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Gravitational radiation from colliding vacuum bubbles: Envelope approximation
to many-bubble collisions
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We introduce an approximation to calculate the gravitational radiation produced by the collision of
true-vacuum bubbles that is simple enough to allow the simulation of a phase transition by the collision
of hundreds of bubbles. This "envelope approximation" neglects the complicated "overlap" regions of
colliding bubbles and follows only the evolution of the bubble walls. The approximation accurately
reproduces previous results for the gravitational radiation from the collision of two scalar-field vacuum
bubbles. Using a bubble nucleation rate given by I = I oe~', we simulate a phase transition by colliding
20 to 200 bubbles; the fraction of vacuum energy released into gravity waves is Eow /E„, =0.06(H/i3)
and the peak of the spectrum occurs at tv, „=l. 613 (0'= 8rrGp/3 is the Hubble constant associated with
the false-vacuum phase). The spectrum is very similar to that in the two-bubble case, except that the
e%ciency of gravity-wave generation is about five times higher, presumably due to the fact that a given
bubble collides with many others. Finally, we consider two further "statistical" approximations, where
the gravitational radiation is computed as an incoherent sum over individual bubbles weighted by the
distribution of bubble sizes. These approximations provide reasonable estimates of the gravitational-
wave spectrum with far less computation.

PACS number(s): 04.30.+x, 98.70.Vc, 98.80.Cq

I. INTRODUCTION

The cosmic background of gravitational radiation pro-
vides a unique probe of the early Universe. Unlike elec-
tromagnetic radiation, gravity waves propagate virtually
unimpeded since the Planck epoch, providing an
unmodified record of cosmic events. Possible cosmologi-
cal sources include the thermal background (the graviton
analogue of the microwave background), inflation [1],
cosmic strings [2], a pregalactic star population [3], and
phase transitions [4]. In particular, strongly first-order
phase transitions are among the most promising of all
these sources [5]: The energy released in gravitational
waves can approach 1% of that in the ambient thermal
bath.

In a recent paper we initiated a detailed investigation
of gravity-wave production from strongly first-order
phase transitions by calculating the radiation from two
colliding vacuum bubbles [6]. Beginning with a scalar-
field configuration corresponding to two bubbles nucleat-
ed simultaneously and far apart, we used the Klein-
Gordon equation to evolve the scalar field for a time ~
comparable to the initial bubble separation. (In realistic
phase transitions the duration of the transition is compa-
rable to the typical separation of nucleation sites [7].)
From the scalar-field configuration, we calculated the
stress-energy tensor and, in the linearized gravity approx-
imation, the energy spectrum of radiated gravity waves.
The pair of vacuum bubbles radiates efFiciently: The frac-

tion of energy that goes into gravity waves is
2

Evac
=1.3X10 ' 7

H

where E„, is the total energy liberated by the two vacu-
um bubbles, ~ is the total time of the bubble evolution,
expected to be of order 0.01 to 1 of H ', and
H =8~Gp„,/3 is the Hubble parameter associated with
the vacuum energy. The spectrum of radiation peaks at a
frequency

+max (2)

These results imply that vacuum bubble collisions can
indeed be potent sources of gravitational radiation. How-
ever, our work has its limitations, the foremost being the
use of a time cutoff to model the end of the phase transi-
tion. Specifically, we smoothly ramped the scalar-field
gradients (the source of gravitational radiation) to zero
after a time ~. While such an ad hoc prescription greatly
simplifies the problem and is probably reasonable, it
clearly neglects multibubble effects. The motivation for
colliding many bubbles is to model more realistically a
phase transition.

A direct attack on the many-bubble problem employ-
ing scalar-field evolution is numerically infeasible. The
two-bubble problem was made tractable by exploiting the
O(2, 1) symmetry possessed by the space-time of two vac-
uum bubbles, which makes the scalar-field evolution
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effectively one, rather than two, dimensional. Even the
slight generalization to a pair of bubbles nucleated at
different times, a situation still having rotational symme-
try about the axis connecting the two bubbles, proved
nearly impossible. The most general case of many bub-
bles in three dimensions has no symmetries and is beyond
present computing capabilities. The problem is dificult
numerically because of two disparate scales. The bubble
wall thickness at nucleation is small compared to the size
of the bubble at collision; moreover, the bubble wall be-
comes thinner due to Lorentz contraction as the bubble
expands.

To proceed further requires dispensing with the de-
tailed dynamics of the scalar field. The results of our
two-bubble simulations suggested an elegant approxima-
tion. The spectrum and amount of gravitational radia-
tion depended only on the gross features of the bubble
collisions: the vacuum energy and the size of the bubbles
at the end of the phase transition (i.e., the cutoff time).
Even though the field dynamics after a bubble collision
are quite intricate, the overall contribution to the radia-
tion from the complicated small-scale motions adds in-
coherently and is subdominant. This prompted us to
consider an "envelope approximation": The bubbles are
treated as infinitely thin, and in the regions where bubbles
overlap, the bubble wall is completely ignored. Only the
envelope of the evolving bubble network is considered.
As we shall discuss, the envelope approximation very ac-
curately reproduces our previous results for two colliding
bubbles and allows us to model a phase transition with
the collision of hundreds of bubbles. %'hen applied to a
phase transition where the bubble nucleation rate in-
creases exponentially with time, I cc exp(Pt), the fraction
of vacuum energy liberated in gravitational waves is
found to be

=0.06
Evac

2

(3)

or about five times the efficiency estimated from the col-
lision of two bubbles (for such a nucleation rate, the dura-
tion of the transition is r- few P).

The paper is organized as follows. The next section de-
scribes the envelope approximation, with detailed com-
parisons to the previous two-bubble results obtained from
scalar-field evolution [6]. In Sec. III we first review some
pertinent aspects of bubble nucleation theory [7], and
then present our numerical results for the gravitational
radiation from large numbers of colliding bubbles. In
Sec. IV, we present another approximation that treats the
production of gravitational waves in a statistical sense:
as the incoherent sum of radiation from individual bub-
bles, weighted by the distribution of bubble sizes. Many
of the results in Sec. III can be reproduced by this simple
recipe, and with far less computation. We finish with a
summary of our work and some concluding remarks. A
review of tensor spherical harmonics and some auxiliary
formulas used in Sec. IV are relegated to an Appendix. A
summary of the results of this paper and our earlier work
[6], as well as the application of our results to cosmologi-
cal phase transitions, is presented elsewhere [8].

II. ENVELOPE APPROXIMATION

A. Review of vacuum bubbles

The dimensionless number e measures the degree of sym-
metry breaking between the two minima near +cp0. The
relative minimum corresponding to +cp0 is the "false vac-
uum, " while the global minimum corresponding to —

«p0

is the "true vacuum. " The vacuum energy density is
defined as the difference in energy density between the
true and false vacua; here, p„,=2@k,y&. The height of
the potential barrier between the two vacuum states is
about A,iso/8. The relevant features of the potential are
that it possesses two inequivalent local minima differing
in vacuum energy by p„„and that the height of the bar-
rier between the two minima is large enough so that the
false vacuum decays via quantum tunnelling.

Classically, the false-vacuum state is stable, but quan-
tum effects cause its decay to the true-vacuum state. This
decay proceeds via the quantum nucleation and expan-
sion of bubbles of the true-vacuum phase, which spon-
taneously appear from the false-vacuum state. Coleman
has shown that the bubble with minimum action is O(4)
invariant in Euclidean space [9]; the initial bubble profile
is obtained by analytically continuing to Minkowski
space and taking the t =0 time slice. The vacuum bubble
then evolves according to the Klein-Gordon equation and
has O(3, 1) symmetry; i.e., the scalar field y is a function
only of the quantity t —x —y —z . The energy
difference between the true and false vacuum phases
creates an effective outward pressure on the bubble wall,
causing it to expand with constant acceleration. For our
purposes, the important aspects of bubble dynamics are
that the expansion speed rapidly approaches the speed of
light and that the false-vacuum energy liberated becomes
kinetic and gradient energy of the bubble wall [10].

The bubble's symmetry allows us to quantify the above
statements while deriving a result that will be useful in
the envelope approximation. First, the O(3, 1) symmetry
immediately implies that the position of the bubble wall
is given by

x —t =R
wall 0 (6)

where R0 is the initial radius of the bubble and x,ll

denotes a fiducial point within the bubble wall. Next,
consider the stress-energy tensor associated with the ex-
panding bubble:

T„( tx)=B„@By —g„~ .

The energy density in the scalar field is given by the

We consider a real scalar field cp with a potential pos-
sessing two nondegenerate local minima:

X =
—,'8"rpB„@—V(y) .

Throughout we use a metric with signature (+ ———).
The exact form for the potential is not important, but
where needed we use
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1
T00(x, t)=— + v(y),

time-time component of the stress tensor:
2 2

(8)

close to Ro,' when t »Ro, each term in the integrand ap-
proaches (dy/ds) t Is.

B. Envelope approximation
where we have used the spherical symmetry of the bubble
solution. The bubble's O(3, 1) symmetry can be used to
write the energy of the bubble wall at any time t as

2

E(t) =4m f dr r 1 By 1 By+ (9a)
2 Bt 2 Br

2
Q(s~+r ) +(s +r )+=2~ f ™ds

0 ds

(9b)

where s =Mr —t and g(s)=y(r, t =0) is the profile of
the initial bubble solution. Note that for r & t,
d cp/ds =0 so the integral is zero. The two terms
represent the kinetic and gradient energy of the bubble
wall. We neglect the potential energy term inside the
bubble wall as it rapidly becomes unimportant as the bub-
ble wall gets thinner; we have not included the false-
vacuum energy outside the bubble, as we are only in-
terested in the energy liberated by the bubble. In Fig. 1,
the kinetic and gradient energy for a bubble are shown as
a function of time. After a short time, the energies be-
come equal; each is half of 4'„,t /3, the total vacuum
energy liberated by the bubble. From Eq. (9b) it is simple
to see that gradient and kinetic energies are equal and in-
crease as t for t »Ro: dy/ds is only nonzero when s is

As in our previous paper [6], we compute gravity-wave
production in the linearized gravity approximation, valid
for bubble sizes less than H ' (recall H =8~6p„,/3).
The energy radiated in gravitational waves can be ex-
pressed in terms of the Fourier transform of the spatial
components of the scalar-field stress-energy tensor. Fur-
ther, in computing T; (k, co) we may neglect the Xg,"
piece as it is a pure trace and does not act as a source for
gravitational radiation. Thus the fundamental quantity is

T, .(k, co)= f dt e'"' f d x r);pB ye (10)

where k is a unit wave vector. As before, we adopt
Weinberg's unusual normalization convention for the
Fourier transform I 1 1]. The scalar-field configuration of
interest is that of many colliding vacuum bubbles. In the
envelope approximation we assume that the overlap re-
gions where bubbles have expanded into one another do
not contribute substantially to the gravitational radiation,
and exclude these regions from the spatial integration
(see Fig. 2). We can then break up the integral into in-
tegration regions, one surrounding each nucleation site
and extending out to the bubble radius. Equation (10) be-
comes
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FIG. 1. The kinetic (dashed curve), gradient (dot-dashed curve), and total (solid curve) energy of a single expanding vacuum bub-
ble. The scales are arbitrary; the bubble has initial radius of about 10, in the same units as t. Note that by t =20, when the bubble
has approximately doubled in size, the total energy scales almost exactly as t, the vacuum energy liberated by a bubble expanding at
the speed of light from zero initial size, and resides equally in the kinetic and gradient energies of the bubble wall.
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T,, (k, co)= f dt e'"' g f dQ'e
2m o

where X is the number of bubbles, S„ is the portion of the
surface of bubble n that remains uncollided at time t, and

I

the primed spherical coordinates are chosen independent-
ly around the center of each bubble. We have also as-
sumed that the wall thickness is small compared to co

mar &( 1. This means e ' " is essentially constant
across the bubble wall and can be factored out of the r'
integral. In practice, for the frequencies of interest, this
is always an excellent approximation.

Next we use the fact that each bubble is spherically
symmetric around its center, so that y is independent of
the angular variables. Dropping the primes for notation-
al convenience, the stress tensor components become

T~~(k, co)= f dte' ' g e
' *" f dQe ' *x;x f drr2

n=1 n

(12)

where x„ is the nucleation site of the nth bubble and x, is
the ith component of a unit vector pointing from x, in
the direction d Q:

(12) leads to

x =sin9cosg, y =sinO sing, z =cos9 .

Above we showed that the kinetic and gradient energies
associated with a bubble wall are equal after a small
amount of bubble expansion. Using Eq. (9a), for each
bubble we have

—izaak x~ ~
Sn

(14)

2

vT dl' 7 R Pvac
By 4'
Br

(13)

where t„ is the nucleation time of bubble n.
The total energy radiated in gravity waves is given in

terms of T; (k, co) by [1.1]

where the bubble radius R(t)=t. This is very good ap-
proximation by the time a bubble has doubled in size; cf.
Fig. 1. Substituting t p„,/3 for the radial integral in Eq.

0

=2Gco A; i (k)T;*(k,co)T( (k, co),
dco dA

(15)

where A, I is the projection tensor for gravity waves:

A, I (k)—:6;,5, —2k k 5;I+ —,'k, k k)k

—
—,'5, 6I + —,'6, k(k + —,'5( k, k . (16)

(a)

(b)

C. Scaling properties

From Eqs. (14) and (15), two important scaling rela-
tions are evident. First, the total radiated energy is ex-
plicitly proportional to p„„,just as we found previously
in the two-bubble case [6]. Second, since the bubbles ex-
pand at essentially the speed of light and to a good ap-
proximation have zero thickness and zero initial size, the
problem has no intrinsic length/time scale. Making the
transformation t ~yt, x—+yx, we find the following scal-
ing properties:

(17a)
'V

dE 6 dE
dc' dA de) dA

(17b)

FIG. 2. A schematic picture that illustrates the envelope ap-
proximation. The dark lines are the bubble walls, expanding at
the speed of light. The shaded areas are the interaction regions;
the envelope approximation neglects the interaction regions and
takes into account only the bubble envelopes. (b) is at a some-
what later time, and three new bubbles have been nucleated.

5Er.w r Er,w . (17c)

The length/time scale is set by the average separation be-
tween bubble nucleation sites.

Equations (17) show that the total energy radiated
from a volume containing a fixed number of bubbles will
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vary with the fifth power of the mean bubble separation.
As we will show in the next section, these scalings can
also be expressed in terms of the bubble nucleation rate,
since the typical separation of nucleation sites is deter-
mined by the nucleation rate. For the two-bubble case,
the above scalings were found previously to hold to very
good accuracy [6], where the relevant scale is the total
evolution time. These scalings have great practical im-
portance as they allow us to apply the results of a single
numerical simulation to any phase transition with a bub-
ble nucleation rate of the same functional form. In par-
ticular, we shall use the functional form I ~ e~'—a nu-
cleation rate that increases exponentially with time —in
which case the length/time scale is just P

D. Two bubbles, quadrupole approximation

point. The quadrupole approximation simplifies the re-
quired calculations and, in the limit co~0, gives the
correct result; thus we use it as a starting point for our
comparisons.

Consider two bubbles of negligible initial size nucleated
simultaneously at t =0 on the z axis at +d/2. The bub-
bles will first "kiss" at t=d/2. Define cose=d/2t for
t )d/2 and a=0 for t (d/2; a is the angle excluded
from the angular integration because of bubble overlap in
the envelope approximation. Then

T,, = "" f dt e' 't f d0sin0 f dPx x

+ f d0sin0 f dPx;x,
a 0

In order to determine the accuracy of the envelope ap-
proximation, we compare the results it gives for two bub-
bles to the results calculated previously with the exact
scalar-field evolution [6]. As a warmup, we begin with
the conventional "quadrupole approximation, " corre-
sponding to the limit k.x~0:

N

TJ(k, co)= f dt e'"' g (t —t„)6a o

Using the spherical coordinates defined in Eq. (12),

3 d/'2 3 2 24

and

(19)

(20a)

dQ (18)
2pvac

9 d/z 8
(20b)

Note that because our source is not small compared to
the wavelength of the radiation, this approximation does
not correspond to the quadrupole term in the multipole
expansion; see Ref. [6] for detailed elucidation of this

where we have included a time cutoff function C(t),
which decreases smoothly from 1 to 0 on a time scale
r=O(d). As mentioned earlier, the cutoff was intro-
duced in our previous two-bubble calculations to model
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FIG. 3. The energy spectrum of radiation from two colliding bubbles, in the quadrupole approximation. The units are the same
for both curves, but arbitrary. The dashed curve is the result from detailed scalar field evolution (Ref. [6]), and the solid curve from
the envelope approximation.
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the completion of the phase transition; C(t) is discussed
in detail in Ref. [6].

Rotational symmetry around the z axis implies the off-
diagonal components of the stress tensor are zero, and T,
must be of the form

T, =D(to)5; +6(o~)6,,5,, (21)

3P d, „, d d ~ C( )
3 d/'2 8 2

Substitution into Eq. (15) gives

dE 2 2. 4 dE 32~
dc' dA

=G~'I ~(~)I'»n'9, = G~'I &(~)I' .de 15

(23)

The comparison of the envelope approximation with
the previous calculations using scalar-field evolution is
shown in Fig. 3. (For reference, in the scalar-field evolu-
tion case we used ~/d =1.2 and a Gaussian rolloff in the

I

The first term, being a pure trace, does not contribute to
gravitational radiation. The second term is

b, (co) —= T„——,'( T, + T )

final 10% of the evolution time for C(t); see [6].) The
features of the spectrum are reproduced remarkably well.
The overall normalization of the envelope approximation
is high by 20%. It may seem strange that the total power
radiated is higher from an approximation which neglects
a chunk of the source. However, when two bubbles col-
lide, a rejected wave begins to propagate outward from
the point of collision. This wave takes the approximate
shape that the colliding portion of the bubbles would
have had they not collided. By neglecting the interaction
region, we actually make a given bubble less spherical
and, hence, increase the amount of radiation.

E. Two bubbles, full linearized gravity approximation

For two bubbles in the full linearized-gravity approxi-
mation, we can derive formulas analogous to those used
with the scalar field evolution. As in the quadrupole
case, let the bubbles be nucleated at t =0 and at
z =+d/2, with rid =1.2 and the same time cutoff func-
tion. The problem possesses rotational symmetry about
the z axis, so without loss of generality we take k =0,
k =cosine, k, =cocos'. Using the same conventions as
in the quadrupole case, the stress-energy tensor com-
ponents are given by

T,"(k, oc)= f dt e' 't C(t) e ' dOsinO f dPe '"'"x,x +e' '" f dOsinO f dPe '"'"x;x
0 0

1 J

The P integral can be done explicitly using the identity

e'~"' cosnx dx =2i "~J,

(24)

(25)

resulting in the expressions

T (k, co)= " ' f dt e' 't C(t) dOsin Ocos(k, t cosO+ —,'k, d)[JD(k„t sinO) —J2(k t sinO)],
3 0 0

(26a)

T~(k, co)= f dt e'"'t C(t) dOsin Ocos(k, t cosO+ ,'k, d)[J&(k t s—inO)+J2(k t sinO)],
3 0 0

(26b)

T„(k,co)= dt e' 't C(t) dOsinOcos Ocos(k, t cosO+ ,'k, d)Jo(k„t sinO—),
3 0 0

(26c)

T„,(k, to)= " f dt e'"'t C(t) dOsin 9 cosOsin(k, t cosO+ ,'k, d)Ji(k t sinO—) .
3 0 0

Note that Tzy Ty =0. The energy radiated in gravity waves simplifies to

(26d)

=Gn
I T„(k,co)sin g'+ T„(k,co)cos g T(k, co) —2T,—(k, o~)singcosgI (27)

In Fig. 4 we compare the envelope approximation with
the previous results using scalar-field evolution. As in the
quadrupole case, the agreement is excellent, with the en-
velope approximation power being slightly greater.

III. NUMERICAL METHODS AND RESULTS

A. Bubble nucleation [7]

The envelope approximation closely reproduces the
gravitational radiation from a two-bubble collision, even

I

showing the same features in the spectrum. This gives us
confidence to apply the approximation to the situation
where many bubbles are nucleated, collide, and transform
all of space to the true vacuum. In a phase transition the
bubble nucleation rate per unit volume, I, is, in general,
a function of time, due to its dependence upon the tem-
perature of the universe or the evolution of other fields.
Since very generally I" is the exponential of some action,
we write it as

(28)
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FIG. 4. The energy spectrum from two colliding bubbles in the full linearized-gravity approximation. The units are the same as in
Fig. 3. The solid line is the envelope approximation, which reproduces well the results from detailed scalar-field evolution [6], the
dashed curve.

The prefactor C is expected to be of the order of JM,
where At is the mass or energy scale characterizing the
transition. The tunneling action 3 (t) must be greater
than order unity; otherwise, the transition will not
proceed via bubble nucleation but through spinodal
decomposition because of the very small potential barrier
between the false and true vacuum states. [For the form
of the potential in Eq. (5), A )& 1 obtains for e « 1.] The
fact that the nucleation rate varies with time is crucial to
the completion of the phase transition; moreover, how
fast it varies with time determines the distribution of bub-
ble sizes. As a rough rule, the phase transition completes
when one bubble is nucleated per Hubble volume per
Hubble time, i.e., when I (t)/8 —1. Denote the com-
pletion time, about which we shall be more specific, by
t„. Expanding 3 (t) about t„gives

(30a)

where a (t) is the cosmic scale factor, r(t, t') is the coordi-
nate radius at time t of a bubble nucleated at time t', and
to is the time at which the phase transition begins [12].
For simplicity and consistency with our previous neglect
of the expansion of the Universe, we take a to be constant
and ar(t, t') =t —t'. The neglect of the expansion is
justified provided the duration of the transition is less
than H '. The second assumption implies that bubbles
expand to a size far greater than that when nucleated,
which is well justified in the cases of interest. Taking
tp ~ ~ with little error, it follows that

d lnI
dt

Then the false-vacuum fraction is given by

(t) e
—1(t) e

—8~I (t)IP (31)

where A „=—A (t„). In any sensible model, 13)0; i.e., the
nucleation rate grows with time. As we shall see, P
sets the time/length scale for the phase transition.

We now derive some important results for the ex-
ponential nucleation rate. The fundamental quantity is
p (t), the probability that a given point in comoving space
remains in the false vacuum at time t. It is given by
p (t) =exp[ I(t)], where I(t) is the expe—cted fraction of
space occupied by true-vacuum bubbles at time t, without
regard to bubble overlap:

where the exponentiation accounts for the bubble over-
lap. From p (t) we can compute the duration of the phase
transition and distribution of bubble sizes. The start and
end of the transition are somewhat dificult to define pre-
cisely, but this ambiguity is not important. To be
specific, we can define the start of the transition to be the
time t when p(t )=e =1, i.e., m «1. Similarly, we
define the end of the transition to be the time t, when

p(t„)=e M=O, i.e., M »1. The duration of the transi-
tion is thus
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6t =t, —t =ln (32)

and depends only logarithmically upon the precise
definition of the start and end of the phase transition.
Note that the duration of the phase transition is set by
P ', and that for consistency our neglect of the expan-
sion of the Universe requires the duration to be less than
a Hubble time: P ' «H

The density (per unit volume) of bubbles of a given ra-
dius r at time t is related to I (t) and p (t) by

Finally, how is the key parameter P related to H and
JM? Since H ' sets the scale for all time evolution in the
Universe, on very general grounds we expect
P= —(BA/r)t), to be of the order of A(t„)/H ', or

P '-H '/A„. If the transition is to proceed via vacu-
um bubbles, A~ must be much greater than one, so the
assumption that the transition if "fast", P ' «H
should generally be satisfied. We can also estimate A~:
I (t, )=JR e *-H W-/mp&, which implies that 3„
should be of order ln(m p& /A ).

B. Numerical results

(33)

In the previous sub-section we have motivated the use
of an exponential nucleation rate; specifically,

1 (t) = I oeP' . (36)
The distribution of bubble sizes attains its maximum at

1r(t) =—lnI(t) (34)

nE P I(t)p„„
6

r exp[ I(t)e ~"—Pr —
] . (35)

This distribution is peaked at a radius twice as large as
dn /dr (see Fig. 5).

and has a width of order /3 '. In discussing gravitational
wave production it is more appropriate to examine the
energy-weighted bubble distribution. Since the energy
carried in the expanding wall of a bubble is proportional
to its volume, this distribution is obtained by multiplying
dn/dr by 4mr p„,/3:

As we have discussed, I3
' sets the fundamental

time/length scale: Both the duration of the transition
and the typical bubble size are of order a few P '. We
use a spherical volume and choose I o so that, on average,
the desired number of bubbles are nucleated in the sam-
ple volume. Our main calculations (see below) use a sam-
ple volume with a radius of 4.46P ' and 1 0= 1.38
X10 II . These parameters yield an average of around
30 bubbles in the sample volume. For our five difterent
nucleation runs, the time at which the phase transition
completes varied from 5P ' to 6P ', with an average of
5. 63P '. (We use the time when the last bubble is nu-
cleated in the sample volume as the completion time of
the phase transition. )

A "nucleation run" proceeds as follows. For each time

.12
I I I I I I I I I

.08

.06

.04

.02

0
0 10

FIG. 5. The distribution of bubble sizes, both unweighted and weighted by the bubble s total energy, for the exponential nu-
cleation rate I (t) = I Oe~'. The energy-weighted distribution peaks at a radius that is almost twice as large.
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t=4.48p
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FIG. 6. A slice through a spherical sam le volume
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I
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I I I I

I

3

3

.01

.003—
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10

FIG. 8. The energy spectrum per frequency octave, divided by the vacuum energy of the sample volume. The points with error
flags are averaged over the five different simulations and integrated over six directions per simulation. The error bars reflect the stan-

dard estimate for the deviation of the mean. The solid line is the spectrum for two bubbles, calculated using scalar-field evolution [6],
with r=3.2p. The solid triangles are the results of the 180-bubble simulation (integrated over six directions).

octave averaged over all five simulations, six directions
per simulation (excluding the one anomalously "hot"
direction); the error bars indicate the statistical deviation
of the mean. On the same plot we show our previous re-
sults for the collision of two scalar-field bubbles [6]. Re-
call that the previous results depend upon the cutoA' time
r, which corresponds to the duration of the transition.
To compare the old results with the present ones, we set
r=3.2/P. We choose this value for r because it is the
mean energy-weighted bubble size at the end of the phase
transition (cf. Fig. 5). We have divided our results by the
total vacuum energy of the sample volume, so the results
shown are the fraction of false-vacuum energy liberated
in gravitational waves per octave. The two-bubble and
many-bubble results are remarkably similar: behavior at
high and low frequencies is almost identical, and the
peaks are at almost the same frequency. The overall nor-
malization of the many-bubble case is higher, by a factor
of 5 or so on the low-frequency side and by an order of
magnitude on the high-frequency side. This increase is
not unexpected: In the many-bubble case, each bubble
collides with many others, increasing its total radiation.
The excess of high-frequency power also makes sense,
since the size of a given bubble roughly determines the
frequency at which it radiates. In the two-bubble case,
both bubbles are the same size; in the many-bubble case,
smaller bubbles are nucleated late and increase the high-
frequency power.

The total fraction of vacuum energy released in gravi-
tational radiation is computed by integrating dE/des and
dividing by the total vacuum energy released:

EGw Gpvac=0.50, =6.0X10 '
E„, p' /3

2

(37)

The peak of the energy spectrum is given by co,„=1.6/3.

We note that the characteristic frequency defined by the
maximum of the energy-weighted bubble distribution
co, =2m/rz --1.6/3 coincides with co,„. Comparing these
results with our previous two-bubble results (taking
r = 3.2/P), the peak of the spectrum occurs at the same
frequency, while the total fraction of energy liberated in

gravity waves is about a factor of S larger.
To verify that our results are not dominated by edge

eftects, we ran one large calculation in a spherical sample
volume with twice the radius of the above simulation and
the same nucleation rate, 180 bubbles in all. The radia-
tion spectrum dE/de, integrated over the six observa-
tion directions, is plotted in Fig. 8. The shape of the
spectrum is close to the average of the previous cases,
and Eow /E„„=0.47Gp„„/P . The close correspon-
dence (only 5% difference) with our smaller simulations
demonstrates that edge eAects are not important.

IV. STATISTICAL BUBBLE APPROXIMATION

Now we discuss two approximations for computing the
gravitational-wave production from the collision of many
bubbles as the incoherent sum of the radiation from indi-
vidual bubbles. To this end, we use the multipole-
radiation formalism and the envelope approximation ap-
plied to a typical bubble of size R, and integrate over the
distribution of bubble sizes. The advantage of such an
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2

TJ(x, t)=x;x, ' e(Q, t)r)cp(r, t)
Br

(38)

where 0 is defined as

1 surface in direction 0 remains uncollided,en, t =.
0 otherwise.

(39)

When the bubble wall has completely disappeared due to
I

approach is ease of computation: We can immediately
calculate the radiation spectrum for a given nucleation
rate, without recourse to a many-bubble simulation. Of
course, this approach neglects coherent effects between
bubbles and is less accurate than our calculations of the
preceding section, but as we shall see it still gives a
reasonable estimate of the gravitational radiation pro-
duced.

Consider a single expanding bubble in a sea of bubbles.
In the envelope approximation, when the bubble in ques-
tion begins interacting with other bubbles, portions of the
bubble surface are "eaten. " Neglecting the interaction
regions between bubbles, the stress tensor for what
remains of the bubble is

collisions with other bubbles, the function 8 is zero. This
means that an individual bubble can be treated as a
source that is bounded in space and time: b t, bx ~ O(r),
where ~ is the duration of the phase transition. The size
and energy density of a given bubble at any time during a
phase transition is known; the function 0 varies from
bubble to bubble. Our statistical approximation boils
down to estimating an "average" e($1, t ).

A. Multipole-radiation formalism

Using the tensor spherical harmonics presented in the
Appendix, we can expand the transverse-traceless part of
the metric perturbation (i.e., the gravity wave piece) in
the far field zone (r ))r) as follows [13]:

g co 1, d 1

rT(t r) g g I™(tr)TE2 lm(Q)
1=2m = —l

elm(t )TB2, lm(~)
dtl v

(40)

where the I™and the S™are the "mass" and "current"
multipole moments of the source, respectively, defined by

lm . I+2lI (t)=8( —i) + r' dr'dO, 'dt'da«e ' " ' 'r (t', v', 0')

X [a 2(l)T„' (0')*j l 2(ciir') —ao(l)T ' (0')*j((air')

+a2(l)Tp'+ ' (f),')*jl+2(car')], (41a)

lm ~ 1+2iS™(t)=8(—i) + r' dr'dA, 'dt'defoe '"" ' 'r (t', r', 0')
dt

X[a,(l)T ' " (0,')ji, (a«r') —a, (l)T '+" (0')*ji+,(a«r')] . (41b)

The tensors T " (0) and the coefficients a, are given by Eqs. (A2) and (A4) in the Appendix, jl is the spherical Bessel
function of order l, p and q are indices of the tensor components, and 7

pq
is the sum of the stress-energy tensor of matter

(T ) and the Landau-Lifshitz pseudotensor for the effective stress-energy of the gravitational field. Since we are using
the linearized gravity approximation (appropriate, since all gravitational effects are weak; see Ref. [6]), r = T . The
effective stress-energy tensor for gravity waves is

32~6 „ (42)

and the power radiated in terms of the multipoles,

dl+1 dl+1
p(t) — y Ilm + elm

32~ dt 1 + I dtl, m

(43)

where angular brackets indicate a spatial average over several wavelengths.
The expressions (41) can be simplified considerably. First, only the exponential factor and the Bessel functions de-

pend on co. The m integration can be performed explicitly using the identities

(
—i)"vrP„(y), ~y ~

& 1

f dx e ' «j(x)— (44)
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where P, are the Legendre polynomials. This gives

G

,
I' (t)=8'( —1)' f r' dr' f dn' f d7)r„&(t —rlr', r', n')

X [a 2(l)T ' ' (n')*PI 2(71)+ao(l)T " (n')*PI(rt)

a (1)?2!+2,™(ni)eP (45)

Now for a single bubble nucleated at t =0, the O(3, 1) symmetry of the scalar-field bubble configuration allows transfor-
mation of the radial integral:

I (t)=8m( —1) f d f "
ds[Qt +s2(1 2) —t—]

where

P, (q) f dn a'+" (n )e n, '
i = —2, 0, 2 1 —~' (46)

A'' (n')=—a, I(l)T"' (n')*x (n')x (n') (47)

Here s =')/r (t rg) i—s—the only quantity the scalar field depends upon, p'(s) =BitI(r, t =0)/Br, and x is the unit vec-
tor in the direction of O'. Explicit expressions for the 3 ' ' are given in the Appendix. The further substitution

t 71+t2—+s2(1 —rl') t —y
l —g

7 g &y2+S2

gives

G

dti o s
[

ds f (s +yt)
2 2

y 2+S2 p, ,
' y f dn ~i+'-(n )e(ny) . (48)

= —2o2 +y +~

This expression can be simplified by noting that (1) d olds is nonzero only when s is smaller than the initial bubble ra-
dius, and (2) the angular integral is zero until the bubble first collides, which by assumption is only after the bubble has
expanded by a very large factor. Thus y ))s and to a very good approximation s can be set to zero in the integrand of
the y integral. Now using Eq. (9b), the s integration can be performed to give p„,/3; Eq. (48) becomes

I
I™(t)= (

—1)'p„,t f dy g Pi+, ——1 6'+" (y), (49)

where

6'+i~™(t)=f dn' 3'+i~™(n')6(n',t) . (50)

Note 6 +" vanishes (by spherical symmetry) until the
bubble first collides; likewise, 0'+" vanishes for t ~R,
where R is the size of the bubble when its surface has
completely collided, since 6(n, t ~ R ) =0. Analogous
formulas hold for the current multipole moments S',
but they vanish because the tensor-spherical harmonics
contracted with the unit vectors are identically zero (see
Appendix).

The multipole radiation from a single bubble is only
nonzero for 0 ( t (2R. This makes sense physically. The
bubble wall propagates outwards at essentially the speed
of light; even though the bubble does not begin to radiate
until it first collides, the first radiation from the bubble
still reaches an observer at distance r at times t =r. Like-
wise, radiation generated on the opposite side of the bub-
ble from the observer will arrive at time t =r+2R, since
the diameter of the bubble when it disappears is 2R.

Equation (49) provides the key to computing the gravi-
tational radiation from a single bubble. The evaluation of

I

d'I™/dt' only involves computing 6'+" (t), which de-
pends upon the "collision history" of a given bubble. We
present two different estimates for 6'+" (t). The first is
analytical, based upon the fraction of the bubble surface
that remains uncollided at time t; the second estimate is
derived from our numerical simulations of bubble col-
lisions.

Once we have d'I™/dI," in hand for a single bubble, it
is a simple matter to calculate the power and the spec-
trum of the gravitational radiation by summing in-
coherently over the distribution of bubbles:

dI+1

l, m

f"y '"I' (~,R) "dR, (52)de 8 0, ' dR

where '"I' (co,R ) is the Fourier transform of
d I (t,R)/dt The R in the ar.gument refers to the mul-
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fraction, f ( t, tz ), is given by [7I
1(t)—+I(t~ )

t, t~ =e (53)

where tz is the nucleation time for a bubble which has ra-
dius R at the end of the phase transition, i.e;, t~ =t, —R.
Since 6'+" (t) must vanish at early times when the bub-
ble has not yet collided (f =1), and at late times when
the bubble surface is completely collided (f =0),

6'+" (t) can be expressed as a sum of the terms
(1 f—) f" (n, m =1,2, . . . ). We take as a simple ansatz

0'+" (t) =cf(1 f)—, (54)

where c is an undetermined normalization constant.
We now estimate gravitational radiation using the

quadrupole (l =2) term of the multipole expansion. Tak-
ing only the simplest (i = —2) term of Eq. (49), we ap-
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FIG. 11. The quadrupole and octupole moments for a given bubble nucleated at time zero. R is the final bubble radius. (a) The
real and imaginary parts of the quadrupole moments for m =0, 1,2 (the imaginary part of the m =0 moments vanish). (b) The same
for the octupole moments for m =0, 1,2, 3.
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FIG. 13. The mean energy spectrum of a "typical" bubble, derived by averaging over 70 individual bubbles. The standard esti-

mate for the deviation of the mean is around +10%.

able job. As with the previous analytical approximations,
it closely reproduces the low-frequency behavior. The
peak of the approximate spectrum has about the correct
amplitude, though the peak frequency is low by about a
factor of 2. The most obvious discrepancy is again the
rapid high-frequency drop of the approximate spectrum,
which falls off as co for large frequencies, in marked
contrast to the many-bubble calculation, which falls off as

As before, the deficiency of high-frequency power
is due to the neglect of cusps. In this approximation the
fraction of energy radiated in gravitational waves is

Eow /E„, =0.036(H/P), compared with 0.06(H//3)~ in
the many-bubble simulations.

The utility of our pair of statistical approximations lies
in their computational ease. The difference in computing
time between these approximations and the many-bubble
simulations is enormous. In Fig. 10, the analytical sta-
tistical approximation required negligible computing
time, the numerical statistical approximation used
around an hour of computing time, while the many-
bubble points required several weeks on the same
machine. Furthermore, our averages for the radiation
from a single bubble can be used with any form for the
bubble nucleation rate, by substituting the appropriate
form for dn /dR in Eq. (52). These approximations give a
rough, but quick, estimate of the gravitational radiation
from any strongly first-order phase transition for which
the bubble nucleation rate is known.

V. DISCUSSION AND CONCLUDING REMARKS

Before summarizing the present work, let us place it in
context by reviewing our previous work. Based largely

on dimensional estimates, it was argued that the gravita-
tional radiation produced by the collision of vacuum bub-
bles in a strongly first-order phase transition could ac-
count for a substantial fraction of the vacuum energy
released [5j. This conjecture was verified in our previous
numerical work [6], where we calculated the gravitational
radiation resulting from the collision of two vacuum bub-
bles by evolving the scalar-field configuration correspond-
ing to two vacuum bubbles nucleated simultaneously and
separated by distance d. This calculation was carried out
in the linearized-gravity approximation and the expan-
sion of the Universe was neglected, both assumptions be-
ing valid provided that the duration of the transition is
less than a Hubble time. We found that the amount of
radiation emitted is indeed significant and only depends
upon the duration of the collision —and not the fine-scale
details of the bubbles. The fraction of vacuum energy li-
berated into gravitational waves is E&~ /E„, = 1.3
X 10 (Hr), valid for r-d, where r is the duration of
the transition. Unfortunately, this work depended upon
the phenomenological parameter ~; moreover, it is a bold
extrapolation to use the collision of two bubbles to model
a realistic phase transition, which consists of many bub-
bles of different sizes colliding. As noted earlier, it is
beyond present computational capabilities to collide more
than a few bubbles by scalar-Geld evolution.

These drawbacks led to the present work: the develop-
ment of a workable approximation to study the gravita-
tional radiation from hundreds of colliding bubbles.
Motivated by the fact that our two-bubble results only
depend upon the gross features of the collision, we
developed the envelope approximation described in this
paper. In the envelope approximation an expanding bub-
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ble is treated as a very thin shell of energy (equal to the
vacuum energy it liberates); when bubbles collide, only
their envelope is followed and their overlap (interaction)
regions are ignored. By considering the collision of two
bubbles we showed that the envelope approximation ac-
curately reproduces our previous two-bubble results; e.g. ,
the energy spectrum in the gravitational waves agrees to
around 20%.

Having established the validity of the envelope approx-
imation, we nucleated hundreds of vacuum bubbles in
spherical volumes with a nucleation rate that grows as
e~'. specifically, 127 bubbles total in five small simula-
tions and 180 bubbles in one large simulation. (It is ar-
gued in Ref. [7] that such a functional dependence for the
bubble-nucleation rate applies with great generality. ) Us-
ing the envelope approximation we computed the frac-
tion of vacuum energy released in gravitational waves
and found that Eow/E„„=0.06(H/P) with the energy
spectrum peaking at a frequency co = 1.6P (H
=8+Gp„„/3). With this nucleation rate the duration of
the phase transition r= 3/P; using this fact, it follows
that the fraction of energy liberated in gravitational
waves is about five times the estimate based upon our pre-
vious two-bubble results, with the spectrum peaking at
about the same frequency. We believe that additional en-
ergy is released in gravity waves because a given bubble
collides with many other bubbles rather than a single
bubble.

In the present work we also have developed two statist-
ical approximations that allow simple analytical or semi-
analytical approximations to the energy spectrum radiat-
ed in gravitational waves. Both approximations provide
better than order-of-magnitude accuracy and greater ease
of calculations, and are particularly well suited to com-
puting the gravitational radiation for an arbitrary bubble
nucleation rate.

On very general grounds it has been argued that I3
which controls the time/length scale of the phase transi-
tion, is of the order of a few percent of H ' or greater
(see Sec. IV of Ref. [7]), indicating that the fraction of
vacuum energy liberated in gravitational waves in a phase
transition that proceeds through the nucleation and col-
lision of vacuum bubbles is of order 10 or so. We have
addressed the potential observational consequences of our
results in [8]; very brielly, in terms of the temperature of
the Universe after the phase transition, the fraction of
critical density contributed by gravitational waves pro-
duced is QGw —10 with characteristic frequency
f -10 (T/GeV) Hz. There we also discuss the pros-
pects for the detection of such a stochastic background of
gravitational waves with the coming generation of laser
interferometer gravity-wave observatories [14].

Two key assumptions underlay all of our work: (1) the
use of linearized gravity and the neglect of the expansion
of the universe; and (2) the assumption that the bubbles
expand at constant acceleration (put another way, all the
vacuum energy liberated is converted into the kinetic en-
ergy of the bubble wall). As we discussed in Ref. [6] the
first assumption is valid so long as the duration of the
phase transition ~-13 ' is much less than the Hubble
time H . This should be satisfied for most phase transi-

tions as P ' is expected to be only a few percent of H
However, there are situations where this condition may
not be satisfied, e.g. , in some models of extended inflation
[15];moreover, such situations are very interesting, since
our results indicate that the fraction of energy liberated
in gravity waves approaches unity. We are currently try-
ing to generalize our results by relaxing the first assump-
tion [16].

The second assumption is that all the vacuum energy
liberated by a bubble goes into the kinetic energy of its
wall. This is certainly true for a bubble nucleated at zero
temperature, but it may not be a good approximation to
one nucleated at finite temperature because of the in-
teraction of the bubble with the ambient thermal plasma.
The second assumption is certainly well justified for mod-
els of first-order inflation where the Universe has under-
gone extreme supercooling during the inflationary epoch
so that the temperature of the Universe when the phase
transition occurs is exponentially small. Whether or not
this assumption applies in a first-order phase transition
that only undergoes moderate supercooling is an open
question. In this case it is not implausible that much or
even most of the latent heat released is dissipated into
heat rather than the bulk motion of the expanding bubble
front (here we have used the term latent heat rather than
vacuum energy). The motion of a bubble wall in this cir-
cumstance is not a simple matter to analyze: both the
microscopic interaction of the ambient medium with the
bubble front and bulk hydrodynamics are important.
Though much work has been done, the results are not
conclusive [17].

The strength of a first-order phase transition can be
characterized by the ratio of the latent heat (per unit
volume) released to the energy density of the ambient
plasma, given by the fourth power of the temperature at
which bubble nucleation commences: y =p„,/T„„,; note
that the increase in entropy per comoving volume is pro-
portional to y . For an inflationary transition y —+ ~,
while for a weakly first-order transition y is of order uni-

ty or less. For very large y it seems clear that the bubbles
must behave as vacuum bubbles (all the latent heat li-
berated goes into accelerating the bubble wall). What
happens for moderate values of y is still unclear and
probably depends on the specific phase transition under
consideration. The latent heat could simply be dissipated
viscously, in which case little gravitational radiation
would be produced; or the latent heat could be converted
into the bulk motion of the Iluid (at some velocity less
than the speed of light), in which case an appreciable
amount of gravitational radiation could still be produced.
This important issue is currently under study [18].
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APPENDIX: TENSOR SPHERICAL HARMONICS

In this appendix we review the formalism of tensor-
spherical harmonics and calculate the tensor contractions
needed in Sec. IV. Generally, we follow the notation
presented in [13]. A set of basis vectors g are coupled to
form the traceless and symmetric basis tensors t

culate the explicit forms for the necessary tensor contrac-
tions. Equation (47) defines the auxiliary quantity

g I', Im( f1 )
—

( l )
T21', Im( ~ )s~

where x is a unit vector in the direction A. The expres-
sions for I & 0 follow from the identity

+1 +1
(11m'm" ~2m )g Ieg™,

m'= —1 m"= —1

(Ala)
T21', Im

( 1)1'+1+m(T21', I —m)e

For l =2 (quadrupole moments),

(A5)

where (l, 12m, m2 ~l3m3 ) is the Clebsch-Gordan
coeKcient for adding angular momenta l1 and l2 to ob-
tain 13. In terms of the Cartesian basis vectors e„,e, and
e„ these symmetric basis tensors are

g 0, 22 1 2

4 5~
e '~sin 0

1/2

0 for I =1, ( =3
1/2

(A6)

t—=
—,'(e„e —e e )+—(e IIe +e I33e, ),

2
(A lb) g 2~22— 5 2

28 5~
e '~(1+sin 9+2 sin 0),

t +—'=+
—,'(e Se, +e,e )

——(e Se, +e, 83e ),
0 1t = —(2e, ee, —e Se, —e Se~) .

6

Then the relevant tensor spherical harmonics are

(A1c)

(A1d)

g 4, 22, =3 2

28 5n

g 0, 21 1 2

4 Sm

1/2

e '~sin 0

' 1/2

e '~sin20

(A9)

(A10)

I' 2

T = y y (l'2m'm" ~lm )y™t
m'= —I' m"= —2

(A2) g 2, 21 5 2
112 5m.

1/2

e '~(8 —2 cos20 —sin48), (A11)

where I ' = l, l+ 1, l+2. This represents the combination
of an orbital angular momentum l' and a spin angular
momentum 2 to give total angular momentum I. These
spherical harmonics are eigenfunctions of the orbital an-
gular momentum operator L with eigenvalue l(l+1),
like the more familiar Y™.Also, we have the "pure spin
tensor harmonics" for spin 2,

TE2, lm (l)T21+2,1m+ (l)T2l, lm+ (l)T21 —2, lm

g 0, 20 1 3

6 5~

g 2, 20 5 3
42 5'

g421 3 2
28 5m

1/2

e '~sin20,

1/2

(1 —3 cos l9),

' 1/2

(1+3cos29),

(A12)

(A13)

(A14)

TB2, lm
I& (1)T21+1,lm

I& (1)T21 —1, lm

where
' 1/2

l(l —1)
2(2l + 1)(2l +3 )

1/2
l —1

2l+1
1/2

120( l)—: 3(l —1)(l +2)
(2l —1)(2l +3)

1/2l+2
2l +1

(A3a)

(A4a)

(A4b)

(A4c)

(A4d)

g 4, 20 1 3

28 5m

1/2

(1+3cos28) .

=0 for l'=2, I'=4,
1/2

1 31 33

4 7m
e '~sin 0,

3, 33—
1/2

7 3
e "&sin30

18 7~

g 5, 33
1/2

5 3

36 7m
e '~sin 0,

For l =3 (octupole moments):

(A15)

(A16)

(A17)

(A18)

(A19)

a 2(l)= (l +1)(l +2)
2(2l + 1)(2l —1)

1/2

(A4e)
132 3 2

4 7'
1/2

e ' cos0 sin 0, (A20)

Under rotations around the radial vector, the harmonics
(A3) transform like the components of the polarization
tensor of a pure spin-2 state, but they are not orbital an-
gular momentum eigenfunctions.

Using the above definitions, it is straightforward to cal-

g 3~32—
6 7~

1/2

e '~cosO sin 0,

e '~cosO sin 0,
1/2

g 5, 32 5 2
12 7~

(A21)

(A22)
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g 1,31 5

7'
1/2

9 3
e '~sinO +—cos2O

40 8
g 1,30 5

21~

1/2
3 3

cosO —cos2O—
4 20

(A26)

g 3, 31

1/25; . 21 7
e '~sinO + cos2O

777 80 12

(A23)

' 1/2

7
96

cos48, (A24)

g 3, 30 5

21'
7 cos9+ cos30, (A27)

7
20 12

g 5, 31

1/2
5 1 5

e '~sinO —+ cos2O
8 24

(A25)
g 5, 30

1/2
1 5—cosO+ cos3O
8 24

(A28)
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