is the operator formed by complex conjuga-
tion and integration by parts (all boundary terms are as-
sumed to vanish, though this must be checked in specific
examples). The "adjoints" of the interchange operator
and the point canonical transformation can be computed
by direct manipulation of inner products in which they
appear. They are found to be

—1
~f(q) =~ (q), q~f i( )

1 I—1

(60)

did not derive the inner product which defines the Hil-
bert space of states in the holonomy variables. The
holonomy-variable inner product for which the two for-
mulations are unitarily equivalent will be constructed by
requiring that the value of transition amplitudes comput-
ed in the metric-variable inner product be preserved
through the canonical transformation. After checking
that the kernel of the canonical transformation does not
lie in the Hilbert spaces, it is concluded that the canoni-
cal transformation is a norm-preserving isomorphism of
the Hilbert spaces. The two theories are then equivalent.
If one were to choose a di6'erent modular invariant inner
product in the holonomy formulation, the two theories
would be unitarily inequivalent.

An inner product is characterized by its measure densi-
ty p(q, p) [q=(q, q0), p=(p, p0), where q,p stand for all
of the spatial variables]:

(Pl/)„=f dq P(q)*(M(q, p)f(q), (57)

where p acts to the right. Note that, in general, the mea-
sure density may be operator valued and time dependent.
The standard inner product with trivial measure density
is given by @=1.

In general, when one makes a canonical transforma-
tion, if the value of the inner product is to be preserved,
the measure density will transform. If one has the canon-
ical transformation between solutions,

y(0) C q(a)

then formally one has

( y(0)
l

q(0) ) ( ( y(a)
l

(0)
l
C q(a) )

p 1

—( y(a)
l
C i (0)C

l

y(a) )
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[The factor f '(q)
z

in the point canonical transforma-
tion adjoin'. arises from the transformation of the dq in
the measure. This is the one-dimensional form. ] For
canonical transformations involving p0, the adjoint can-
not be taken because the inner product does not involve
an integration over dq0. Point canonical transformations
of the time simply redefine the variable one uses for the
time label and are implemented directly in the measure
density by changing its time dependence accordingly.

In common practice, one usually only considers uni-
tary transformations between a Hilbert space and itself.
In these cases, the measure density does not change and

one finds from (59) that C C= 1, where C =p( ) C ')M( )

is the adjoint in the measure density p' ' of the Hilbert
space. It should be emphasized that canonical transfor-
mations which are not naively unitary, such as multipli-
cation by a real function of the coordinate, become so
when the measure density is appropriately transformed.

There is a natural inner product in the metric formula-
tion of 2+1 gravity on the torus given by the measure
density for the Petersson metric on the upper-half plane,

(0) —2
2 7

&
y(0)

~

q(O) ) — ) ~ y(0)e q(0)dq1dq2

q2
(61)

The canonical transformation from the holonomy to
metric variables is summarized by

q(0) —( q(q) (62)

It is convenient for presentation to decompose C into
three transformations

C =C, C2C3,

where

q(0) ( q(e)

q(e) ( q(h)

q(h) —( q(q)

(63)

The canonical transformations are then

1/2 '& PI q2P2 —1C1 Plnqo q 2 2 +2 arcsinhq2

i (p2+ 1/4)qo wqopo
2

C, =P, e e
po

(64)

—1 p2qi /2 —
~p

C3 I2 R 1/2I2I 1 P1nq e e

Here, R1/2 scales the momenta by a factor of —,'. Its "ad-
joint" would act to double any momenta appearing in the
measure density.

Using (59), one can compute the transformed measure
density one transformation at a time. The final result is
that

v'"= (e6 '[+s—IeI) .

The inner product in the holonomy variables which
preserves the value of inner products (61) in the metric
variables is then

& 0'"l0'" &,(,)
= —Idefd~I4'"*(e9 'f+p feI W"' .

(66)

Before concluding that the metric variable theory with
inner product (61) is unitarily equivalent to the holonomy
variable theory with this inner product, one must confirm
that no states in the Hilbert space are in the kernel of the
transformation C. All of the transformations in C are in-
vertible except for p2 in C1 whose kernel is spanned by
the function 1. Transforming this function to find its ex-
pression in the holonomy variables, one finds a function
which is not modular invariant. It is therefore not a
member of the Hilbert space. As this is the only function
which is annihilated by the transformation C, all modular
invariant functions in the holonomy variables are mapped
to modular invariant functions in the metric variables
and vice versa. (The preservation of modular invariance
is guaranteed by the considerations of Sec. VII.)

The canonical transformation C is a (linear) norm-
preserving isomorphism of the Hilbert spaces defined by
the inner products (61) and (66). Therefore, one may con-
clude that the metric and holonomy formulations of 2+ 1

gravity on the torus are unitarily equivalent. If one
chooses a different modular invariant inner product in
the holonomy variables, for example, a trivial measure
p' '= 1, then the metric and holonomy formulations
would not be unitarily equivalent.

This emphasizes the important point that a quantum
theory is not complete until the Hilbert space is specified.
Note that once one allows operator-valued measure den-
sities, it is not clear what criteria one uses to choose
among those in which the Hamiltonian is self-adjoint and
which are invariant under the necessary symmetries.
This introduces a new ambiguity into quantization.

IX. METRIC FROM HOLONOMY %'AVE FUNCTIONS?

Having proven the unitary equivalence of the metric
and holonomy formulations of 2+ 1 gravity on the torus,
one might hope to use the holonomy wave functions to
construct the metric wave functions by simply applying
the canonical transformation C. This would be a
significant achievement because the metric wave func-
tions are the weight-zero Maass forms and are of interest
to number theorists [11]. In principle, this procedure is
straightforward. There are few subtleties in applying C,
even with its time dependence —the time is simply a pa-
rameter in the transformations. To illustrate the use of a
canonical transformation, in the Appendix the transfor-
mation C1 is applied to plane-wave solutions of the rela-
tivistic free particle to obtain the corresponding
(nonmodular invariant) solutions of the metric super-
Hamiltonian.

Unfortunately, there is no "free lunch. " The trouble is
that the canonical transformation transforms all solutions
to the holonomy super-Hamiltonian, that is, all time-
independent functions, to solutions of the metric super-
Hamiltonian. The solutions of interest, however, are only
the normalizable modular invariant functions. It is
straightforward to define what one means by a modular
invariant function in the holonomy variables using the
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transformations (51), but to the author's knowledge, these
functions are not known explicitly. Hence, they cannot
be transformed to give explicit representations of the
Maass forms. Furthermore, it is likely that, were they
known, their expression would not be in closed form, but
in the form of infinite series. Evaluation of the various
Fourier transforms involved in C would then result in a
series expansion. It is not obvious that the subtleties of
Maass forms would be more transparent in this form.
Granted, it is an improvement to be able to work with
modular invariant functions which are not constrained to
satisfy a differential equation, but further investigation is
required.

X. 8 STATES FOR 2+ 1 QUANTUM GRAVITY

In deriving the metric super-Hamiltonian, the
configuration space arises from gauge fixing the
diffeomorphism invariance of 2+1 gravity. The reduc-
tion from the space of all metrics on the torus to moduli
space is made by observing that every metric on the torus
is conformal to one of constant zero curvature. In partic-
ular, the metric can be expressed in the form
ds =e~~dx+rdy ~, where r=q, +iq2 is a complex pa-
rameter. Restricting attention to the tori of zero curva-
ture having the metric ds = ~dx+~dy ~, fixes the
"small" diffeomorphisms, i.e., those that are continuously
deformable to the identity. The zero-curvature tori are
classified by their moduli ~=q, +iq2 and the Teichmuller
space of the torus is the Poincare upper-half plane H.
From this, it follows that the wave function will be a
function of the moduli, and it is natural to expect that the
inner product will be that on the upper-half plane.

In addition to small diffeormorphisms, there are also
"large" diffeomorphisms which are not fixed by restrict-
ing to zero-curvature tori. These are diffeomorphisms
which are not continuously deformable to the identity
and correspond to Dehn twists: the action of cutting open
the torus along a homotopically nontrivial loop and
twisting the end before gluing the manifold back together
again.

Large diffeomorphisms are the analog of the large
gauge transformations in Yang-Mills theory that give rise
to the 8 vacua [12]. The possibility of 0 states in gravity
has been discussed in the past [13,14]. Until recently
[15], no explicit examples were known. Gravitational 0
states are present in (2+1)-quantum gravity on the torus,
and they are constructed below. Their existence was
overlooked in earlier treatments [5,6,9].

Since two tori related by a large diffeomorphism are
physically equivalent, their moduli do not represent dis-
tinct configurations. The action of the large
diffeomorphisms on moduli space is given by the map-
ping class group, I =SL(2,Z) /Z2. The physically dis-
tinct moduli lie in a fundamental domain H/I which,
under the action of the mapping class group, tesselates
the upper-half plane.

A solution P' ' of the metric super-Hamiltonian con-
straint on Teichmuller space must be "periodized" to ac-
count for the physical equivalence of moduli in difterent
copies of the fundamental domain. This is accomplished

Contrary to naive expectation [5,9], the wave function is
not required to be invariant under the action of the map-
ping class group, but rather it must transform as a repre-
sentation of the group. This determines the possible
weights g .

The situation is analogous to that first considered by
Laidlaw and DeWitt [16]. They were studying the propa-
gator for a particle in a multiply connected configuration
space, but a related argument works for the wave func-
tion and applies to covering groups of nontopological ori-
gin. In the sum over images, the fundamental domain is
a particular coset representative H/I that has been arbi-
trarily chosen. If a second coset representative were
selected to be the fundamental domain by acting with an
element of the mapping class group, the new wave func-
tion must be unitarily equivalent to the original wave
function. Thus, if the wave function 4" ' is to be a
(modular weight zero) scalar, it can change at most by a
scalar phase

(68)

and every image in the sum must be changed by the same
phase

@El nFI

This is true (though possibly not in the most general way)
if e'~'~'g =y &. Assuming without loss of generality that
the weight in the fundamental domain is one, y, =1, one
finds y&=e'~'~'. Since the mapping class group is non-
Abelian while phases commute, the phases must form a
one-dimensional unitary representation of the Abelianiza-
tion of the mapping class group.

The mapping class group is generated by the two fun-
damental modular transformations

S:q~—
q

V:q~ —(q+1)
where V=TS, in terms of T used above. The modular
transformations satisfy the relations: S = 1, V = 1.
Every element of the mapping class group can be
represented as an element of the free product of 5 and V.

By assigning a phase to S and V that is consistent with
their relations, a phase is assigned is consistent with their
relations, a phase is assigned to each element of the map-
ping class group. This phase is a character of the Abeli-
anization of the mapping class group, Z2 XZ3. The pos-
sible phases are (l, e' ) for 5 and (l, e '~, e '~

) for V.

Thus, there are potentially five nontrivial scalar 0 states
consistent with modular transformations, in addition to
the modular invariant wave function. Two of these are
not physically distinct, however, as the states formed

by the method of images in which the wave function
4' '(q) at a point q =qt + iq~ in the fundamental domain
is found by summing the solution g' ' evaluated at every
image of q under the mapping class group, each weighted
by some factor y,

(67)
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with the V phase e ' are the complex conjugate of
those formed with e ' . There are three nontrivial sca-
lar 0 states.

Note that from (68) the wave function VI ' must vanish
at the fixed points of a modular transformation if the
phase associated with that transformation is not unity.
This defines the boundary conditions that are associated
with each of the 0 states. These boundary conditions are
analogous to those that arise, say, at a rejecting wall
where a wave function must vanish because P(x)= —P( —x).

0 states were found by dropping the requirement that
the wave function be modular invariant. Further gen-
eralizations are possible by weakening other assumptions.
If the wave function g' ' is not a scalar, but has a vector
or spinor index, as the spinor wave function of Carlip s
Dirac square root does, non-Abelian weights are possible.
If the weight is a matrix of the same dimension as that of
the vector (spinor), by contracting it with the wave
function's index, a vector (spinor) of the same dimension
is obtained, and the above argument may be repeated. It
is found that the weights must be in a unitary matrix rep-
resentation of the mapping class group of dimension
equal to the dimension of the vector (spinor). There are
more unitary representations in higher dimensions than
in one, so there will be more 0 states, and many will have
the novel feature of being non-Abelian. This does not
happen in Yang-Mills theory and is (so far) unique to
gravitational 0 states.

In principle, one can also use non-Abelian weights in
higher-dimensional unitary representations of the map-
ping class group even when g' ' is a scalar (or is of
different dimension than the weight). This possibility was
raised by Hartle and Witt [14]. The result of doing so is
that the wave function %" ' is no longer a scalar but car-
ries a group label, forming a higher-dimensional repre-
sentation of the mapping class group. The inner product
must accordingly be adjusted to remain a modular invari-
ant, so that the group label does not appear in transition
amplitudes. The physical significance of such an extend-
ed wave function is not clear.

XI. OBSERVABLES

1f dq, dq2$*$ .
qp

(69)

This is the standard inner product on the Poincare
upper-half plane with the Petersson metric, as it must be
since H is the covariant Laplace operator on this space.
Note that the measure is modular invariant, even though
this is not a priori obvious from the construction. This
implies that this is in fact the physical inner product.
This construction may seem superQuous since it was al-
ready known that the configuration space is the moduli
space of the torus and thus has this as its natural inner
product. In more general problems, however, an under-
standing of the configuration space may not precede the
construction of observables.

ditional constraints. Inspection reveals that p &
and

H =qz(p&+pz) commute with the metric super-
Hamiltonian. Since the configuration space is two dimen-
sional, they are complete. Unfortunately, p, is not modu-
lar invariant. This means that its eigenvalues will not be
quantum numbers of the "periodized" quantum states
(67). They are nevertheless useful because they charac-
terize the quantum states P' ', appearing in the sum over
images, which are constructed in the Appendix. It is an
open problem (to the author's knowledge) to find a com-
plete set of modular invariant observables.

Following the *-algebra approach [18], an inner prod-
uct of a constrained system can be constructed by requir-
ing that each of the observables be self-adjoint. Lacking
a complete set of modular invariant observables, a physi-
cal inner product for the periodized quantum states 4' '

cannot be constructed directly. It is instructional, how-
ever, to construct the inner product for 1(' ' before impos-
ing the symmetry of modular invariance. Since the coor-
dinates and momenta satisfy the ordinary commutation
rules in the coordinate representation, they have the usu-
al conjugation properties. Assume that the measure den-
sity is solely a function of the coordinates. Then, for p&
to be self-adjoint, the measure density must be indepen-
dent of q& while, for H to be self-adjoint, the measure
density must be qz . The inner product is thus deter-
mined to be

Since the eigenvalues of a complete set of independent
observables characterize the quantum state, it is useful to
consider the observables for 2+1 gravity in a toroidal
universe. An observable is an operator which commutes
with all of the constraints, up to a function of the con-
straints. This definition may be unfamiliar because one is
not used to quantum mechanics in the presence of con-
straints [17]. If constraints are present, they must be
preserved. Suppose a wave function 4 satisfies the con-
straints C, , and [ A, C;]=B,, then

[A, C;]4= —C;AqI=B;4 .

If A%' is to continue to satisfy the constraints, 8, must be
a function of the constraints.

Here, the observables must commute with the super-
Hamiltonian and be modular invariant. Because the
super-Hamiltonian is modular invariant, there are no ad-

XII. CONCLUSION

A sequence of elementary canonical transformations
has been found that trivializes the metric super-
Hamiltonian of (2+ I)-dimensional quantum gravity on
the torus. A further sequence establishes the quantum
canonical transformation between the metric variables
and the holonomy variables of Carlip. The full transfor-
mation is a nonpolynomial factor ordering of the classical
canonical transformation which preserves the classical
modular transformation properties of the metric and
holonomy variables. The procedure used here enabled a
systematic derivation of the transformation.

The definition of a unitary transformation was extend-
ed to apply to transformations between Hilbert spaces
having inner products with different (operator-valued)
measure densities. Requiring that the canonical transfor-
mation be such a unitary transformation from the natural
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Hilbert space in the metric formulation to the Hilbert
space in the holonomy formulation gave a construction of
the inner product (66) in the holonomy formulation. This
proves that the Witten-Carlip holonomy formulation of
(2+1)-dimensional quantum gravity on the torus with
this Hilbert space is unitarily equivalent to the Moncrief
metric formulation with its natural Hilbert space. If a
different inner product were used in the holonomy vari-
ables, the formulations would be inequivalent.

The primary motivation for studying 2+ 1 gravity on
the torus is to understand the different natures of time in
the metric and holonomy formulations. There is no mys-
tery here, but rather an important lesson. Among all
possible variables equivalent under canonical transforma-
tion, Witten fortuitously chose a set that was time-
independent while Moncrief did not. Mathematically,
both choices are equally valid and equivalent. Physically,
it becomes a question of what one can measure with ex-
perimental apparatus. Set aside the inconvenient fact
that strictly speaking neither the metric nor the holono-
my variables are observable since they are not modular
invariant. If one had at hand a device which measures
holonomy, then as one went out into one's (2+ 1)-
dimensional world, there would appear to be no dynam-
ics. If, on the other hand, one were to measure the
moduli of the manifold, one would find that they change
as the volume of the Universe grows. If one went out
with a device which measures something else, one would
find yet different dynamics.

The lesson is first a familiar one from classical mechan-
ics: when solving a problem, one is free to choose the
variables which make it convenient to solve; the physics
does not depend on the choice of variables. Second, it is
a reminder that "time" is not a coordinate label, but a
perception that follows from physical observation. While
it does not matter what variables one chooses to formu-
late a theory, it makes all the difference what quantities
one measures experimentally. It is easy to confuse
measurable quantities with the variables that represent
them most conveniently, but those same quantities can be
expressed in different variables with no loss of informa-
tion. Time, as a quantity whose passage is inferred in-
directly from the change of other measured quantities, is
no different: it is not the coordinate q0 which appears in
the super-Hamiltonian. The challenge is to understand
the connection between measurable quantities and the
physical passage of time so that this connection can be
taken over into the theory and be preserved as a relation
amongst variables. Properly executed, the relation will
persist no matter what the choice of variables.
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APPENDIX

The formal solution of the metric super-Hamiltonian
can be constructed by applying the canonical transforma-

tion C, of (64) to the relativistic free particle wave func-
tion. As we are interested in the stationary states of the
metric super-Hamiltonian, we begin with the familiar
positive-frequency plane-wave solutions of the relativistic
free particle, multiplied by a plane wave in q1.

1t/'k'„(q „q2,qo ) =exp(ikq2 iso—qo )exp(2qrinq, ), (A 1)

where o1=(k + —')'/ . Strictly, any function of qi gives a
solution of &"; the plane wave is chosen so that g" is
an eigenstate of the (partial) observable p„discussed in
Sec. XI. The original wave function is given

(qi q2 qo) ~1 q2 e I2 F2

srcsln q (2 )1/2

Xexp(ik arcsinhq')

is to be evaluated. Doing the 8 ~ derivative and using

arcsinhq'=lnI q'+(q' + 1)'/ ]

gives

—iqq kI:q'+'(q' + ) ] (A4)
)
1/2

( 1+ i2)1/2

The change of variables u =q'+(q' +1)' gives an in-
tegral which integrates to a modified Bessel function, up
to a constant X,

k 1
du exp —iq u ——

u

=%K;k(q) . (A5)

Applying exp[i ln(p, )q2p2] to this scales q2 by a factor
Of p1, giving

exp[i in(p 1 )q2p2 ]K;k (q2 )exp(2qrinq 1 )

=K;k(q2p, )exp(2qrinq, ) . (A6)

Acting with the operator p „

this becomes

2~inq
&K,k(2qrnq2 )e (A7)

Including the Anal transformations, the wave function is

f„k=iVq2 K;k(2qrnq2)e qo" .(0) = 1/2 2~inq
& (AS)

From Sec. X, the full periodized wave function is

(qi q2 qO)= X XA'. , k( qi ~q2 qO)
(0) (0)

~mr
(A9)

where g is a unitary one-dimensional representation of

(e)
arcsinhq& 0 ('qi q2 'qO)

Focusing on the q2-dependent part (suppressing the
subscript 2), the transformation
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Z~ XZ3. Thus, the solutions of the metric super-
Hamiltonian have been constructed using canonical
transformations. It should be noted that the condition of
normalizability has not been applied, and one does not

expect every periodized sum (A9) to correspond to a nor-
malizable wave function. The normalizable wave func-
tions are, however, expected to be among those obtained
by the periodizing procedure.
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