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In this paper we consider spherically symmetric metrics having singularities of a form designated
as being “of the power-law type.” Included in this class are all Tolman-Bondi dust collapses, but the
form postulated is very much more general. We calculate the asymptotic behavior of the energy-stress
tensor near the singularity, and show that it is possible to satisfy the dominant energy condition,
even when the singularity is locally naked. This seems to contradict the strong cosmic censorship
hypothesis. However it is shown that if the singularity is not a shell cross, then the energy-stress
tensor is asymptotically extreme (|P.| = p or |PL| = p) or one of the pressures is negative (P- < 0

or P; <0).
PACS number(s): 04.20.Jb, 04.20.Cv

I. INTRODUCTION

The cosmic censorship hypothesis, first proposed by
Roger Penrose in 1969 [1], makes a claim along the fol-
lowing lines.

Cosmic censorship hypothesis (CCH). No physically re-
alistic collapse (e.g., one evolving from a well posed ini-
tial data set and satisfying the dominant energy condi-
tion) results in a naked singularity—i.e., a singularity in
the causal past of future infinity.

Over the years, however, there has been considerable
disagreement on this subject. For example, it is certainly
true that exact dust collapses can exhibit naked singu-
larities [2-4], as can the Vaidya solution representing a
null dust collapse [5-7]. Also, collapse of a scalar field
does not in general lead to an event horizon [8,9]. All
this seems to mitigate against the CCH.

Nevertheless, these examples are not totally convinc-
ing. The naked singularities appearing in spherical and
quasispherical dust collapses are frequently of the “shell-
crossing” variety (although exactly what this term means
has never been fully clarified), although Christodoulou [4]
claims to have found a dust collapse possessing a naked
singularity which is “shell focussing.” Scalar fields, on
the other hand, have an energy-stress tensor which gen-
erally satisfies what we will term an “extreme dominant
energy condition.” Such an energy-stress tensor cannot
be discarded out of hand, but is possibly only marginally
physically realistic. It certainly implies the possibility of
(locally) naked singularities, as we shall see.

Some general results have been obtained by Krolak
[10] and Newman [11] using global topological arguments.
These tend to support the cosmic censorship hypothe-
sis. However the significance of some of their conclu-
sions, particularly those restricting the “strength” of a
singularity, are difficult to assess. These approaches con-
centrate entirely on the global aspects of the problem and
say nothing about the existence of locally naked singu-

47

larities, i.e., singularities which are visible from regular
points of the space-time, but possibly not visible at infin-
ity. Yet from the point of view of infalling particles, such
singularities must be as worrying as those visible at infin-
ity, since they are likely to upset the physical conditions
in their space-time neighborhood.

Such consideration have led Penrose [12] to propose a
stronger hypothesis:

Strong Cosmic Censorship Hypothesis (SCCH). No
physically realistic collapse leads to a locally naked (i.e.,
timelike) singularity.

In this paper we shall concentrate attention entirely on
the validity of SCCH, and only in the context of spherical
symmetry. Despite this specialization we believe that
useful information can be gained. Furthermore SCCH
is an easier question to investigate than CCH, since it
is not necessary to integrate null geodesics globally, and
only the behavior of the space-time in the neighborhood
of the singularity need be considered.

Analyses of dust collapses have been popular since they
are simply and explicitly exhibited in the Tolman-Bondi
solutions [13, 14]. However any conclusions arrived at
concerning dust may not be significant unless they can
be shown to be stable with respect to physically interest-
ing modifications of the equation of state. In particular,
as the density approaches infinity, one would expect on
physical grounds that the pressure should do likewise. In
the limit, possibly a relativistic equation of state such as
P= % p should apply.

However, a perfect fluid energy-stress tensor appears
to be too demanding a requirement, since it is physi-
cally reasonable to include a certain amount of radial
streaming, shearing stresses, viscosity, etc., in the fluid.
Also, exact perfect fluid solutions with nontrivial equa-
tions of state are hard to find. A more promising line
of approach is to undertake an asymptotic investigation
of the energy-stress tensor in the neighborhood of spher-
ically symmetric singularities. This will be the method
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adopted in this paper.

In Sec. IT we review the singularity behavior of Tolman-
Bondi dust solutions. This leads us to consider the alge-
braic form of a much more general spherically symmetric
singularity which we say to be of “power-law type.” In
Sec. III we transform such singularities to double null
coordinates. These have the dual advantage of possess-
ing much greater rigidity than (r,t) coordinates, while
at the same time making null geodesics trivial to inte-
grate. In Sec. IV we impose the dominant energy condi-
tion, and discover what further restrictions this imposes
on the metric form. In the final two sections the asymp-
totic behavior of the energy-stress tensor at a singularity
of power-law type is discussed. The analysis falls into
two categories, which we term the “generic” case and
the “nongeneric” case. Both cases seem to be important,
since Friedmann dust models fall in the first case, while
the general Tolman-Bondi singularity falls in the second.
It is shown that timelike (locally naked) singularities can
occur in both cases, such that the energy-stress tensor
satisfies the dominant energy condition, but the tangen-
tial or the radial pressure must in general be either neg-
ative or equal in magnitude to the density.

II. SINGULARITY BEHAVIOR OF COLLAPSING
DUST

The general spherically symmetric space-time metric
can be expressed in Gaussian normal coordinates

ds? = —dt? 4+ F%dr? + R?*(d6? + sin® 0d¢?), (1)

where F' = F(r,t), R = R(r,t).
suitable for dust solutions

This is particularly

G = KTy = puyuy, (2)

where u#* = (1,0,0,0). In this case the exact solutions
can all be found and are known as the Tolman-Bondi
metrics [13, 14]. The simplest case is that of zero energy
(particles of fluid coming exactly from rest at infinity)
and is given by

ds® = —dt?+(to—t) "3 (t1—t)2dr? 412 (to—t)*/3dQ?,

®3)
where
to=tolr), 1 = t(r) = tolr) + 27th(r) @)
and the density is
. - (5)

T 30t —t)(t1 — 1)

(units are chosen such that x = ¢ = 1, and the stan-
dard shorthand dQ? = d#? + r2d¢? is adopted). For the
purpose of this paper, the metric is taken to represent
a collapse, with time coordinate ¢t increasing towards the
singular epoch at ¢y or ¢;. By reversing the arrow of time
these space-times may be thought of as inhomogeneous
cosmologies.

Although Eq. (3) is only a particular case of the
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Tolman-Bondi metric, the singularity behavior is simi-
lar for all members of this family. However, the types of
singularity occurring at t = to and t = t; are quite dis-
tinct. At t = to(r) the singularity has zero area (= 4w x
the coefficient of dQ2?) and can be considered as a central
“focus.” At t = t1(r) the area is finite and the metric
component g., — 0. This is usually regarded as being a
“shell cross.” Shell crosses can arise even in Minkowski
space, by aiming shells of dust at each other in such a way
that the outer shells overtake inner shells. They there-
fore have nothing whatsoever to do with gravitational
collapse. It should however be noted that, by Eq. (5),
the density does become infinite at a shell cross and with
exactly the same time rate as at ¢t = tg. This also means
that the curvature and its associated tidal effects become
infinite there. It is, however, a “softer” singularity, since
there are special coordinates (such as the double null co-
ordinates adopted below) in which the metric becomes
C! but not C? at t = t;(r). It seems to us a matter of
some importance to provide a clear and rigorous distinc-
tion between these two types of singularity, which can be
applied in general (nonspherical) situations.

The t; singularity is locally naked. This is easily seen,
since radial null geodesics are horizontal in the (r,t) plane
at t = t1(r) [i.e., dt/dr — 0 as t — t;] and therefore in-
tersect neighboring world lines of infalling particles. On
the other hand, the singularity at t = to(r) is censored
provided tg(r) # 0, since null geodesics have dr/dt = 0
there. Places where t4(r) = 0 can have either character,
which is not really surprising since at such points the two
singular surfaces coincide, ¢1(r) = to(r). However, New-
man [15] has shown that for a central (r = 0) singularity
of this type to be naked one must have the central den-
sity be a local minimum [p”(0) < 0]. This is possibly an
unrealistic physical requirement. For the most part, this
paper will avoid discussion of this category of singular
points.

Our analysis of Tolman-Bondi singularities is purely
local, and does not refer to the visibility or otherwise of
the singularity at infinity. For the rest of this paper it
will be understood that whenever we refer to singularities
as being “naked” or “censored,” we are in fact only refer-
ring to local properties. Thus a singularity will be called
naked if both ingoing and outgoing null geodesics enter
it, while it will be censored if only ingoing null geodesics
enter it. For those who feel our approach to singulari-
ties as “boundary points” is somewhat cavalier, we refer
the reader to a recent approach to singularity theory [16]
where it is shown how this kind of discussion can be made
rigorous.

We will also make reference to the degenerate case aris-
ing when ty = const, t; = to. In this case the metric
reduces to the Einstein—de Sitter universe (in collapsing
form)

ds? = —dt® + (to — t)¥/3(dr? + dQ?). (6)

It is well known that the singularity at ¢t = ¢¢ is censored.
The metrics discussed above are all special cases of a
metric of the form
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ds? = —dt?+[r(r) 1% £2(r, O)dr? +1r(r) ~ g2 (r, )Y
(7)

where f and g are functions of 7 and ¢ which are regular
and nonvanishing at the singularity surface ¢t = 7(r). For
example, the to dust singularity arises on setting 7 =
to(r) and

a=-1/3,b=2/3, f(r,t) =7+ %T'(r) —t, g(r,t) =r.

Similarly, the ¢; singularity has the behaviora =1, b =0,
while the Friedman-type behavior (Einstein—de Sitter)
occurs if 7/ = 0, a = b = 2/3. Of course we do not
mean to imply that Eq. (7) is the most general possible
singularity behavior in spherical symmetry, but in view
of the dust experience it seems reasonable to assume that
it will apply to a fairly general class of fluid collapses. We
will say that such spherically symmetric singularities are
of the power-law type.

We propose to analyse the general case given by
Eq. (7), and to determine for which exponents a and b the
behavior of the metric is physically reasonable. Although
this can be done quite straightforwardly, a major prob-
lem arises in how to distinguish coordinate singularities
from genuine ones (for example, Minkowski space can be
made to look singular if one chooses coordinates based
on a radially infalling family of timelike geodesics and
sets T to be a comoving radial coordinate and ¢ to be the
proper time parameter along the curves). Another prob-
lem is that, except in the dust case, there is no way of
preferentially choosing one set of timelike geodesics over
any other. This amounts to having arbitrary freedom in
the choice of radial coordinate ' = r'(r,t), provided it is
accompanied by an appropriate transformation to a new
time coordinate t'.

In other words, Gaussian normal coordinates such as
those in Eq. (7) are too flexible—the powers a and b
can in no way be regarded as being characteristic of the
space-time.

Much greater rigidity is achieved if we go to double null
coordinates u and v (both functions of r and t) such that
the metric takes the form

ds? = —2eVdudv + ¥ dQ2. (8)

While the transformation to such coordinates may be
nontrivial to find, the coordinates u and v are almost
completely determined by the metric, since now the only
J

7 — b1g1mb‘_1 +oo= (fir'z® — gliltbl + )% (o + - -

b1z 14+ = —(fir'z¥ — g™ + )% (o + )@ frz® T 4 ).

Assuming 7/(rg) # 0 we have the following two equations
for the leading exponents

min(0, b; — 1) = amin(a1, b1) + min(0,a; — 1), (17)

b1 —1 =amin(ay, b;) +a; — 1. (18)

Y1 —aifriz® T+,
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available coordinate freedom is one of the form
v = p(u), v =v). 9)

The functions U and V are then determined up to essen-
tially trivial transformations, and are truly characteristic
of the space-time. We will see that the coordinates u and
v can be further tied down by the singularity surface so
that even this freedom is unavailable. Furthermore, the
behavior of the null geodesics, trapped surfaces, horizons,
etc., are simple to discuss in these coordinates, since the
radial null lines (@ = const, ¢ = const) are exactly the
curves u = const or v = const.

III. TRANSFORMATION TO DOUBLE NULL
COORDINATES

In order to convert the metric (7) into double null co-
ordinates (8) one can try a series transformation in a
neighborhood of r = rg, t = 7(rg) of the form

r=ro+u+ fi(wz® + fo(u)z®? + -, (10)

t=71(ro+u)+ gl(u)a:b1 + go(u)zb? 4 - - -, (11)

where0 < a; <ag <--+,0<b; < by <-.-. The function
z(u, v), which characterizes the singularity at ¢t = 7(r) as
occurring at z = 0, may be assumed to have the form
z = p(u) — v(v). By using the coordinate freedom (9)
there is no loss of generality in assuming this function to
be linear:
T = —u+ kv, where k= +1, (12)

the sign of k being chosen such that z > 0 for t < 7(r)

The double null form of the metric is achieved if r and
t satisfy the coupled equations

o =)~ o f g, (13)
ot o O0r
=l — o (14

Substituting the trial series (10) and (11) in these equa-
tions, and expanding f as a power series

£(r,t) = pou) + @1 (wWa® +---

one finds

[¢o(u) > 0]

(15)

(16)

r

It is best to discuss these conditions under two separate
cases.

(i) a > 0. It is easy to see that Egs. (17) and (18) can
only be satisfied if 0 < b3 < 1 and a1 = b1/(1 + a).
However, if b; < 1, then the coefficients of the leading
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terms in (15) and (16) result in

big1 = (f17")%poa1 f1,

big1 = —(f17")%poa1 f1,

which can only be satisfied if fi = g1 = 0. But since
these are the coefficients of the leading terms in (10) and
(11), they are by definition nonvanishing. Hence we must
have

1

T1+a

by =1, ay

The equations for the leading terms now become

' — g1 = —(fiT")%pof1/(1 + a),

g1 = —(f17")%p0f1/(1 + a),
whence
1/1+
B (R A
a1 = 3™ 1= 220 .

N.B. fi7’ > 0, as required for 7(r) —t > 0.
(ii) a< 0. This case is handled in a very similar way.
It results in

1
=1 =
ai ) bl 1-—0,,
1 (1 ) 1/1-a
== =LY%
fl—gy g1 ( 2 > <0.

We do not propose to discuss the case 7/(rg) = 0, as it
leads to various complications (e.g., see the discussion of
to = 0 in the previous section). However the Friedmann-
like case 7 = const is worth describing.

(iii) 7 = const. If a < 1 then identical conditions to
case (ii) result

1

1
a =1, bl:l—-a’ fl=§)

1 1/1—a
mz_(g;g@> <o

The case a > 1 is somewhat special and will not be con-
sidered here. The higher exponents ag, bs, ... and coef-
ficients fa2, g2, ... can be worked out in particular cases
(e.g., Tolman-Bondi dust, see below) but it is difficult to
write down general formulas for them.

Finally we evaluate the functions U and V,

eV = 2t,t, = zPe?, eV = (1 —t)%¢? = z9¢° (19)
where
a=ap(u) + o (u)z?* +---, (20)
B = Bo(u) + Pr(w)a™ +---. (21)

The exponents p and ¢ depend on a and b as follows:
2b
1+a

in case (i) p=0, ¢g= ; (22)
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2a 2b
in cases (ii) and (iii) P=1—0 477 (23)
Higher exponents p1, q1, etc., depend in a rather delicate
way on the exponents ai,as,...,b1,b2,... occurring in

(10) and (11). It is not easy to give a general form for
them.

A detailed investigation of the Tolman-Bondi dust
metrics discussed in Sec. II results in the following. A
t1 singularity (¢] # 0) is of type (i) witha =1, b = 0.
The power series solutions begin with a1 = 1/2, b; =1
and the double null form (19)—(21) will have exponents

3
P2 =q2= 3

p=q:07 Plz(h:l,

A to singularity (¢5 # 0) is of type (ii) with a =
—1/3, b = 2/3, and results in power series solutions with
a1 =1, ag = 5/4,... and by = 3/4, by = 1,... in (10)
and (11). The exponents of the double null form are
1 1

P-——E, :01—(11——5-
Finally the Friedmann-Einstein—de Sitter-type singular-
ity will be of type (iii) with 7 = const, a = b = 2/3. It
gives a; =1, by = 3 and

p=q=4,

g=1,

n=q=1L1
IV. ENERGY CONDITIONS

From the previous section it is clear that a fairly gen-
eral form of the metric is one which, when expressed in
double null coordinates, has the form

ds? = —2¢Ydudv + ¥ dQ? (24)
where

U=plnz+ ap(u) + a12P* + apzP? + .- (25)

V =qlnz + Bo(u) + B1x? + B2 + - -- (26)
where 0 < p; <pa<--,0<q1 <g2< -+, and

z = lu+ kv, where [, k = £1 (27)

This form certainly encompasses all metrics originally
postulated in Eq. (7) as being of power-law type at the
singularity. Assuming that u and v are both future in-
creasing null coordinates the case [k = —1 will be a (lo-
cally) naked singularity. This follows because x = 0 is a
timelike curve in the (conformally regularized) u-v plane,
so that null geodesics can both enter and leave it. Sim-
ilarly Ik = 1 will imply that x = 0 is a spacelike curve
and therefore must be a censored singularity. In the lat-
ter case we shall only consider the case [ = k = —1 so
that the region x > 0 corresponds to u+v < 0. The other
possibility, | = k = 1, will correspond to an inhomoge-
neous cosmology (rather than a collapse) and therefore
will not be discussed in this paper.

It is also possible to consider the cases k =0 or [l =0,
which amount to a null singularity. Such cases occur in
the null dust solutions of Vaidya [17], and can possibly
occur in ordinary dust collapses [4]. Again, this situation
will not be considered here.
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The Einstein tensor can be calculated for the form (24) with the substitution of (19), giving the following nonvan-
ishing components (here we set 20 = u, ! = v, 22 = 6, 2% = ¢):

kl(q® — kB + 15,
Gg = G% - _e—V - e—U(VOI + ‘/()Vl) = '—l'—qe—ﬁ - e—-ax—p< (q Q) + ﬁ ;_ /B + ﬂuv +ﬂuﬂv>v

k2(q + pg — 1q%) L k(P = 9)B + g04)

— (28)

G(l) = 6—U(V11 - U1V + %Vl2) = —e"“m_p( -2

- /va + avﬂv - %ﬂf) ’ (29)

T

0

12 + _ 1,2 l — w 1
Gl Ze—'U(Vbo—UoVo-i—%Voz) __;*e—-cxw—p( (g+p 24 ) + ((p — 9)Bu + gaw) _ﬂuu+auﬁu_§ﬂu2 ,

Gg = Gg = —C_U(U(n + Vo1 + %Vg‘fl) = —e_"‘:c"p(

For convenience we shall make the following assump-
tions: (1) The energy-stress tensor is of type I (i.e., G,y
has a timelike eigenvector); (2) the dominant energy con-
dition holds (i.e., G,,v¥ is nonspacelike for all timelike
vectors v¥ and G, v*v” > 0); (3) the singularity at z = 0
is a density singularity, i.e., p — 0o as x — 0.

Condition 1 might be considered to be too restrictive,
since it eliminates solutions such as Vaidya’s which cor-
respond to null fluids. However, these solutions are, in
any case, overidealized, since the slightest contamination
with a perfect fluid or ordinary dust will lead to a type
I energy-stress tensor. They also lead to singularities of
null character (k = 0 or [ = 0) which we do not propose
to discuss in this paper.

As shown in [18] conditions 1 and 2 imply that the
eigenvalues A of G¥,,

Gt u¥ = Aut, (32)
are —p and P; (p is the density and P; are the principal
pressures), and that these satisfy 0 < |P;| < p. More
specifically, in our case the eigenvectors lying in the u°-
u! plane have the form

and since u,u* = —2eYu%?, the plus sign belongs to the
timelike eigenvector, the minus sign to the radial space-
like eigenvector. These are real only if either (a) both G
and G§ are > 0, or (b) both G and G} are < 0. In case
(a) the timelike eigenvalue is

A= —p=GY+/GSG},
while the spacelike eigenvalue corresponding to radial
pressure is

A=P. =G} - 4/GG}.

Hence this case leads to p + P, = —2/GYG§ < 0, vi-
olating the dominant energy condition 2. We therefore

30
2 o (30)
Ik(3¢> —p— kBu + 1By 1
G0 P9 | Bt 1) oy b+ 208, ). )
T 2z 2
l
restrict attention to case (b):
Gy <0, G} <o. (33)

In this case the density and radial pressure are given by

p= —'Gg + V G?Gé» (34)
P. =G} +1/G9G}. (35)

The dominant energy condition 2 now imposes the fur-
ther inequality
Gp <0 (36)
which follows from p > P,. The final inequality p > 0
now follows automatically.
The tangential pressure is given by

P =G5 =Gj (37)

and the dominant energy condition implies that we re-
quire |P, | < p.

We shall, however, exclude from consideration fluids
which only marginally satisfy the dominant energy con-
dition, p = £P, or p = P, . Such cases, although not
totally ruled out by physical considerations, will be re-
garded as extreme. Such cases tend to arise rather too
easily near singularities of the type we are considering
(see below), while at the same time not corresponding
to “nice” fluids (e.g., perfect fluids with P = ap, 0 <
a < 1). We therefore shall impose strict inequality in
Eq. (36), G§ < 0.

From Eqgs. (28), (29), and (34) it is clear that a nec-
essary condition for x = 0 to represent a singularity of
the density one must have that either ¢ > 0 or p > —2.
However if ¢ > p + 2 then the first term of G domi-
nates all other terms in the energy-stress tensor, leading
to limiting behavior p = —P,, as £ — 0. This is just the
kind of extreme behavior referred to above. The only
way of achieving an infinite density singularity without
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an extreme equation of state in the limit is to impose the
conditions

g<p+2, p> -2 (38)

V. ENERGY-STRESS BEHAVIOR AT THE
SINGULARITY—THE GENERIC CASE

By the generic case we shall mean ¢ # 0 or 1. Then
the leading term in the square brackets in Egs. (28)—(31)
for G#, dominates the behavior as z — 0:

Gg ~ —e_aac_”_zs(q2 —-q), (39)
A~ = —e 7P 2(q+ pq — %q2), (40)
Gi=Gi~—e P %(3¢’ —p—q) (41)

where € = kl = +£1.

As seen in the previous section, the assumption of a
type I energy-stress tensor satisfying the dominant en-
ergy conditions and obeying a nonextreme equation of
state, p # P, implies

GS<0, G9<0, Gi<o, (42)
whence we see that

e=1= g¢g>1lorg<o, e=—-1=0<g¢g<1,

and

p>-1= 0<g<2(1+p),

p<—-1= 2(1+p)<g<0.

Combining with condition (38) one sees that the regions
of interest are shown in Fig. 1. The censored case € =1
divides into two regions, marked A; and Aj. A; is the
triangular region defined by p > -2, ¢ <0, ¢ > 2(p+1),
while Aj is the open region defined by 1 < ¢ < 2(1+p) for
—1<p<0,and 1< g <p+2for p>0. On the other
hand, the naked case ¢ = —1 consists of the horizontal
strip marked B defined by 0 < ¢ < 1 and bounded on
the left by the line ¢ = 2(1 + p).
In order to discuss the physical conditions holding in
these regions, it is useful to define a pair of parameters
K= }—D-r—, A= ﬂ
P P
For the censored case ¢ = +1, one finds on using (34),
(85), and (37) that

(43)

44 2p — 2 —q?
oo 2E2p—3q = _‘ﬂ_ﬂ_’ (44)
2r+4q q(2p+q)
which may be readily solved for p and ¢:
4(1 - 22+ k) 4
= =———. (45
P=Arm—mi-n ("ixo-s

The triangular region A; is readily seen to corre-
spond to values of k and A restricted by —1 < k¥ < 1,
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FIG. 1. Physical regions of the p-¢ plane. The unshaded
area is where the energy-stress tensor satisfies the dominant
energy condition near the singularity. In A; and Az the singu-
larity is censored (¢ = +1), in B it is naked (¢ = —1). Tp and
T, are respectively the to and ¢; singularities of the Tolman-
Bondi dust solutions. F' is the Friedmann dust singularity.

A < (k—1)/4 and k? +3 < 4\k. However for k > 0 these
conditions imply x — 1 > (x% + 3)/x which is a contra-
diction since it gives immediately that x < —3. Hence
—1 < k < 0. But in this range A < (s% + 3)/4k < —1,
whence the dominant energy condition is violated. Thus
nothing of physical interest arises in region A;.

The other censored region A, where ¢ > 1, corre-
sponds to a subset of the parallelogram bounded by

k+3
4 k)

shown in Fig. 2. The curved section of the boundary is a

k—1

-l1< k<1, <A<

FIG. 2. The censored region Az, shown as part of the x-A
plane. The Friedmann singularity is at F'. Boundary points
such as Tp of Fig. 1 cannot be properly represented on this
plot, since the equations for k and A\ degenerate there.
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portion of the curve A = (1 + k)2 /4, which corresponds
to the line segment ¢ = p+ 2, ¢ > 2 of Fig. 1. The point
k = A = 0 represented by a circle corresponds to the
Friedman-like case p = ¢ = 4. The entire parallelogram
satisfies the dominant energy condition, whence this is
automatically satisfied throughout region As.

More interesting from the point of view of the cosmic
censorship hypothesis is region B of Fig. 1, where the

naked singularity conditions ¢ = —1 holds. In this case
one has
2p+gq ¢?—2¢—2p
K= —— A= ——rm" 46
4+2p—3q’ q(4+2p — 3q) (46)
which solves for ¢, p
4rk(1 4+ £+ 2X) —4k

p= , = — 47
P =m—rt4N 1= Tran WD
Since throughout this region 0 < ¢ < 1, one finds that x,
A are confined to the regions

1
1>k>0, )\<—Z(1+3n),

-1< k<0, )\>——%(1+3n).

These regions are depicted in Fig. 3, where the extra
constraint implied by the dominant energy condition,
—1 < A < 1, is also imposed. As can be seen, the dom-
inant energy condition can readily be satisfied and the
corresponding region of B where the dominant energy
condition holds is depicted in Fig. 4. However while val-
ues of p and ¢ lying in this region can be regarded as rep-
resenting naked singularities which violate the SCCH, it
should be noted that for all such values one has kKA < 0.
That is, in the vicinity of such a naked singularity, nega-
tive pressures always arise either in the radial or the tan-
gential direction. We shall see in the next section that
this conclusion also hold under more general conditions.

FIG. 3. The naked region B seen in the -\ plane as the
unshaded region. The regions above and below the dashed
lines A = £1 are shaded out when the dominant energy con-
dition is applied to the tangential pressures.
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FIG. 4. The regions of the naked zone B where the dom-
inant energy conditions |k| < 1, |A] < 1 hold.

VI. NONGENERIC CASES

The analysis of the previous section might be thought
to be representative of the most general class of fluid
collapses. However, it is interesting to note that while the
Friedmann models fall right in the heart of this generic
region, the general dust solution (Tolman-Bondi) is not
encompassed by it. This leads us to suspect that the
nongeneric cases ¢ = 0 and ¢ = 1 are not so exceptional
as to be totally discounted, i.e., in some sense they do
not form a “set of measure zero” among all spherical
collapses. Accordingly, we proceed to discuss them in
this section.

A.g=1

Substituting the expansions (20) and (21) into (28) we
find

Gy = —z e 4 O(g7PT01—2) (48)
When p # —3 one obtains, from (29) and (30)
Gy~ Gy~ —x P %e7(p+ ).
Hence the requirement (42) implies that p > ——é—, whence
3
p—2< -2 <1,
P 2

and since g1 > 0 we see that G, G} dominate GJ as

z — 0. Hence p = P, which we discount as representing

extreme energy-stress behavior. Thus the only case of

interest is p = —%, precisely the condition prevailing at a

to singularity of the Tolman-Bondi solution (see Sec. II).
Setting p = —% we have then

Gy~ —z7le™Po —gt=3em%eq (g + 1)f1,  (49)
G~ —e[zP ~Rayp; — 2" ¥ f1g1(q1 + 1)), (50)

G} ~ ——e“""[la:_%(—%ﬁ() + o) + 2P " 2o p

—27 % B1g1 (g + 1)), (51)

G2~ —e™ | %kx_%,@(’) + 6mp1—%a1pl(p1 -1)

+5$q1_%51Q12)]- (52)
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The number of cases to analyze at this stage is quite
large.

(i) 0<qg1 < -,:; In this case G§ < 0 implies ¢6; > 0.
We divide the discussion into three subcases.

(a) p1 > q1- G§ <0, G(l) <0 = p; <0, whence
€ = —1 and the singularity is necessarily naked. One
finds

-1 A = —2(]1

K= , = .
3+4q; 3+4q;

These ratios lie in the ranges

1 1 1
—= < —=, ——<A<O0
3 <K 5 5 <
well within the requirements of the dominant energy con-
dition, but definitely implying negative pressures.
(b) p1 = q1. The condition GY < 0 now results in

Bi(qr + 3) < a1

Since we are principally interested in the possible occur-
rence of naked singularities, let us set ¢ = -1, f; < 0
and we find that
o — —-1-2A4
T 3+4g —24°

N +24(1-q1)
T 3+44q1 —24

where A = a1/61 < ¢1 + % Again there is no re-
gion such that both k > 0 and A > 0. A perfect fluid
(k = A) occurs if A = (2q1 —1)/(4 — 2q1), in which case
k= X=1/(4¢g1 — 7), having range —% <K< —%.

(¢) p1 < q1. This leads to an extreme equation of state,
P. = p.

(ii) q1 = %. In this case
3
G’g <0 = e P4 e_o“’zeﬂl > 0,

and dividing again into subcases, we have the following.
|

&2
2

—e® [z Y2 (kB + Lef2) + 292 Fga(ga + 1)Ba),

-3 _
G~ —e~ 0z % 1682 + 2P 72 agp, — 292 % Baga(g2 + s
3 _s
G ~ _6na°[$~%(‘§ﬁ12 +U(ap — 3B85)) + x> 2aop2 — 272 faqa(g2 + 3)),

_ 1,1 _3 _3
Gi~ —e ™[z §(§kﬁ6 + 1eB2) + 2P~ Fagpa(p2 — 1) + 29272 By0.2)].

Concentrating attention on the naked case, ¢ = —1, we
find the only cases with non-extreme equation of state are
the following.

(i) £<gy< 1, p;>q,. € = —1 implies B2 < 0, and
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(a) p1 > @1 In this case B; < 0 (independent of the
sign of €), and setting ¢ = —1, b= —e~Po+2 /3, > 0 we
find

—4b—1 -1

" h+s 4b+5

A= Trs
These values lie in the range —1 > x> -1, - <A <0.
(b) p1 = % In this case a; > (1 and setting

3
a=a; — [ >0, B=6a°~ﬁ°+zé‘,ﬁl>0

one finds

__—2B+a _ea
" 2B+a’ " 4B+a’

It is interesting to note a perfect fluid arising for ¢ = 1,

B = a/4, resulting in Kk = \ = % which represents a

radiation collapse. The naked case € = —1 results in

-l1<k<1, A0
(¢) ;1 < a1

P, = p.

The equation of state is extreme,

(iii) g;>3. In this case the only nonextreme case

P, # +p arises when p; = % It then follows that a; > 0
and

o = —2D + a; A= EQ
T 2D+ o0y’ T 4D+ oy’
where D = e¥0~ o,
The treatment is the same as for case (ii)(b).

B. Ultradegenerate case

A highly nongeneric case appears as a subcase of (ii)(b)
in the above analysis when ¢; = p; = %, a =B =0. The
last condition implies a; = B; and e~ P = —%sﬂle“"o,
whence €8; < 0. This is by no means as specialized as
might at first appear, since the entire class of to-type
singularities in Tolman-Bondi dust metrics fall in this
category. In this case second-order terms agx??, (Box??
must be considered and we find

(53)
(54)
(55)
: (56)
[
K= ——1 A= __——2q2
T 344gy’ T 344’

which lie in the ranges
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1 <K< ! L > > 2 r0
5 7’ 5 7 and
ooy 1 . _
(ii) §<q2<11, P2-gz. In this case B2 < 0 and A = P for  p1>a
az/B2>q2 + 3, 2
while
oo 1124 No 22 +24(@—1) B+ an
_2A—4Q2—3’ 2A—4Q2—3 )\———-—_—2,8-1—— for P1 = q1.

whence k lies in the range —1 < x < 1, and A lies between
—% — q2 and g2 — 1. This results in —% <A<O.

(iii) g,=1, p,> 1. Many possibilities arise, but al-
ways one finds

1 1
G2~ §G° A~ —e g 1/2 (—;—kﬁ{, + 55'@12 + sﬁg) <0

Thus P; < 0 near such a naked singularity.
(iv) g;> 1, p,> 1. This is very similar to the previ-
ous case,

1 1 1
G3 ~ §G8 ~ —e"0gT1/2 <§kﬁ(’, + gé,@f) <0
Again P, < 0 near such a naked singularity.

C.g=0

This case is mentioned briefly for the sake of complete-
ness. It appears, however, to correspond unmistakably to
a shell-crossing singularity, since the area of the singular-
ity is finite and, as seen below, the radial pressure will
always vanish and be dustlike.

Substituting ¢ = 0 into (28)—(31) we see that a singu-
larity occurs at z = 0 only if p > ¢; — 2 > —2. However
if p # 0 in this range one finds that

2
A= % =0(z™%) — oo.

Thus we may concentrate attentiononp =0, 0 < ¢q; < 2.
The limiting behavior of the Einstein tensor as £ — 0 is
then

Gy~ —e~ %z %efigi(qr — 1), (57)
G} =Gy ~ ez 2B1g1(q1 — 1), (58)

G} ~ —e¢[zP 2oy py (p1 —1) + 39 72 B1q1(q1 — 1)].
(59)

The inequalities (42) give at once that the singularity is
locally naked, ¢ = —1, and B1(¢g1 — 1) < 0. We find then
that

The solutions are dustlike in the latter case if a; = —f3;.
A detailed analysis of the Tolman-Bondi dust solution at
the t; singularity shows that it corresponds to

3

P2=112=§7

In general all metrics with p; = ¢1 = 1 must be ana-
lyzed to second order. It is clear that all metrics of the
form (24) with these leading coefficients are C1, though
possibly not C? at £ = 0. This seems to be the main
characterization of a shell cross.

n=q=1, ag = —fs.

VII. CONCLUSIONS

In this paper we have discussed the validity of the
strong cosmic censorship hypothesis, by considering
spherically symmetric metrics whose singularities are of
the power-law type. Such metrics are not the most gen-
eral conceivable, but have enough flexibility of form to
permit a large number of possibilities to be investigated.
In fact it is quite difficult to construct a singularity which
would not be of this form, and there are good reasons
to believe that the collapse of a physically realistic fluid
starting with regular initial data will terminate in a sin-
gularity of this type.

By calculating the asymptotic behavior of the energy-
stress tensor near the singularity, it has been possible to
discuss the physical properties of the space-time near lo-
cally naked and locally censored singularities separately.
While the dominant energy condition can readily be sat-
isfied in the neighbourhood of a naked singularity, there
appear to be greater restrictions than in the censored
case. The main conclusion is the following.

In the neighborhood of a naked spherically symmetric
singularity of power-law type which is not a shell cross,
the energy-stress tensor can only satisfy the dominant
energy condition if it is asymptotically extreme (|P.| =~ p
or |P.| = p) or if one of the pressures is negative (P, < 0
or P, <0).

Whether this result holds for general spherically sym-
metric singularities, or indeed for nonspherical situations
is at this stage an open question.
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