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Relativistic disks as sources of static vacuum spacetimes
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Among known finite-mass nonspherical solutions of Einstein's equations few have physical sources.
We show that most vacuum Weyl solutions can arise as the Inetrics of counter-rotating relativistic disks.
We give the metric for the general counter-rotating relativistic disk and show how the Curzon,
Schwarzschild, Zipoy-Vorhees, and Israel-Kahn metrics can be generated by the disks. The physical
properties of the disks are discussed and illustrated. The central gravitational redshift can become arbi-
trarily large. The disks with new metrics are discussed elsewhere.

PACS number(s): 04.20.Jb

I. INTRODUCTION W(b)db

[R +(lzl+b) ]' (1.3)

Kuzmin [1] gave a clever way of finding the Newtonian
gravity field of a disk. He imagined a point mass placed
at a distance b below the center R =0 of a plane z=O.
Above the plane this gives a solution of Laplace's equa-
tion V v=O. Kuzmin then imagined the potential v ob-
tained by reflecting this z ~0 potential in z =0 so as to
give a symmetrical solution of Laplace's equation both
above and below the plane. This is continuous, but has a
discontinuous normal derivative on z=O. By Poisson's
equation the jump in the normal derivative gives a sur-
face density of mass on the plane. In Kuzmin's case it
gives

v= —GM /rb

where

r„'=R'+( lz I+ b )' .

and a surface density on the disk,

X(R)=(2~),f W(b)b db

(R+b) (1.4)

The total mass is f W(b)db
For Kuzmin's disk, 8'is a 6 function and in general 8

is a distribution rather than a continuous function. Weyl
[3] has shown that solutions of Laplace's equation may be
used to generate axially symmetrical solutions in general
relativity. In the particular case when the stress tensor
satisfies Tz + T; =0, Weyl's metric takes the form (here-
after the velocity of light, c = 1)

ds = edt +—e '~ '(dR +dz )+R e 'dy

and away from matter v satisfies Laplace's equation with
V the normal axially symmetrical operator of flat space,

So [Bv/Bz]o+=2GMb/(R +b )
~ and the correspond-

ing classical surface density of mass is V v= — R + =0.1 0 Bv Bv
R BR BR gz2

(1.6)

X(R)=(2~) 'Mb/(R +b ) (1.2)
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The total mass of the disk is M, and R is the cylindrical
polar coordinate; in the relativistic literature, this is
sometimes called p.

Recently, Evans and de Zeeuw [2] have shown that any
axially symmetrical disk can be analyzed into a superpo-
sition of Kuzmin disks of different b and with different
weights W(b). Their notation difFers from ours since
they did not use Kuzmin's picture of a mass below the
disk. Employing this picture, we see that a general axial-
ly symmetrical disk has a gravitational potential above its
plane equal to that of a line distribution of mass (positive
or negative) below the plane. Thus the general classical
disk has a potential

Thus classical solutions can be used to generate relativis-
tic ones; however, the relationship between the jump in
the gradient of v across the plane and the surface density
is not the classical one. Furthermore, a rotating disk
gives a dragging of inertial frames and so does not gen-
erate a metric of Weyl's type. To avoid that problem, we
take our disks to be made of two equal streams of col-
lisionless particles (stars) that circulate in opposite direc-
tions around the disk's center. Following Morgan and
Morgan [4], we refer to these as counter-rotating disks.
If o. is the surface-proper rest mass density of one
stream, measured in axes that move with it, then the sur-
face density of its rest mass in our fixed static axes is
—,'oo=o (1—V ) 'r, where V is the velocity of the
stream. The surface energy density of the pair of streams
in fixed axes is

r', =o =o.o/(1 —V—)' =2o. /(1 —V ), (1.7)

and the tangential pressure caused by the counter rota-
tion is
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2— 2 0
ds = — r cos—

2

2N

dt2

rt=2o. V /(1 —V )=o V

In our disks o, cr, and V are all functions of R. Morgan
and Morgan [4] gave explicitly the solution for a uni-
formly counter-rotating disk, while Lynden-Bell and
Pineault [5] gave solutions in which Vis constant and the
disk has a finite radius a. When in the above disks a ap-
proaches infinity, their metric takes the pretty form

give a general formula for the g derived from a general
weight function W(b) T. his allows us to give the general
solution for a disk of any weight function O'. This gen-
eral solution obviously involves integrals over the weight
function, which has to be specified before the integrations
are carried out. When 8' is a sum of n 6 functions, we
find the disk whose metric corresponds to n collinear
Curzon singularities below the disk. Related metrics in
the absence of a disk were considered by Israel and Kahn
[12].

+ r cos20
2

+ r cos—20
2

—2N
8N2cos'~ (dr '+—r 'd 8')

2

r sin Odg (1.9)

II. RELATIVISTIC DISKS:
THE GENERAL SOLUTION

V v=4m G exp[2(g —v) ](T~ —T,'), (2.1)

Following Synge [3], Einstein's field equations, when
the metric is (1.5), become

where N= V /(1+ V ) and 8 & vr/2. Below the disk, 0 is
replaced by —0. They also discussed self-similar truly
rotating disks with frame dragging [6].

The metric (1.9), without being interpreted as the
metric of the counter-rotating disk, was obtained by God-
frey [7]; he found all Weyl metrics admitting homothetic
motion.

Katz pointed out that when V= 1 the metric (1.9)
reduces to the Rindler metric of Oat space as seen by an
observer accelerating uniformly toward the disk. Lemos
[8] gave these transformations and used them to find the
geodesics in this metric.

When we use Kuzmin's idea in Weyl's coordinates to
generate a relativistic disk, we find that the metric above
the disk is that of a point in Weyl s coordinates, i.e., the
Curzon metric [9]. We shall refer to the resulting disks
as the Kuzmin-Curzon disks [10]. These are our natural
building blocks. We work out their details in Sec. III.

We also consider the disk that is obtained by putting
the source of Weyl's form of the Schwarzschild solution
below the disk. This corresponds to taking W'(b) to be a
uniform rod of length 2m and weight —,'. A sequence of
different disks is obtained by centering the rod of length
b —a )0 at a distance —,'(a+b) below the disk. Another
way of arriving at this same metric is to subtract the po-
tentials of two infinite counter-rotating V= 1 disks at dis-
tances a and b below the center. Thus there are remark-
able relationships between the infinite disks of Lynden-
Bell and Pineault and the Schwarzschild disks. For the
Schwarzschild disks, the line mass density has to be —,'.
By taking uniform finite lengths of other line densities,
we generate disks corresponding to the Zipoy-Voorhees
solution [ll]. Indeed, the general infinite Lynden-Bell
and Pineault solutions with V( 1 may be obtained from
those by taking the upper end of the uniform line density
to touch the disk and sending the lower end off to
infinity.

Classical potentials are linear, and so disks can be su-
perposed linearly. This is not true in relativity in general,
but as we solve T v=O to find v, we may superpose solu-
tions for v. The equations defining the function g in (1.5)
are quadratic in v, and so there is no straightforward su-
perposition principle for g. Nevertheless, we are able to

2
av
aR

Bg Bv Bv

az aR az'

aR
av
az

2

(2.2)

(2 3)

a'g a'g, av
aR

2 2
av+
az

=4vrGe ~ '( T'+ T~ ) (2.4)

where V is the operator of (1.6). Away from matter,
(2.1) reduces to Laplace's equation. So by choosing its
right-hand side in the form 4vrGS(R)5(z) the problem
reduces to the classical potential problem. The stress en-
ergy tensor when integrated through the disk gives the
surface stress tensor of the disk itself:

r&e& dz =o- V' (2.5)

r', = f T,'e & dz = —o (2.6)

az
=8~Ge~- ~~~=8~6~e~- V' (2.7)

and, from (2.1),
0+

av =4~Ge~ (r& —r')=4~Goe~ (1+V ) .
0—

(2.g)

Similarly, integrating (2.3),
0+ 0+

az
av av
aR az

(2.9)

Hence, finally,

R = rp~/(r~~r', ) = V /(1+ V —
)

av
aR

(2.10)

In practice, the total energy within R is given by

J O2vroe~ 'e RdR, 'a. nd so it is oe~ that we need

Using (2.1) in (2.4) and integrating through the disk, we
find

0+
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rather than cr itself. Equations (2.10) and (2.8) are thus
sufficient for calculations of disk structure even without
the determination of g. Nevertheless, we do not get the
complete metric until g is determined; so we shall now at-
tack that problem initially following Ernst's method.

We write

8
l

BR Bz
(2.1 1)

This operator remains the same if z+b is written for z.
If we center spherical polar coordinates anywhere on

the axis and write

the general case, we have

W(b)db
" [R '+(

~
~+ b )']'" (2.20)

Because (2.2) and (2.3) are quadratic in v, the general g
can be expressed as an integral over pairs of individual
contributions to v. Thus g takes the form

g=G f f W(b, )W'(b2)Z, (b„b2, r)db, db2, (2.21)

where Z arises as the cross term between the elementary
potentials v, and v2..

then

8
ao '"ar '

D=r 'e' D 0

Equations (2.2) and (2.3), combined in the form

(2.12)

(2.13)

v; =[R +(~z~+b, ) ]
'~ =1/r, for z )0 . (2.22)

Equations (2.18) and (2.19) will be true when g,„ is re-
placed by Z and v„vb are replaced by v& and v2. Again,
the cross terms inherit their consistency from that of the
constituents vi and v2. Using (2.11), Eqs. (2.18) and (2.19)
become

D(=R(Dv) (2.14) DZ D(lnR ) =Dv, Dv2 . (2.23)

may be rewritten

Diig=sinHe' (Dev) (2.15)

We now transform to spheroidal coordinates based on
the foci R =0, z= —b„—b2. To do this we write

For the Kuzmin-Curzon disk, v= —GM/rb above the
disk, where rb is measured from a point on the axis at a
distance b below the disk. Hence, centering our spherical
polars there, (2.15) reduces to

a a—ir = —sinOe' r 6 M /r

z+ b+iR =
—,'bcosh(g, +i gz),

with 6=b2 —b r and 2b =b, +b2.
Defining A, =cosh/i and p =cosg2, we find

2(z+b) =BAN,

2R =5[(A, —1)(1—p )]'

(2.24)

(2.25)

(2.26)

sinO=R /r& . (2.16)

Taking the real part and integrating from rb to ~, we

get

The operator D becomes

a(gi +i&2) a . aD= +i
ia(R —iz) ag, ag,

(2.27)

g= ——'GMR /r (2.17) but, by (2.25),

where we have used the boundary condition that $~0 at
infinity. The 0 integration gives the same result as it
must since V v=0 ensures that (2.2) and (2.3) are con-
sistent.

Although this technique works for the Kuzmin-Curzon
family of relativistic disks and yields, of course, the Cur-
zon metric, it does not work simply in the general case.
If v, and vb are two solutions of Laplace's equations and
if the corresponding g's are g, and gb, then the g corre-
sponding to v, +v& will not be g, +g& because (2.2) and
(2.3) are quadratic rather than linear. In practice, we
may write g=g, +g&+2/, &, where, by subtraction of the
known solutions, (2.2) and (2.3) become

a ~ y a a a

and so (2.23) becomes

D„Z D„(lnR ) =D viD„vz,

where

=(g2 —1)i~2 + j(1—p2) ~a . a
Bk Bp

Furthermore, we have

ri =[R +(z+bi) ]'i =—(A, —p),2 1/2

(2.28)

(2.29)

(2.30)

ag b av avb

BR BR BR
=R Bv Bvb

BZ Bz
(2.18)

r~=[R +(z+b2) ]'i =—(A, +p),2 1/2

Z~O. (2.31)

ag i av avi av avi,=R +
Bz BR Bz Bz BR

(2.19) From the real and imaginary parts of (2.29), we eliminate
BZ/Bp and deduce that

These equations are automatically consistent because the
corresponding equations for g, and gb were. When
v, =v&, Eqs. (2.18) and (2.19) become (2.2) and (2.3). In

az (1—p, )A,

4 aA, (g~ —p~)~
(2.32)
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Using the boundary condition that Z~O at infinity
where space is Oat, we have

2

r,„+/z/+b, „v=GN ln r,„+/z/+b, „
2 (1—p) 1

(g —p ) 2r, r2 b2 —b

(2.33)

=6&in rmax+ min (bmax bmin )
(2.44)

Putting this into (2.21), we find

G2 W(b, ) 8'(b2 ) 1—
2 r)r2

r2 —
r&

b2 —bi

2

db, db2 .

(2.34)

The pair (2.43) and (2.44) represents the Zipoy-Voorhees
metrics [11]; with N =

—,', these go over into the
Schwarzschild metric with GM = ,' (b,—„b—;„). When
W(b) is a sum of 5 functions of weights iv; at z= b;—,
i = I, . . . ,p, then we see at once from (2.20) and (2.34)
that

This is our formal solution for g.
However, the integrations look awkward because r&

and r2 depend on b i and b2 via (2.31). In practice, (2.34)
may be simplified by using the variables $„$2, where

Wi

2
ri rJ

(2.45)

b;+ ~z
~

=R sinhP;, i =1,2 .

Then

r, =R cosh/;, db; =R cosh/;dP; .

Thus,

,'G'f-f W, W,
cosh/2 —cosh/,

2

hP — hP

Finally, putting u; =e ', we have

g= —2G'ff,du, du, ,
(u, u2+1)

where

(2.35)

(2.36)

(2.37)

(2.38)

i=1 j=1 & J

Somewhat similar solutions with Schwarzschild rods
were analyzed by Israel and Kahn [12]. Bonnor and
Swaminarayan [13] discussed four Curzon particles and
Bicak, Hoenselaers, and Schmidt [14] the point particles
with arbitrary multipole structure.

III. PROPERTIES OF THE DISKS

v(R)= R Bv
aR

(3.1)

with the corresponding angular velocity being

In classical galactic dynamics, the following quantities
are commonly used to characterize the axisymmetric
disks: first, the gravitational potential v(R, z); second, the
circular velocity v with which stars orbit around the
center ("the rotation curve"),

1/2

—~z, i=1,2. (2.39) co=v/8; (3.2)

u,„=(b,„+~z ~+r,„)/R, (2.40)

The upper and lower limits of integration are given by
next, the distribution of the specific angular momentum
of stars in circular orbits in the disk, which, in the classi-
cal case, is simply given by

where j(R)=Rv; (3.3)

r',„=R'+ ( ~z ~+b,„)', (2.41)

(u,„+1)(u;„+1)
g= —2N G ln (u,„u,„+1)

(2.42)

After some manipulation this may be put in the form

(r,„+r;„)—(b,„b;„)—
(=2G N ln

4rmax rmin
(2.43)

where r „,r;„are given by (2 41). The potential v,
given by (2.20), is

and similar equations with min written for max.
In the special case in which 8 =const =X between

b;„and b „,the integral is readily evaluated and gives X(R ) =(4irG )
az

(3.4)

In the case of our relativistic disks, the magnitude of
the velocity of counter-rotating streams, as measured by
the local static observers, follows from (2.10):

1/2
R(Bv/M )

1 —R(Bv/M )
(3.5)

The angular velocity of the counter rotation, as measured
by observers at infinity, 0=d y/dt, is given by

0= Ve /R (3.6)

and, finally, the classical surface mass density as deter-
mined by the jump in the normal derivative of the poten-
tial:

0+
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h =RVe '/(1 —V )'/ (3.7)

The specific angular momentum of a particle with rest
mass p rotating at radius R, defined as
h =(p /p) =g„dy/dr (r particle's proper time), can be
written in the form

Their value on the disk is

vD = —Np, gD
= —

—,
' N p ( 1 p—) . (3.17)

The energy tensor components of the disk ~,' and ~~&, as
given by (2.7) and (2.8), are here

cr(R)=(4irG) Bv

[r)z o—
0+

e
BR

oo(R) =(4~G )
Bv
az

1/2

(3.8)

Xe ~ 1 —2R
BR

V

BR
(3.9)

Another quantity of interest in static spacetimes is the
redshift z of a photon emitted by an atom at rest and re-
ceived by a static observer at infinity. The redshift factor
1+z (no confusion with coordinate z) is given by

where V is given by (3.5). Finally, the surface mass-
energy density o. and the surface rest mass density 0 0 fol-
low from (2.8) and (3.5):

0+

r—,'=o= P [1 NP—(1 P)—]e
2~Gb

+2r~=o. V = P'(I —P )e
2~Gb

(3.18)

(3.19)

where Vis the relativistic velocity (3.5).
Since t/' ( 1, we must have

1— 2

1 Np(1 ——p ) 1 —
U

(3.20)

P =—' or R=V'2b . (3.21)

Equation (3.20) must hold for any value of P, that is, at
any radial distance. The maximum of V occurs at

1+z=(~g )
' =e (3.10)

Its value is smaller than 1 if

We shall now discuss these quantities for the Kuzmin-
Curzon disk and for the generalized Schwarzschild disks.

GM ( 3&3
1.30 . (3.22)

A. Kuzmin-Curzon disk

GM
b

and a radial parameter P in the range [0,1],

(3.11)

The classical Kuzmin disk has a potential v given by
(1.1) and a density X by (1.2). Other quantities of interest
such as the velocity of the rotating Aow v and its angular
velocity m take a particularly simple form in terms of the
dimensionless mass parameter r')0 or —1 NP(1 —P ))—0,

a bigger mass parameter would be admissible:

GM ( 3&3
b 2

(3.23)

(3.24)

The condition (3.20) that the velocity of the counter-
rotating streams does not exceed the velocity of light
reduces to the dominant energy condition [15]. If the
disk is made of some material more exotic than the
streams, satisfying, however, the weak-energy condition,
i.e.,

b

(b 2+R 2)1/2
(3.12) The angular velocity of counter rotation [Eq. (3.6)]

takes the form
P=O for R = m, P= 1 for R =0. In this notation the
classical density is

2NP[1 Np( 1 p2) ]
—1/2 (3.25)

N
2~Gb

The circular velocity given by

U =Np(1 —p )

and the corresponding angular velocity

(3.13)

(3.14)

with co being the corresponding classical angular velocity
(3.2), and the specific angular momentum (3.7) reads

(N/p)1/2( 1 p2)eN/3[1 2Np( 1 p2)]
—1/2

(3.26)

The classical specific angular momentum

co= —(Np )'/1

b
(3.15)

The relativistic Kuzmin-Curzon disk is described by
two functions: the potential v and the function g given in
(2.17). It is useful to have them side by side:

'2

1'b 2 I'I

jib =(NIP)'/'(1 —P') (3.27)

is an increasing function of R, and as R —+ oo(P~O),
h lb =j/b ~ p ' . The behavior of h /b closer to the
central regions is more complicated. [See Fig. 1(b) and
below. ]

For the surface mass and rest mass densities (3.8) and
(3.9), we now obtain

(3.16) cr =(NP l27rGb)e [1 NP(1 —P )], — (3.28)
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oo=. (NP /2~Gb )e GM 1

b —a 2
(3.40)

X I [1—2Np(1 —p )][1—Np(1 —p )] I
'/2, (3.29)

where vD, JD are given by (3.17). The first set of brackets
is the classical surface density (3.13). cr and oo are illus-
trated in Figs. 1(c) and 1(d).

The redshift factor (3.10) is simply given by

(3.32) and (3.39) represents Schwarzschild's solution in
Weyl's coordinates. Spacetimes with NA —,

' were ana-
lyzed by Zipoy and Voorhees [11]. This family of disks
we call generalized Schwarzschild disks.

The potentials in the plane of the disk are

1+z =e D =e~~ (3.30)

The largest redshift comes from the center (p= 1), and
since we require V(1 [cf. (3.22)],

1+z, =e «e =3.67 . (3.31)

r,o+a
vD =%in

rbo+

(r,o+ ri, o) (b —a —)
gD=2N ln

4' orbo

(3.41)

The more extreme limit (3.24) implies 1+z, ( 13. The energy-momentum tensor components of the disk
(2.7) and (2.8) are here given as

B. Generalized Schwarzschild disks

r. + Iz I+a"
r, +Izl+b (3.32)

These disks are obtained by putting a uniform rod of
length b —a at a distance a below the z=0 plane along
the negative z axis and using Kuzmin's trick. The poten-
tial v is thus [cf. (2.44)]

—7, —0=
2~G

and

~]~=o.V = 1

2aG r, o rbO
(P—a )e . (3.43)

The velocity squared is therefore

[1—N(P —a) ]e (3.42)
rao rbo

where

«.'=R'+(a+ lz I)', «~2=R'+(b+ lz I)' . (3.33)

2
'ry N(P —a) u

1 —N(P —a) (3.44)

X 1

2~G r, o rbO

The corresponding classical surface mass density of the
disk reads

The maximum value of the function V(R) must be small-
er than 1. It is easily seen that the maximum occurs at

2/3 2/3

R =b — 1+
b b

(3.45)

=R +a r =R +bbO

(3.34)
At that point, V «1 if

The parameter X is now related to the total mass M of
the disk as follows:

(1 1 (1 [1—(a/b) ]'
2 p —a 2 [ 1 —(a /b )2/3]3/2

(3.46)

GM
b —a

(3.35)

b a

(R 2+ b 2)1/2 '
(R 2+ 2)1/2

(3.36)

The square of classical rotational velocity can be written
simply

u =N(P —a), (3.37)

We introduce radial parameters similar to p in Kuzmin-
Curzon disk:

The upper bound of N increases from X=—,
' for a/b =0

to N= ~ for a/b =1. For X(—,', V &1 is always
satisfied.

V «1 is the dominant energy condition. A weak-
energy condition results from requiring —~, ~0. As in
the Kuzmin-Curzon disk, the weak-energy condition
gives an upper limit of X twice as high as compared with
the dominant energy condition.

The angular velocity (3.6) reads
2%

A=co [1 N(P a)]— —(3.47)
rbo+b

and the classical angular velocity is thus

iu = [N(P —a) ]' /R . (3.38)
where co= [N(p —a)]' /R is the classical value; and the
specific angular momentum (3.7) now takes the form

Relativistic disks of these sorts are described by an addi-
tional function g [see (2.43)]:

Ii/b=(b/a) P '(1 —P )'/ [a(1+P)/P(1+a)]
X IN(P —a)/[1 —2N(P —a)]I' (3.48)

For

(r, +ri, ) —(b —a)
$=2N ln

4r, rb
(3.39) Again, it is readily seen that h /b ~R ' at R —+ ~, i.e.,

as in the classical case, but h exhibits more complicated
behavior at smaller R (see below).
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o0=[(N/2irG)(r, 0' r' —)]e
(3.49)

The surface densities of mass and t
b thy e expressions

n res mass are given

o =[(N/2vrG)(r, 0' r—')]e [1—N —a
0.8-

0.6.

0.4-

X [ [1 2N—(f3 a)]—[1—N(I3 —a)]' (3.50)

Thee initial square brackets give the cl
'

1e c assica surface den-

For the generalized Schwarzschild disks the d h
factor (3.10) reads

's s, ere s ift

0.2-

20

b+(b2+Z )'~
1 +z

a+(a +R )'
(3.51) 15-

(b)

The hi hest val
center:

'g alues are again for emitters lo t d hal ocae at t e

N
b1+z, = — ) 1 .
a

d
0 ~ ~

T e upper limit is restricted b th dy e ominant energy con-
ition, which bounds N by (3.46). For Nor given by the
qua i y in (3.46), we can rewrite (3.52) in the form

(3.52)

y'= L( 1 —g 2) & ~&/( 1 —~~~3 )3 ~2

~ ~
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In the plots of V and h, the parameter b is getting smaller
as one moves from the bottom to the top only at small
R —at larger R's, the curves begin to cross.

The maximal relativistic velocities (V~1) appear at
larger R /GM =2—3 in the Kuzmin-Curzon disks, i.e., at
larger radii than in the generalized Schwarzschild disks.
As X decreases, the maximal relativistic velocities occur
at smaller R/GM. However, V is bounded above by
[N/(1 —N)]', which is less than 1 for N (—,'; so it can-
not then approach the velocity of light.

This can be shown analytically by using (3.5), (3.41),
and (3.45). For N~ —,', the parameter a may approach
zero (i.e., the upper end of the rod may approach
R =z =0, b ~GM/N [cf. (3.35)]) and the maximum ve-
locity is reached close to R =0, with its value given by

V,„=[N/(1 N)]'—, N~ —,
' . (3.53)

This effect is clearly exhibited in Fig. 3(a), in which V,„
approaches 3 '~ =0.577, i.e., the value (3.53) for N= —,'.
By sending the lower end of the rod to infinity keeping N
fixed, one arrives at the infinite-mass constant-velocity
disks of Lynden-Bell and Pineault [5]. The correspond-
ing Schwarzschild disk (N =

—,
'

) has V,„=1 [8].
In the highly relativistic disks, as R decreases, V ap-

proaches the velocity of light and the specific angular
momenta cease to decrease with R, but start increasing.
The angular momenta of circular orbits in Schwarzschild
spacetime also show such a rise for r & 6m, which is asso-
ciated with their relativistic instability. The effect is ob-
served for the three most relativistic Kuzmin-Curzon
disks in Fig. 1(b) and for one case of the Schwarzschild
disk in Fig. 2(b). No instability of this type arises in gen-
eralized Schwarzschild disks with X=—'.

For small a the surface mass densities of the X ~
—,
' gen-

eralized Schwarzschild disks rise rapidly toward the
center, behaving as R ' for a =0 [see Figs. 2(c), 2(d),
3(c), and 3(d)]. The characteristic radius of the whole
mass is always close to b and approaches GM/N as a ap-
proaches zero. Nevertheless, these disks have long tails
of surface density falling as R at large R.

An interesting feature may be observed with the highly
relativistic Kuzmin-Curzon disks. At those radii where
velocities of the streams approach the velocity of light,
the rest mass density decreases rapidly with R, and in ex-
treme cases, it even reaches a local minimum [see Fig.
1(d)]. Such a behavior may be derived analytically, using
(3.29) directly.

IV. CONCLUDING REMARKS

Although remarkable progress has been made in
finding exact vacuum solutions of Einstein's equations,
there are not many explicit solutions with sources avail-
able which satisfy reasonable physical requirements such
as asymptotic fatness and a positive-energy condition.
Kuzmin's trick used in classical galactic dynamics has
enabled us to construct sources for some known vacuum
solutions in the form of counter-rotating disks. The disks
are unstable with respect to the formation of (Saturn-
type) rings because they lack radial pressure [16]. Such
instabilities are suppressed when radial pressures are in-
cluded; cf. [10]. A truly relativistic instability arises in
those disks in which specific angular momentum fails to
increase outward at some radius.

Nevertheless, the disks, though extending to infinity,
have finite mass and exhibit interesting relativistic prop-
erties such as the high velocities of counter-rotating
streams and high central redshifts. We are not aware of
any other exact solution with a source which is not spher-
ically symmetric that leads to arbitrarily large redshifts.
Even in spherical symmetry, one has to conceive quite so-
phisticated models in order to obtain large redshifts from
the center [17]. The primary significance of the disk solu-
tions such as those constructed above lies in the finding
of sources, and thus an interpretation, for known vacuum
solutions suAering from obscure naked singularities, e.g. ,
Curzon's solution, to name the simplest one [18].

An infinite number of new exact solutions of Einstein's
equations can be constructed starting from realistic po-
tentials used to describe Oat axisymmetric galaxies, as
given recently in closed forms by Evans and de Zeeuw
[2]. As special cases, for example, one can find relativis-
tic generalizations of the Mestel and Kalnajs isochrone
disks, popular in galactic dynamics. These solutions and
their properties will be the subject of another paper [19].
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