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Testing a stability conjecture for Cauchy horizons
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A stability conjecture previously developed to investigate quasiregular and nonscalar curvature singu-
larities is extended here to cover the stability of Cauchy horizons. In particular, the Reissner-
Nordstrom spacetime of charged, nonrotating black holes is considered. The conjecture predicts that
the addition of infalling null dust with a power-law tail will produce a nonscalar curvature singularity at
the Cauchy horizon. This prediction is verified using a Reissner-Nordstrom-Vaidya spacetime studied
by Hiscock. The conjecture also predicts that a combination of infalling and outgoing null dust will pro-
duce a scalar curvature singularity at the Cauchy horizon. This prediction is verified using the mass
inflation results of Poisson and Israel. Finally, the conjecture predicts that the addition of infalling sca-
lar or electromagnetic waves will produce a scalar curvature singularity at the Cauchy horizon.

PACS number(s): 04.20.Cv

I. INTRODUCTION

In a number of papers [1—7], we have developed a sta-
bility conjecture for the investigation of quasiregular and
intermediate singularities in solutions of Einstein s equa-
tions. We look at the behavior of test fields in the vicinity
of the singularity, and based upon this behavior we pre-
dict what should become of the singularity if the fields
are allowed to inAuence the geometry through back-
reaction calculations using Einstein's equations. In a few
cases these back-reaction calculations have actually been
carried out [3,5]; in each case the results agree with the
predictions of the conjecture.

In this paper we extend our conjecture to cover the sta-
bility of Cauchy horizons. We then use the conjecture to
investigate the Cauchy horizon of the Reissner-
Nordstrom geometry of charged nonrotating black holes,
when various fields are added. We are able to test the
conjecture for two different field configurations by com-
paring its predictions with the results of back-reaction
calculations which have already been carried out.

In Sec. II we define quasiregular, nonscalar curvature,
and scalar curvature singularities. We then state the sta-
bility conjecture we have previously applied to the first
two singularity types, and tests of the conjecture. Final-
ly, we extend the conjecture to spacetimes with Cauchy
horizons. In Sec. III we begin by reviewing properties of
the Reissner-Nordstrom spacetime, and review some pre-
vious investigations of the Cauchy horizon's stability in
this geometry. Then in subsection A we derive predic-
tions in the case of infalling null dust and compare with
the result found by Hiscock [8] using the Reissner-
Nordstrom-Vaidya spacetime, an exact solution of
Einstein s equations. In subsection B we derive predic-
tions in the case of both infalling and outgoing null dust,
and compare with the corresponding back-reaction re-
sults of Poisson and Israel [9—11]. In subsection C we

use the conjecture to investigate the stability of the Cau-
chy horizon when minimally coupled massless scalar
fields and electromagnetic fields fall into the black hole.
There are no full back-reaction calculations in these cases
with which our predictions can be compared. In Sec. IV
we summarize our conclusions.

II. SINGULARITY CLASSIFICATION
AND THE STABILITY CON JECTURE

We use a singularity classification scheme based on one
devised by Ellis and Schmidt [12]. They classified singu-
larities in maximal spacetimes into three basic types:
quasiregular, nonscalar curvature, and scalar curvature.
The mildest singularity is quasiregular and the strongest
is scalar curvature. At a scalar curvature singularity,
physical quantities such as energy density and tidal forces
diverge in the frames of all observers who approach the
singularity. At a nonscalar curvature singularity, there
exist curves through each point arbitrarily close to the
singularity such that observers moving on these curves
experience perfectly regular tidal forces [12,26]. For a
quasiregular singularity, no observers see physical quanti-
ties diverge, even though their world lines end at the
singularity in a finite proper time.

Our version of the Ellis and Schmidt classification
scheme can be expressed mathematically. One difference
between the two schemes is that Ellis and Schmidt use a
b-boundary construction to define the singular points,
while we simply define singular points as the end points
of incomplete geodesics in maximal spacetimes. In our
scheme a singular point q is a quasiregular singularity if
all components of the Riemann tensor R,&,& evaluated in
an orthonormal frame parallel propagated along an in-
complete geodesic ending at q are C (or C ). In other
words, the Riemann tensor components tend to finite lim-
its (or are bounded). On the other hand, a singular point
q is a curvature singularity if some components are not
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bounded in this way. If all scalars in g,b, the antisym-
metric tensor q,b,d, and R,&,d nevertheless tend to a finite
limit (or are bounded), the singularity is nonscalar, but if
any scalar is unbounded, the point q is a scalar curvature
singularity.

We have previously used a stability conjecture [3] to
test the stability of quasiregular and nonscalar curvature
singularities. Our conjecture states the following.

If a test field stress energy tensor evaluated in a
parallel propa-gated orthonormal (PPON) frame mimics
the behauior of the Riemann tensor components which in
dicate a particular type of singularity, then a complete
nonlinear back-reaction calculation would show that this
type of singularity occurs.

We have used the conjecture to investigate the stability
of quasiregular singularities in R XT and R XS Hat
Kasner [3], Taub-Newman-Unti-Tamborino (Taub-NUT)
[3], Moncrief [3], Khan-Penrose [5], and Bell-Szekeres [6]
spacetimes. %'e have also studied the stability of the
nonscalar curvature singularity in a dust-filled, Bianchi
type-V locally rotationally symmetric spacetime [7]. In a
few cases we have been able to test the conjecture [3,5] by
comparing its predictions with exact solutions of
Einstein's equations: Taub-NUT spacetime with Brill
and Batakis-Cohen spacetimes. Moncrief spacetime with
other Einstein-Rosen-Gowdy spacetimes, and Khan-
Penrose spacetime with a Chandrasekhar-Xanthopoulos
spac ctime. In each case, the predictions have been
verified.

Here we propose the following similar conjecture for
the stability of Cauchy horizons: For all maximally ex-
tended spacetimes with Cauchy horizons, the back-
reaction due to a field (whose test-field stress-energy ten-
sor is T„) will affect the horizon in the following
manner: (1) If both T„"and T„T" are finite and if the
stress-energy tensor T[ &] in all PPON frames is finite,
then the Cauchy horizon will remain nonsingular; (2) if
both T„"and T„T" are finite but T[ &~ diverges in some
PPON frame, then a nonscalar curvature singularity will
be formed at the Cauchy horizon; (3) if either T„"or
T„T" diverges, then a scalar curvature singularity will
be formed at the Cauchy horizon.

III. STABILITY TESTS
OF THE REISSNER-NORDSTROM

CAUCHY HORIZON

The extended Reissner-Nordstrom (RN) geometry of a
nonrotating charged black hole has an outer event hor-
izon at r =r+, and an inner (Cauchy) horizon at r =r
as shown in the conformal diagram of Fig. 1. Observers
falling into the black hole through r+ see light from the
entire future history of the region outside the black hole,
as they approach r . If they are then able to cross
through this Cauchy horizon (CH), they will see a naked
singularity, the timelike singularity at r =0 shown in Fig.
1, in violation of strong cosmic censorship.

However, evidence has accumulated [13—22] showing
that the CH is unstable, so observers may hit a brick wall
at r . Fields falling in the vicinity of r from outside
the black hole or from scattering within the black hole

FIG. 1. Conformal diagram of a portion of the Reissner-
Nordstrom spacetime. An observer (ob) is shown falling
through the event horizon r = r+ into the interior region, and
then through the Cauchy horizon (CH) at r =r . Just before
reaching the CH, the observer can see light from the entire fu-
ture of the exterior region; after passing the CH, the observer
can view the r =0 singularity.

ds = f(r)du +2du dr+—r dQ

where f(r)=1 2M/r+Q /r with Q
—(M, and

dA =d8 +sin Odg . Radial geodesics in the 8=m/2
plane obey

0=( a++a +Pf )/f, —

r =+ t/a +Pf,
/=0,

(2a)

(2b)

(2c)

are blueshifted; the energy density of these fields diverges
as measured by observers falling toward the CH. Simp-
son and Penrose [13],for example, have shown that insta-
bilities in an electromagnetic test field arise at the CH.
Using a two-dimensional model, Hiscock [23] has shown
that the stress-energy tensor of thermal Hawking radia-
tion diverges there as well. McNamara [11,12] has exam-
ined scalar wave perturbations, showing that while the
field itself remains finite at r, the derivatives of the field
and hence the stress-energy tensor diverge. Gursel and
co-workers [16,17] have shown that the energy densities
of scalar, electromagnetic, and gravitational test fields
diverge in the frame of an observer falling toward the
CH. Work by Matzner, Zamorano, and Sandberg [15]
and by Zamorano [19] arrives at a similar conclusion. A
complete first-order perturbation of the RN metric by
Chandrasekhar and Hartle [18] and by Chandrasekhar
[14] confirms that the flux of electromagnetic and gravi-
tational energy diverges from the point of view of an ob-
server falling toward r . While none of these results
proves that the CH is unstable, because none of them in-
cludes a complete back-reaction calculation of the field
effects on the geometry, they do point to a likelihood of
instability.

We now explore the stability of the RN Cauchy hor-
izon using our conjecture. In subsections A and B we use
the RN metric in the form
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E(p) =(0 0 r 0)

E( 3I:(00 0 r)

in the order v, r, 8, P, where a )0.

(3c)

(3cl)

A. Infalling null dust

A test field of spherically symmetric infalling null dust
has four-velocity u"=(0, —1,0,0), satisfying u„u"=0
and u". u =0. Note that this choice of u" is consistent
with Eqs. (2) for P=O, choosing a= l. The stress-energy
tensor of the null dust therefore becomes

T" =p(v, r)u "u"=diag(O, p, 0, 0) .

The continuity equation T" .„=0furthermore shows that
p(v, r ) =F(v)!r, where F(v) is an arbitrary function.

The scalars T"„and T" T„both vanish everywhere,
so according to our conjecture, such null dust should not
create a scalar curvature singularity (SCS) at the CH. To
see whether null dust should create a nonscalar curvature
singularity (NSCS) instead, we need to calculate T~,b~ in a
PPON frame and see how it behaves as the frame ap-
proaches the CH. In an infalling PPON frame,

T(gb )
E~(g )E ( b ) Tp ~

(a++a f ) F(v)—
0 0 (&)

where cr = (
'

i i
'). Therefore, as v ~~ the behavior of

T~,b; is governed by that of F(v)/f . If this ratio
diverges, a NSCS should be formed at the CH; otherwise
the CH should remain nonsingular according to the con-
jecture. Define e=r —r,' then

f (r)=(r —r+ )(r —r )/r = —2k e

to first order in e, where k =(r+ —r )/2r is the grav-
ity at r . Along an infalling timelike geodesic

dv dv cx+ +cx f«dr f&a' —f
—k v

to leading order, so near the CH, E=E'pe, where E'p is
a constant. Therefore,

where a is a constant and 13=0, —1 for null and timelike
geodesics, respectively. PPON frame vectors E~, ~

for in-
falling timelike geodesics must satisfy EI'0~.+~',

~

=0 and
E( )„EI('b) =5~,&), these vectors are

E(0)„=(a,—(a+ )/a f—)/f, 0,0), (3a)

EIi) =( +cl f &(a++ex f )/f&0&0) &
(3b)

can use to test the conjecture. The Reissner-Nordstrom-
Vaidya (RNV) I24] geometry, as considered by Hiscock
[8], corresponds to spherically symmetric null dust falling
into a charged black hole. The metric retains the form of
Eq. (1), but now

f=f(v, r)=1 —2M(v)/r+Q /r

The stress-energy tensor corresponding to this metric is

8vrT" =(Q /r )diag( —1, —1, 1, 1)+(2M'/r )5„'60, (9)

where M'=dM(v)/dv. The diagonal elements are due to
the static electric field and the off-diagonal element is due
to the null dust. This null dust contribution has the same
form as we found for the test field on the RN geometry if
we identify F( v) =M'( v) /4'.

Hiscock chooses infalling null dust with a power-law
tail, M(v) =m —6(vo/v )" for large v, where m, 5, vo, n are
positive constants. He then shows that scalars construct-
ed from the Riemann tensor converge at the CH, but that
there are Riemann tensor components which diverge in a
PPON frame at the CH, so the CH is converted into a
NSCS in the RNV spacetime, with his choice of M(v).

Equation (8) shows that the null dust test-field stress
tensor T(,I,)

in a PPON frame in RN spacetime diverges
at the CH unless F( v ) falls off at least as fast as
exp[ —2k v ]. Using Hiscock's M(v), then

F(v) =M'(v)/4ir=(5nvo /4n)v

which does not fall off fast enough to avoid causing a
NSCS. Our conjecture therefore agrees with Hiscock's
result: for purely infalling null dust with a power-law tail,
the CH is converted into a NSCS in RNV spacetime.

B. Both outgoing and infalling null dust

Now we add outgoing spherically symmetric null dust
in the region r (r (r+ to the infalling null dust de-
scribed in subsection A, as shown in Fig. 2. We would
expect to have outgoing radiation in realistic situations,
coming from the surface of the collapsing star or from
scattering of infalling radiation. We assume the two

2k vF(v)/f -F(v)e (8)

for large v, which diverges unless F(v ) falls off fast
enough. That is, according to the conjecture a NSCS
should be formed at the CH by infalling null dust, unless—2k U

F(v) falls off at least as fast as F(v)-e, in which
case the CH remains nonsingular.

There is an exact solution of Einstein's equations we

FIG. 2. InfIowing and outAowing radiation in the Reissner-
Nordstrom geometry. InAowing radiation moves from lower
right to upper left, falling through the event horizon (EH) into
the black hole. OutAowing radiation, originating at the surface
of a collapsing star or from back-scattering of inAowing radia-
tion, moves from lower left to upper right, passing through the
Cauchy horizon (CH).
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T"'=pI (u, v )ug'uL +pz (U, v)uguz (10)

for which T"„=0. Because of the cross-product terms,
however,

T" T„=pl.(U, v )p&(v)[(~f ~&„)'+(ug~l „)']
=Spl (u, v )pz (U, v ) If
=8F( U)F(U) l( v f ') .

beams do not interact, so each is separately conserved.
We will show that the addition of outgoing radiation, no
matter how weak, is sufficient to cause the formation of a
SCS at the CH.

The infalling, leftward-moving beam in Fig. 2 has
stress-energy

TIL =pl (v, v)ugul

where pL(v, v)=F(v)lv and up=(0, —1,0,0) as in the
preceding section, using the same (U, v, 8,$) coordinates.
The outgoing, rightward-moving beam has stress-energy

Tg =pe(v, v)ugu~,

where p~(u, v)=F(u)lv . The four-velocity of the outgo-
ing null dust is ug =( 2/f(v), ——1,0,0), the appropriate
solution of uguz =0 and ug. uz =0. An initial surface
for the outgoing radiation may be taken to be a three-
surface with r =const within the interior region
r & r & r+, except that it crosses through the CH and
ends at the r =0 singularity; a similar surface is shown in
Fig. 2 of Ref. [7]. Most of the CH is within the Cauchy
development of this initial surface. From the definition
of Tg' and from ug it follows that finite initial data leads
to a divergent Tg at the CH in (v, v, 8,$) coordinates,
since f(v)~0. Scalars constructed from Tg are zero,
however. One may be concerned that the divergence of
Tg at the CH arises from the use of infinite data at the
initial surface where it crosses the CH. This concern is
dispelled by calculating Tg in the vicinity of the CH us-
ing the coordinates g = —(k ) 'exp( —k v ) and
h =(v —v )exp(k U), which are nonsingular at the CH
and extendable through it. In these nonsingular coordi-
nates we find that Tg is finite, so that a finite initial ener-

gy of outgoing null dust leads to a finite energy of outgo-
ing dust crossing through the CH.

The total null dust stress energy for both infalling and
outgoing null dust is

C. Scalar and electromagnetic fields

Many authors have investigated the behavior of scalar
and electromagnetic test fields near the CH of the RN
spacetime and have shown that the flux of radiation
diverges in the frame of an observer crossing the horizon.
Here we show that according to our conjecture, these
fields cause a SCS to form at the CH.

Using double-null coordinates u =r *—t and U = r *+t,
where r * is the tortoise coordinate

v*=v+(2k+ ) 'ln(v+ —v) —(2k ) 'ln(v —v ), (12)

with v (v (v+ and k+=(v+ v)l2v+, —the RN
metric is

the RN geometry contains both infalling and outgoing
spherically symmetric null dust. They show that the
presence of both beams leads to the phenomenon of mass
inflation, in which the effective internal gravitational-
mass parameter becomes large in the absolute future of
the infalling and outgoing beams. They find an exact
solution in the case that the inflow and outflow are each
modeled by thin null shells. The spacetime is separated
into four regions, each of which is a RN solution, but
with differing mass parameters. The region to the abso-
lute future of the shell crossing has a mass which in-
creases without bound as the infalling shell is moved
closer to the CH. Poisson and Israel also show that the
mass inflates along the Cauchy horizon in the more real-
istic case of a power-law tail for infalling null dust as long
as there is some outflowing null dust. The presence of the
outflow is essential for mass inflation and for the diver-
gence of curvature at the CH, but the strength and shape
of the outflow is unimportant. Divergence of the mass
and curvature in the classical limit requires that the infal-
ling radiation have a power-law tail all the way to the
horizon, just as required for formation of a singularity ac-
cording to the conjecture. The papers of Poisson and Is-
rael provide a detailed explanation of mass inflation and
its relation to a separation between the Cauchy horizon
and an apparent horizon within it.

The stability conjecture prediction once again agrees
with the results of a complete back-reaction calculation
using classical general relativity. When outgoing null
dust is added to null dust with a power-law tail falling
into a charged black hole, a scalar curvature singularity
is formed at the CH.

This scalar constructed from T" diverges as v ~v if (i)
F(U) is nonzero as v~ co and (ii) F(v)lf diverges.
Therefore, if there is at least some outgoing null dust and
the infalling null dust has a power-law tail as used in the
preceding section, a SCS is formed at the CH according
to our conjecture. It is very interesting that the addition
of even a tiny amount of outgoing dust is sufficient to
convert the NSCS of the preceding section into a SCS.
This is related, according to our method, to the non-
linearity of the scalar quantity T" T„,which is able to
combine properties of the two noninteracting beams.

Poisson and Israel [9—11] have constructed solutions of
Einstein s equations in which the inner region r & r+ of

ds =f(v)du dv+ v d $), (13)

Giirsel and co-workers [16,17] show that solutions of the
massless minimally coupled scalar wave equation /=0
take on the form

P(t, v, 9,$)=AY( (0,$)f dk e '"'
gi k(v) (14)—

Im

in this background spacetime, where g& k(v) satisfies an
evolution equation. They show that the dominant contri-
bution near the CH comes from modes in a neighborhood
of k =0. For purely infalling waves at r+, there is
scattering in the interior so outgoing waves approach the
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CH. In the vicinity of the CH (v ~ co, u (0) Giirsel and
co-workers show that the Im mode approaches

y, (u, v, e, y)
~~m BIm
2!+2 2l+2

U Q
(15)

where 3I and B& are constants. The stress-energy ten-
sor is

1 1
~P. = 4 (t,,0,.—2 g„.S

where S=g ~P P&. The behavior of the stress-energy
scalars is decided by the behavior of S, since T"„=—S
and T"'T„=S . The metric elements g

"'=g
'"=2/f

diverge quickly at the CH, so the dominant term of SI is

—(4/f )PI,.4~,.
k(u + v)/2

2i+3(uv)

where C& is constant and we have used

f(r)~ —(2k r )exp[ —k (u +U)/2]

(17)

as r ~r . Expression (17) for SI diverges as v —+ ~, so
the stress-energy scalars T"„and T" T„both diverge.
According to our conjecture, these scalar fields will there-
fore cause a scalar curvature singularity to form at the
CH.

Gursel and co-workers show that electromagnetic
waves behave near the CH in a manner similar to that of

Therefore although T"~=0 for any electromagnetic
wave, the scalar T" T„diverges as U ~~, so again our
conjecture predicts that these waves also form a SCS at
the CH.

It is important to emphasize that the solutions of
Gursel and co-workers and other authors take account of
the power-law tail of infalling radiation, and also back-
scattering for r (r+, which produces outgoing radiation
qualitatively similar to the outgoing null dust used in the
preceding section. Therefore it is not surprising that
these scalar and electromagnetic waves lead to the same
conclusion as infalling plus outgoing null dust.

IV. CONCLUSION AND DISCUSSION

We have proposed a stability conjecture for Cauchy
horizons in which the behavior of test fields near the hor-
izon can be used to predict whether the Cauchy horizon
will remain regular, or will be converted instead into a
nonscalar or scalar curvature singularity when a full non-
linear back-reaction calculation is carried out. We have
used the conjecture to predict the fate of the Reissner-
Nordstrom-Cauchy horizon under the inAuence of infal-
ling null dust, of the combination of infalling and outgo-
ing null dust, and of infalling and outgoing scalar fields
and electromagnetic fields. With infalling null dust a
nonscalar curvature singularity should be formed, while
in the other cases a scalar curvature singularity should be
formed.

Full back-reaction calculations have been made by
Hiscock for purely infalling null dust and by Poisson and
Israel for the combination of infalling and outgoing null
dust, using the Reissner-Nordstrom-Vaidya spacetime.
The type of singularity formed at the Cauchy horizon in
these solutions is in agreement with the predictions of our
conjecture.

It seems clear from these results that when realistic
fields are allowed to perturb the idealized Reissner-
Nordstrom geometry of a charged nonrotating black
hole, a scalar curvature singularity is formed at the Cau-
chy horizon, although a quantum theory of gravity would
have more to say about the structure of the singularity
within dimensions of the Planck length. The singularity
may serve as a brick wall, closing off'the need to contem-
plate the extended Reissner-Nordstrom solution past the
Cauchy surface and the consequent violation of strong
cosmic censorship, or it may be sufficiently weak to per-
mit penetration [25], in which case what happens beyond
the horizon would remain an open question.
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