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Plane domain walls when coupled with the Brans-Dicke scalar field
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The space-times of plane thin domain walls are studied in the context of the Brans-Dicke (BD) theory
of gravity by using distribution theory. In particular, the BD field equations are divided into two groups:
one holding in the regions outside of the wall and the other holding on the wall. It is found that the
equations on the wall take a very simple form, and are given explicitly in terms of the metric coefficients
and the BD scalar field. As an application of the theory developed, a class of exact solutions, which
represents a plane domain wall interacting with the BD scalar field, is given and studied. It is found that
the surface energy density of the wall always exponentially decreases as the time develops; this is one
possible solution of the domain wall problem in cosmological models founded on general relativity. The
space-time is usually singular not only at the initial point, but also at spacelike infinity. However, the
proper distance from the wall to the singularities at spacelike infinity is finite but exponentially increas-
ing (in fact, inversely proportional to the surface energy density of the wall).

PACS number(s): 04.50.+h, 04.30.+x, 98.80.Cq

I. INTRODUCTION

There have been different attempts to study the
inAationary-universe models in some other theories of
gravity rather than in the one of Einstein [1,2]. For ex-
ample, recently La and Steinhardt [3] proposed a model,
the so-called "extended" inAation, in the context of the
Brans-Dicke (BD) theory of gravity [4]. It was found
that, because of the interaction of the BD scalar field and
the Higgs-type sector that undergoes a strongly first-
order phase transition, the exponential expansion in
Guth's model [5] is slowed down to a power-law one. As
a result, the phase transition can be completed via bubble
nucleation. Hence the "graceful exit" problem is
resolved. However, Weinberg [6] and La, Steinhardt, and
Bertschinger [7] soon found that the inhomogeneity
caused by the nucleation of bubbles was seriously in
conAict with the observational constraints of the mi-
crowave background radiation (MBR) unless the BD pa-
rameter cu is less than 25. But the latter is not consistent
with the requirement co) 500 [8]. Lately, Goldwirth and
Zaglauer [9] reconsidered the above problem, and found
that after gravitation was taken into account bubbles are
led to recollapse during most of the extended-infIation
period, and the distribution of bubble sizes gets dramati-
cally changed. Consequently, the phase transition can be
completed through tiny bubbles, the existence of which is
not in conAict with both of the above requirements.

On the other hand, Linde and Lyth [10] and Basu,
Guth, and Vilenkin [11] have shown that, because of
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quantum-mechanical tunneling, topological defects, such
as domain walls, cosmic strings, and monopoles also can
be formed during inflation. Once they are formed, these
defects will certainly interact with the BD scalar field as
well as the gravitational field produced by them. Thus, to
have a better understanding of the inflationary Universe,
it is very important to investigate such interactions in
more details and more general terms.

In this paper we shall study the interaction of domain
walls with the BD scalar field and the corresponding
gravitational field. Our main assumptions here are that
the walls have plane and reAection symmetry, and that
the typical thickness of the wall is much smaller than any
other physical sizes concerned in the problem [12,13].
These assumptions may cause some doubt about our re-
sults. However, we believe that the main properties ob-
tained in this paper should remain valid even in more
realistic models.

The structure of the paper is as follows. In Sec. II, the
space-time containing plane walls coupled with the BD
scalar field is studied, and all the BD field equations are
given in terms of distributions. It is found that the equa-
tions on the wall take a very simple form, and are given
explicitly in terms of the metric coe%cients, the BD sca-
lar field, and their derivatives. It is found that for any
given solution of the BD gravitational field equations,
there always exists a corresponding solution, which, sub-
ject to some restrictions, represents a plane domain wall
interacting with the BD scalar field. As an illustration of
the theory developed in Sec. II, in Sec. III a class of exact
solutions is presented and studied. Finally, the paper is
closed by Sec. IV, where our main conclusions are de-
rived.

Before proceeding, let us note that a general descrip-
tion of singular hypersurfaces in the BD theory was
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worked out by Suffern [14], using Israel's method [15],
and the application of it to spherically symmetric bubbles
was also investigated. In this paper we shall adopt a
diff'erent approach [12,13], which is essentially the com-
bination of the Newman-Penrose (NP) formalism [16]
and the distribution theory [17]. In principle, both ap-
proaches give the same results and are complementary.
The main advantage of the NP formalism is that the
Weyl and Ricci scalars, in the present case, have their ex-
plicit physical interpretations, and with them we can easi-
ly study the interactions of the walls with gravitational
and matter fields.

that Eq. (2.4) reads

TM
2P „,—P „U,—P, U „=e (2.&)

To proceed further, let us first choose a null tetrad as
the one given by Eqs. (2.2) and (2.3) in Ref. [21]; then we
find that the nonvanishing Weyl and Ricci scalars are

oVz %'4, and Coo @o2 Ni& +22, A, and are given by Eqs.
(Al) and (A2) in Ref. [22] which, for the reader's con-
venience, are represented in Appendix A of this paper.
In terms of these nonvanishing Ricci scalars, Eq. (2.2)
can be written as

II. PLANE DOMAIN WALLS INTERACTING
WITH THE BRANS-DICKE SCALAR FIELD

In this section, the formal development of the theory
will closely follow the one given in Refs. [12] and [13].
The only difference is that, instead of considering the
problem in the context of Einstein's theory of gravity,
here we consider it in the one of Brans and Dicke [4].For
more details, readers may see Refs. [12] and [13].

The action of the BD theory of gravity reads [4,18]

A = Jd4xv' —g 'PR —cv
' +2L „„, , (2.1)

M 2
~' —g ag~

(2.3)
BD COT„'. = (0,„0,. ,'g„—.0,A")+—0—,„;. g, 0,~' . —

where P denotes the BD scalar field, co the BD coupling
constant, and L,«„ the Lagrangian density of matter.

Varying the above action with respect to the metric we
obtain the BD gravitational field equations

R„,——g„R =—
I T„,+T„

1 1
pv 2 pv

y
pv (2.2)

where T„and T denote the energy-stress tensors for
the matter and the BD scalar fields, respectively, and are
given by

(2.8)

in the metric coefficients g„as well as the BD scalar field
P, where the function z is given via the relations

/+2 t —2
v'2 ' V'2 (2.9)

Then, we find that the Ricci scalars N; 's and A are given
exactly by Eq. (3.10) in Ref. [13],and that the 4, 's and
A are given by

4; =4;. +H(z)+4;) [1—H(z)]+/, ' 5(z),
(2.10)

A =A +H (z)+ A [1 H(z) ]+ A
™5—(z),

where N; —and A +—are calculated from the expres-
sions of Eqs. (B2) and (B3) in the regions where z )0 and
z (0, respectively, and P,'. and A,

™are given by

(2.7)
A= —IA'D+AMI,1

where 4';~, A, 4," and A are given by Eqs. (Bl)—(B3)
in Appendix B.

Following Ref. [12], let us make the following substitu-
tions:

A semicolon denotes covariant differentiation.
On the other hand, by varying the action 2 with

respect to P, we will have the equation for the P field: p't7= —A
™= ,' ABQ, (t, 0—)—,

TMpv-
3+2co ' (2.4)

+e cosh Wdy (2.5)

where the functions I, U, V, and 8'depend only on the
null coordinates u and v, and —~ & u, v, x,y (+~, with
the coordinates being number as [x"] =

I u, v, x,y].
It is not trivial, but one can prove that each solution of

the system (2.2) —(2.4) with the metric (2.5) and T„de-
pending on u and v only has P=P(u, v). Then, we find

where T —= T„~". In this paper we shall consider the
space-time with the Szekeres metric taking the form
[12,19,20]

ds =2e™dudv —e Ie coshWdx —2sinhWdx dy

This is the crucial point where we introduce the domain wall:
The first derivative of the metric gets a jump discontinuity at
z =0 thus leading to a 5-like second derivative, which is con-
nected with a 5-like matter distribution. Of course, not each 5-
like matter distribution concentrated on a hypersurface may be
called domain wall. First, if it is a spacelike hypersurface then
it can hardly be interpreted as matter. Second, if it is a lightlike
hypersurface, then it can be interpreted as gravitational shock
wave [23,24] or as 1ight impulse [25]. Third, if it is a timelike
hypersurface then it can be interpreted as incoherent rnatter
[15] or as surface tension [26]. At least, one should require an
isotropic surface pressure and a kind of surface equation of state
for a 6-like matter distribution to be interpretable as domain
wall. In this paper we do not consider such questions.
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where

BP(t,z)
a

AB—:e (2.12)

hand, yields

2P „,—P „U,—P „U „=e 6(z), (2.19)

T =o h„5(z), (2.13)

where o. denotes the surface energy density of the wall,
h„ is the intrinsic three-metric of the wall and is given
by

and 5(z) denotes the Dirac 5 distribution.
It must be noted that in writing Eqs. (2.10) and (2.11)

we had used the assumption that P is at least C across
the hypersurface z =0. This is explained by the following
considerations. From Eq. (2.3) we can see that T con-
tains terms quadratic in the first derivatives of P, and
terms linear in the second derivatives. Thus, to be physi-
cally meaningful, P should be at least C across the sur-
face z =0; otherwise, T„would contain the square of
the Dirac 5 function, which is both physically and
mathematically unacceptable.

Since here we are mainly interested in the interaction
of domain walls with the BD scalar field, in the rest of
this paper we shall consider only the cases where T„cor-
responds to a domain wall, namely,

and

(2P „,—P „U„—P „U „)—=0 (2.20)

U, (t, O)= — P, (t, O) .
7

(2.21)

Thus, in addition to Eqs. (2.17) and (2.18), Eq. (2.21) will
give another restriction on the metric coefficients and the
P field.

Summarizing the above results we find that the basic
equations for a plane domain wall coupled with the BD
scalar field consist of Eqs. (2.16)—(2.18) and (2.20) and
(2.21).

Note that for any C function F (t, z), we have the rela-
tions

F „(t,—z)=F, (t,z), F,(t, —z)=F „(t,z), (2.22)

which represents the interaction of a plane domain wall
with the BD scalar field. Writing P and U in the form
f=f +H(z)+f [1—H(z)], where f =f (—t, z )0), and
f =f(t,——z )0), we find that Eq. (2.19) is equivalent to

(2.14)

where t = t, z = —z, and u and U are given by Eq. (2.9) but
with t, and z replaced by t and z. Combining Eq. (A2) in
Appendix A with Eq. (2.22), it is easy to show that

The substitution of Eqs. (2.13) and (2.14) into Eq. (Bl)
yields

eM= oS(z), CM= on(z),
4A 22 4B

C,,(t,z) =4,+,(t,z), @22(r,z) =40,(t,z),
C,,(t,z) =0,+,(t, z ),
4, , (t,z)=C&,+, (t,z), A (t,z)=A+(t, z) .

(2.23)

q)M AM g( ) (2.15)

CM (pM CM 001

Inspecting Eqs. (2.10) and (2.15), we can see that Eqs.
(2.7) can be divided into two groups, one of which holds
outside of the wall, and reads

q)+ C BD+ g+ gBD+
V IJ 7 (2.16)

and the other of which holds on the wall, and takes the
form

M, (t, O) = U, (t, O), V, (t, O) =0= W', (t, O),
o. =2 e~""[p( rO) U, (t, O) —p, (t, O)j &0.

(2.17)

(2.18)

Note that the conditions (2.17) are exactly the ones ob-
tained for a plane domain wall in the framework of
Einstein's theory of gravity [12], while the surface energy
density of the wall is modified due to the presence of the
P field. When P is constant, it will reduce to the one
given in Ref. [12].

Inserting Eq. (2.17) into Eq. (3.11a) in Ref. [13],we find
that the '0'z's vanish identically. That is, in the space-
time of a plane domain wall, the gravitational field is free
of an impulsive part.

The combination of Eqs. (2.13) and (2.6), on the other

A similar expression for the N; 's and A can be ob-
tained from Eq. (B2) in Appendix B. Note that in the
above equation all the Ricci scalars stand for the "scale-
invariant" ones, the definitions of which are given by Eq.
(4.8) in Ref. [21].

Combining Eq. (2.23) with the corresponding one for
the 4&; 's and A, we find that if Eq. (2.16) holds in one
region (say, in the region where z) 0), then it will also
hold in the other (z (0), or vice versa. Therefore, we
have the following conclusions.

Theorem Assume tha. t [P,g ] is a solution of the BD
gravitional field equations (2.2) of the type (2.5) with
T„=O; then the substitutions (2.8) in the metric
coefficients g„and the BD scalar field P always generate
a new solution, which represents a plane domain wall in-
teracting with the BD scalar field through Eq. (2.19), sub-
ject to the restrictions (2.17), (2.18), and (2.21).

Having completed the general description for the
space-time of a plane domain wall coupled with the BD
scalar field, let us consider some specific models.

III. EXACT SOLUTIONS OF PLANE DOMAIN WALLS
WHEN COUPLED WITH THE BD FIELD

In this section we shall consider some exact solutions,
which represent the interaction of a plane domain wall
with the BD scalar field. Because of the theorem present-
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ed in the preceding section, one can see that finding such
solutions essentially reduces to finding solutions of the
BD field equations themselves. Thanks to the recent de-
velopment carried out in this direction, several methods
to generate new solutions have become available [27—29].
In this paper we shall use the method developed by Belin-
sky and Khalatnikov (BK) [30], which is essentially based
on the relations between the BD scalar field and a com-
mon massless scalar one. The main results of BK can be
summarized as follows.

If {Po,Mo, Uo, Vo, Wo] is a solution of the Einstein
field equations

wall, the corresponding surface energy density of it al-
ways exponentially decreases with the time increasing.
Moreover, the space-time is singular not only at the ini-
tial point t =0, but also at spacelike infinity. The proper
distance from the wall to these spacelike singularities is
finite, and inversely proportional to the square root of the
surface energy density of the wall.

Substituting Eq. (3.7) into (3.2) we find the solutions

M =2(1+AP)k ~z P(2—P+ A, )ln(sinh2kt)

—a(2/3+ A, )ln(tanhkt ),
+opv 4'o, p~o, v &

20o, 0o, Uo, . 4o, Uo,

(3.1a)

(3.1b)

U=2(1+AP)k ~z~
—( I+AP)ln(sinh2kt)

—ak, ln( tanhkt ), (3.9)

where R0„denotes the Ricci tensor built up from g0„,
and Po denotes the massless scalar field, then and

V=m ln(tanhkt), W=O,

{P,M, U, V, WI = {exp(Ago) ~Mo+APo Uo

+A.Po, Vo, Wo] (3.2)

zgtii, , (cothkt)
(sinh2kt) ~ (3.10)

is a solution of the BD field equations (2.2) with T„=O.
Here A, is a constant and related to the BD parameter co

via the relation
1/2

To have the solutions that represent plane domain
walls coupled with BD scalar field, in addition to the re-
strictions (3.8), the above solutions must also satisfy the
restrictions given by Eqs. (2.21) or (3.5), which now read

2
3+2' (3.3) p= ——3x . (3.11)

M„(t,O) = U„(t,O), V, ,(t, O) =0= W„(t,O), (3 4)

Note that Eq. (3.2) essentially represents a conformal
transformation of the metrics, the conformal factor is a
function of the scalar field.

The usefulness of the above theorem is attributed to
the facts that Eqs. (3.1) with the Szekeres metric (2.5)
have been exhaustively studied recently, and a huge class
of exact solutions is available now [31—33].

Inserting Eq. (3.2) into Eqs. (2.17), (2.18), and (2.21), we
find

—cx ~a~ac — — c

where
1/2

Q)+6
n

2co+ 3

(3.12)

(3.13)

Thus, we conclude that subject to the restrictions (3.8)
and (3.11) the solutions given by Eqs. (3.9) and (3.10)
represent a plane domain wall interacting with the BD
scalar field.

Combining Eqs. (3.3), (3.8), and (3.11) we find

U, (t, O) = — AP„(t,O),
3+2'

(3.5) Inserting Eqs. (3.7) and (3.11) into Eq. (3.6), on the oth-
er hand, we obtain

and

o =2exp{Mo(t, O)+2Apo(t, O)] Uo, (t, O) ~0 . (3.6)

(tanhkt)'

(sinh2kt)3~ ~~
(3.14)

Uo =2k ~z~
—ln(sinh2kt ), Vo =m ln(tanhkt ),

po=2pk ~z~
—pin(sinh2kt) —a ln(tanhkt ),

(3.7)

where a, P, m, and k are constant, and satisfy the condi-
tions

2(a —P )+m —1=0 and k )0 . (3.8)

Note that the above conditions are actually the direct
consequence of Eqs. (3.4) and (3.6). In Ref. [35], it has
been shown that regardless of the initial conditions of the

Recently, Wang [34,35] has studied a class of solutions,
which represents plane domain walls interacting with the
massless scalar field Po. These solutions are given by [35]

Mo =2k ~z~
—2P ln(sinh2kt) —2a/31n(tanhkt), Wo =0,

Obviously, when A, =O, i.e., co~ ~, the surface energy
density becomes constant, and the solutions reduce to the
ones discussed in Ref. [34], whereby it has been shown
that the reduced solutions represent Vilenkin's planar
domain wall [36] coupled with a massless scalar field. Be-
cause of the presence of the Po field, the horizons appear-
ing in Vilenkin s vacuum solution are replaced by space-
time singularities.

In the following we shall consider only the cases where
XWO. From Eq. (3.14) it is easy to show that o. has the
following asymptotic behavior

0, —/3&a&a, ,
o-t~' +~'~ const, a= —p, (3.15)

—a, &a& —p,
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as t ~0+, and that

o -exp[ —3A, kt] ~0, (3.16)

as t~+ oo. Thus, similar to the case for a massless sca-
lar field [35], the surface energy density of the wall always
exponentially decreases as the time increases, indepen-
dently of its initial conditions. The rate depends on the
choice of the parameter A, (which is essentially the BD pa-
rameter) and the integration constant k. Thus, by prop-
erly arranging the integration constant k, the walls could
disappear as fast as wanted. This is in contrast with the
vacuum walls formed in grand unified theories [37].
There it was found that the walls formed by the spon-
taneous violation of CP invariance are so heavy that their
existence would cause strong convict to the observational
constraints of MBR. Therefore, it was concluded that ei-
ther model with discrete symmetry breaking is ruled out
by cosmology, or there must exist some mechanisms that
could make the walls disappear in a very early time of the
Universe. The above example obviously shows the possi-

bility of introducing the BD scalar field into the models.
Of course, to see exactly how the BD field works, we
need, among other things, to fix these parameters by
some physical considerations, such as the initial condi-
tions. However, these conditions are quite model depen-
dent [37], and further investigations of them are quite in-
volved and need specific models of the Universe; this is
beyond the scope of this paper.

On the other hand, using Eqs. (C2) and (C3) given in
Appendix C it can be shown that the nonvanishing Weyl
and Ricci scalars in the regions outside of the wall are
given, respectively by

B 4 2 k2Bz a+pcosh2kt
sinh 2kt

(3.17)
2 ABk (2/3 —a )+aP cosh2kt

3 sinh 2kt

k 8
2 (2 [a+p cosh2kt +/3 sinh2kt [2H(z) —1]]

2

2sinh 2kt

+&[2P+(A, +4P)(a +P )+2a(1+4P +AP)cosh2kt

+2p(1+2p +Ap)sinh 2kt+2(1+2p +Ap)(a+pcosh2kt)sinh2kt[2H(z) —1]]),
O'Z'

4&@2= z
(2 [a+p cosh2kt —p sinh2kt [2H (z) —1]j

~

2sjnh 2kt

+k[2P+(A, +4P)(a +P )+2a(1+4P +AP)cosh2kt

+2p(1+2p +Ap)sinh 2kt —2(1+2p +Ap)(a+pcosh2kt )sinh2kt[2H(z) —1]]),
[a+P cosh2kt ],Amk AB

2sinh 2kt

k AB [2[a +p +2apcosh2kt]+A, [4p+A(a +p )+2a(2+Ap)cosh2kt]],
4sjnh 2kt

k 2 —3A, AB
12 sinh 2kt

(3.18)

J= 16(3%2+Vo+~),

K=8(~oo@22+@'Op+2&i&+18A ),
(3.19)

where R„& and C„& denote the Riemann and Weyl
tensors, respectively. C„& is usually thought of as

From Eq. (3.17) one can see that the gravitational field is
continuous across the wall without reAecting and absorb-
ing [12,13]. However, for the BD scalar field it is
di8'erent. In particular, the components Coo and %22 are
discontinuous across the wa11, although the components
No2, N», and A are continuous.

In terms of these scalars, the invariants

given by

I= 8 [2(3%22+TO+4)+ @~@22+2@o~+4&9„+12A ],

representing the gravitational field, and R„ the matter
field. The interaction between C„& and R„ is through
the Bianchi identities R [pp ]

0. To study the above in-
variants, let us consider the following asymptotic regions.

(i) The initial region ( ~z~ && t —+0 ). In this region, we
find that I, J, and K have the asymptotic behavior

const. , a = —p,
I,J,K —+ ' (3.20)

Thus, all the solutions given by Eq. (3.9) have big bang-
like singularities, except for the ones with a = —P. In the
latter case it can be shown from Eq. (3.17) that the corre-
sponding solutions are Petrov-type D, while in the gen-
eral case they are Petrov-type I.

(ii) The spacelike region (t « ~z~~+ oo ). Then, we
find that
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8~klzlI,J,K -exp —+ OO2'+ 3
(3.21)

which means that the solutions are singular at spacelike
infinity, too. It is this "bad" behavior that usually
renders such solutions as cosmological models doubtful
[38]. However, as we will show below, the proper dis-
tance from the wall perpendicular to these singularities is
exponentially increasing as the time develops. Therefore,
similar to the case for the massless scalar field [35],we ar-
gue that these singularities may be well extended beyond
our observational horizon, before they cause any
significant effects.

At a moment, say t = t i, the proper distance from the
wall to the singularities is given by

j Mnd 2(2'+ —3) —i( )
0 CO

(3.22)

where o. is the surface energy density of the wall, given
by Eq. (3.14).

Note that in the case of the massless scalar field, the
proper distance is inversely proportional to the square
root of cr [35]. Thus, in the present case the proper dis-
tance even exponentially increases faster than it does in
the case of the massless scalar field.

Combining Eqs. (3.15) and (3.22) we find that when
—p & a & a„ l becomes unbounded as t ~0+, when
a = —p it is finite, and when —a, & a & —p it becomes
zero, which means that in the last case the space-time
collapses into a singular point at t =0. On the other
hand, from Eqs. (3.16) and (3.22) we can see that with the
time developing l always increases exponentially, and the
rate of it depends both on co and k.

(iii) The light-cone region (~z~ —t~+ ~ ). In this re-
gion, it can be shown that

of the wall and the other of which is defined on the wall.
The equations on the wall take a very simple form; they
are given explicitly in terms of the metric coefficients, the

P field and their first derivatives. A method for generat-
ing exact solutions representing plane domain walls cou-
pled with the BD scalar field have been developed. In
fact, for any given solution of the BD field equations, the
substitution (2.8) always generates such a solution (sub-
ject to several restrictions).

As an illustration of the method developed in Sec. II,
in Sec. III a class of exact solutions has been presented,
and the main properties have been studied. In particular,
it has been shown that all the solutions (except for the
ones with a= —p) have big-bang-like singularities. The
walls start to expand at the initial point t =0, and with
the time developing, the surface energy density of it al-
ways exponentially decreases, independently of its initial
conditions. Thus, the introduction of the BD scalar field
to the inAationary models may provide a possible mecha-
nism to resolve the domain-wall problems encountered in
the GUT. In addition to the big-bang singularities, the
space-time is also singular at spacelike infinity. However,
since the proper distance from the wall to these singulari-
ties is exponentially increasing with the time developing,
the existence of them may not cause any additional harm
at all. All the above properties can be also deduced from
the seed solutions. Therefore, by studying one of them,
one can be able to know the main properties of the other.
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I,J, IC -exp I
—18k, kt ] ~0 . (3.23)

Thus, in the light-cone region the space-time becomes lo-
cally Hat.

(iv) The causal region (~z~ &&t~+ ~ ). Then, one can
find

I,J,K-expI —
—,'(3+9K, )kt }~0, (3.24)

IV. CONCLUSIONS

In this paper, plane thin domain walls interacting with
the BD scalar field have been studied. Using the distribu-
tion theory, the BD field equations have been divided into
two groups, one of which is defined in the regions outside

which means that the space-time becomes asymptotically
Oat, too, but the rate of it in this region is larger than the
one in the light-cone region. This is because of the fact
that the gravitational and the BD scalar waves propagate
along the hght-cone region.

Comparing the above results with the ones obtained
from the "seed" solutions, we can see that the main prop-
erties of the solutions do not change under the conformal
transformations (3.2). Thus, by studying one of them, we
can know the other.

APPENDIX A: THE WEYL AND RICCI SCALARS

%0= —
—,'B I V cosh''+(M —U )V coshW'

+2 sinh 8'V 8'

i [ W + (M, —U, ) I—V

—sinh W' cosh IVV, ]],
%&= —,', AB I2(M „—U „,+ W „W,+cosh WV „V,)

+i3coshW[V „W —V 8'„]],
44= —

—,
' A I V „„coshW+(M „—U „)V „cosh W

+2sinh8 V „8'„
+i [ IV „„+(M „—U „)IV „

—sinhIVcoshIVV „]],

(Al)

Corresponding to the choice of the null tetrad given by
Eqs. (2.2) and (2.3) in Ref. [21], the Weyl and Ricci sca-
lars are given by [22]
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Coo= —,'B [2U —U „+2U M —W, —cosh WV

4 „=,
' A—B[ 2M „+U „U,—W „W

—cosh WV„V
4oz= —,'AB [2coshWV „„—coshW(U „V + V „U )

+2 sinh W( V „W + V W „)

and

@BD g BD
O01

APPENDIX C: THE WEYL AND RICCI SCALARS
UNDER A CONFORMAL TRANSFORMATION

(B3)

i[—2W„„(U—„W +W„U )

—2 sinh W cosh WV „V ]], (A2)

@»=—,
' A [2U „„—U „+2U „M „—W „—cosh WV „I,

A = —
—,', AB [ 2M „+4 U „3U—„U —W „W,

—cosh WV„V
—Xg„=e go (C 1)

Assume that the interval dso is related to ds given by
Eq. (2.5) by a conformal transformation

APPENDIX B: THE SCALARS
A 4",AND A

(A3)

(A =0, 1,2), (C2)

where X is function of u and v only, then it can be shown
that the %'eyl and Ricci scalars in the two cases are relat-
ed by

(B1)

In terms of T„,the N,"'s and A are given by
@M ] Tm ~p~v @M ] TMn pn v

00 T pv & 22 T pv

gM= l TM1~~ q =-'T ~&m01 p )Mv 02 T pv

p v ~M ] TM
12 p pv Z4

4M= 'T„(l"n—+m "m ) .

Similarly, the @BD's and A, in terms of p and its
derivatives, are given by

B

and

@0,=@,0+ —,
' [2X „+X,(2M, , -+y

@»=4»+—,'[2X „„+X„(2M, „+y

@oz=@oz——,
' [cosh Wo(X „Vo,+X, Vo „)

i ( X „Wo, +X, Wo „)], (C3)

i'�„=N„+—,
' [2X „,+2 „X,+X „Uo „+X, Uo „I,

@cP=— [cosh W(P „V,+P, V „)

i ( tti „—W, +P, W „)],
2P „,+P „U „+P,U „+

3(2P „.—P „U,—P „U „)+

(B2)

A =A —
—,
' [2X „,—X „X,—X „Uo, —g, Uo „],

where quantities with the index zero denote the ones cal-
culated from go„, and quantities without the index zero
denote the ones calculated from g„. Note that all the
Weyl and Ricci scalars appearing in Eqs. (C2) and (C3)
stand for the "scale-invariant" ones defined by Eq. (4.8)
in Ref. [21].
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