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An early MAD (massively aged and detained) epoch during which the University becomes older than
in the standard model is proposed as a possible new resolution to the horizon problem. This scenario
differs from inAation in that there is no period of vacuum domination required and no entropy violation.
Extensions of Einstein gravity which allow the Planck mass mp& to change with time as the Universe
evolves may provide such a MAD resolution to the horizon problem: in a cosmology where the gravita-
tional constant G =m p& is not in fact constant, the Universe may be older at a given temperature than in

the standard hot big bang model. Thus, larger regions of space could have come into causal contact at
that temperature. This opens the possibility that large regions became smooth without violating causali-
ty. We discuss in this paper theories of gravity in which the gravitational constant is replaced with a
function of a massless scalar field. We first consider the original Brans-Dicke proposal and then address
more general scalar theories. However, this resolution to the smoothness problem can more generally be
a feature of any physics which allows the Planck mass to vary with time. Solutions to the equations of
motion during the radiation dominated era for Brans-Dicke gravity and more general massless scalar
theories of gravity are presented. In particular, we study the evolution of the field N which determines
the Planck mass at any given time, 4(t) =mp~(t), in the absence of a potential for 4. We find that, re-

—1 2
gardless of initial conditions, the Planck mass evolves towards an asymptotic value m» =N . For both
a Brans-Dicke cosmology and a more general scalar theory, our observable Universe could fit inside a re-

gion causally connected at some high temperature T, prior to matter-radiation equality if there is a large
disparity between the early value of the Planck mass and the Planck mass today; specifically, our causali-

ty condition is that mp&/m»{ Tp) ~ T, /Tp, where m»( Tp) =Mp = 10' GeV is the Planck mass today and

Tp is the temperature of the cosmic background radiation today. Still, an additional mechanism is re-
quired to drive the Planck mass to the value Mp before the Universe cools below a temperature of
Tp 2.74' K. A mechanism capable of anchoring the Planck mass fast enough will necessarily ac-
celerate the cosmological expansion and thus involves important dynamics. We suggest possible mecha-
nisms to anchor the Planck mass and complete this MAD model.

PACS number(s): 98.80.Cq, 04.50.+h

I. INTRODUCTION

The standard hot big bang model of the early Universe
is unable to explain the smoothness of the observed
Universe. In the standard cosmology, our present hor-
izon volume would envelop many regions which were
causally disconnected at earlier times. Consequently, the
homogeneity and isotropy of the observed Universe is a
mystery. Regions which could not have been in causal
contact at earlier times seem nonetheless to be identical
in temperature and other properties, as the isotropy of
the cosmic background radiation attests.

The inflationary model proposed by Guth [1]addresses
the horizon and fatness problems, as well as the mono-
pole problem (if it exists). As a general class of early-
universe models, inflation suggests that our Universe
passes through an era of false vacuum domination during
which the expansion of the Universe accelerates. The ac-
celerated growth of the scale factor inAates a region

which was initially subhorizon-sized and therefore in
causal contact. If the scale factor grows sufficiently, our
observable Universe fits inside one of these blown-up
causally connected volumes. During inflation, the tern-
perature of the Universe plunges, T ~ R ', where R is
the scale factor. Therefore, the next crucial ingredient
for a successful inflationary model is a period of entropy
violation which reheats the Universe to some high tem-
perature.

In this paper, we propose that a cosmology with a vari-
able Planck mass can resolve the horizon problem
without a period of vacuum domination. Further, entro-
py is always conserved. We call the epoch of significant
variations in the Planck mass the massively aged and de-
tained (MAD) era. (In another paper, we illustrate how
our model can resolve the monopole problem while the
flatness problem may persist in this model. ) We have
considered (in Sec. III) the Brans-Dicke proposal to re-
place the constant Planck mass with a scalar field,
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mi,
&

ccitj, and (in Sec. IV) more general scalar theories
where the Planck mass could be an arbitrary function of
a massless scalar field f I.n both cases, the energy densi-
ty of the Universe begins radiation dominated and then
goes over to a period of rnatter domination as in the stan-
dard cosmology.

We derive below the analytic solutions to the cosmo-
logical equations of motion for these alternate theories of
gravity when the energy density in ordinary matter is ra-
diation dominated. We find the scale factor, the tempera-
ture, the Hubble constant, and the horizon radius in
terms of the variable Planck mass. We also find the time
evolution of mi, t(t) for early and late times during the
radiation-dominated era.

Though the specifics of the cosmology depend on the
initial conditions, there is a common nature to the solu-
tions during the radiation-dominated era: whether the
Planck mass initially starts out growing with time, de-
creasing with time, or constant, eventually it asymptoti-
cally approaches a constant value denoted by mi, &. Early
in the radiation-dominated era, the variations in the
Planck mass with time can be significant and the scale
factor and the temperature evolve with the changing mi,

&

in a complicated way. Thus, even though the energy den-
sity in ordinary matter is predominantly radiation, the
variation in the Planck mass alters the dynamics from
that of a standard radiation-dominated cosmology.
Eventually, mz& will approach asymptotically close to a
constant value mz&. The Universe then evolves in a fa-
miliar way. The equations of motion reduce to those of
an ordinary radiation-dominated cosmology with Mo, the
usual Planck mass of 10' GeV, replaced with mi». In
particular, this means R ~m~, ' t'~, H=1/2t, and

dh„;, ~ t where R is the scale factor, H is the Hubble con-
stant, and dh„;, is the horizon radius. Thus, despite the
underlying structure of the theory, gravity appears to be
described by general relativity with a static gravitational
constant.

However, in this early phase of the Universe, the
strength of gravity can be much weaker than it is today,
i.e., the Planck mass can be mpi )&Mo ~ Once the Planck
mass has reached its asymptotic value m p~ the age of the
Universe scales as t ~ mi, &/T . A universe which has an
early MAD era with large Planck mass mi,

&
&)Mo is

therefore older at a given temperature than a universe
which has today's value of the Planck mass Mo for all
time. This gives us a hint as to how such a scenario may
solve the smoothness problem. If the Universe is older
than in the standard model, then much larger regions of
spacetime would have come into contact than we had
previously supposed. This opens the possibility that large
regions became smooth without violating causality. We
will describe this approach to resolving the horizon prob-
lem more quantitatively later.

As in a standard cosmology, the energy density in non-
relativistic matter will eventually exceed the energy den-
sity in radiation. Thus the era of radiation domination
will end as the Universe becomes rnatter dominated. A
matter-dominated Brans-Dicke cosmology has been well
studied [2], as have the constraints on such models [3].

As discussed above, in order to solve the smoothness
problem, our model requires a large value of the Planck
mass mi. &

at some time during the radiation dominated
epoch. During the matter dominated era, the Planck
mass will continue to evolve. However, mi,

&
will not

evolve enough during matter domination to reach the
value of Mo today. Furthermore, in order to avoid
conAict with predicted element abundances it would be
necessary to fix the strength of gravity at its standard
value by the time of nucleosynthesis. In general, an addi-
tional mechanism is needed to drive the strength of gravi-
ty from its small early value to its large value observed
today. We discuss possible mechanisms to anchor the
Planck mass at Mo today, including a potential for the g
field or the consideration of other theories involving a
dynamical m z&.

Extended inflaton [4] and hyperextended inflation [5]
were both developed in the context of scalar theories of
gravity. In addition to the scalar field which couples to
gravity, these models require another scalar field, the
inflaton field, and a potential for the inAaton. The hor-
izon problem is resolved in the usual inAationary way as
the growth of the scale factor accelerates during an era of
false vacuum domination and then the Universe is reheat-
ed during a period of entropy violation. It is interesting
to note that these models also need an additional mecha-
nisrn, such as a potential for the Brans-Dicke field, to
drive the Planck mass down to the value Mo by today.

In Sec. II we present the action and equations of
motion for the alternate theories of gravity that we are
considering. Section III focuses on Brans-Dicke gravity:
III A presents solutions to the equations of motion during
the radiation dominated era, with solutions parametrized
in terms of the Brans-Dicke field 4; IIIB relates these
solutions to time evolution; III C illustrates the causality
condition required to solve the horizon problem; and
IIID discusses problems with and constraints on the
scenario. Section IV presents a general discussion of the
MAD era in the context of more general alternate
theories of gravity in which the Brans-Dicke parameter m

is not constant. We summarize our conclusions in Sec. V.

II. ACTION

Brans and Dicke proposed an extension of Einstein
gravity in which a scalar field usurps the role assumed by
the gravitational constant in the Einstein action; that is,
in Brans-Dicke gravity, the gravitational constant G is
not a fundamental constant but is instead inversely pro-
portional to a scalar field. More generally, G may be
some more complicated function of a scalar field
G ' =m i„=N( f ). The most general scalar-tensor
theories [3] were originally studied by Bergmann [6] and
by Wagoner [7]. Regardless of the specific form of @, the
action for such an extension of general relativity is

(g)( Q) ~ Bp@B~C&d'x &—p 16m

—V(N(g))+X
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Using the principle of stationary action gives the equa-
tions of motion for the scale factor of the Universe R(t)
and for 4(t) In . a Robertson-Walker metric these be-
come

2

8~[p+ V(f)] N co

R2 3@

1 ds
3+2co d@

4+3H4= (p —3p)—
3+ 2' BC'

where

where we have used the metric convention ( —,+, +, +),
% is the scalar curvature, X,«„ is the Lagrangian densi-

ty for all the matter fields excluding the field f, and
V(@(f)) is the potential for the field g. The parameter co

is defined by

the constant C define in Eq. (10)],and the constant of in-
tegration 4 given in Eq. (15) (the asymptotic value of N
in the radiation-dominated era). Given these four initial
conditions, the entire cosmology is specified; the equa-
tions of motion uniquely determine R(t), 4(t), and p(t)
for all time. In contrast, the standard cosmology with a
constant Planck mass requires only that the value of the
Planck mass and two boundary values be specified. The
two values needed could, for example, be the entropy and
the initial value of the scale factor.

To illustrate how the underlying structure of the
Planck mass can alleviate the horizon problem, we con-
sider different forms of C&(g) in the radiation bath of the
early Universe where p(p) =p/3. We first treat the origi-
nal Brans-Dicke proposal of 4=(2m/co)g with co,

defined above, constant. The second case we consider is
general N(g) for which co is not constant. In both cases
we take V(g) =0, although in another paper we treat the
model with a nonzero potential ~

aU
ae

16m BV
(3+ 2') 8@

(4)

III. CASK a: co=const

and

V'P~
matter;v

8m T" =—(A"" 'g. "W)@.——+jp 2 ip

(5)

Equation (6) returns the equation of motion (3). It can be
shown that in an isotropic and homogeneous universe,
the @=0component of Eq. (5) gives

p= —(p+p)3H . (7)

Consider the radiation dominated era where p=(n /
30)g, T, p =p/3, and g, (t) is the number of relativistic
degrees of freedom in equilibrium at time t. Since conser-
vation of energy-momentum in ordinary rnatter does not
involve N, we can deduce from Eq. (7) that the entropy
per corno ving volume in ordinary matter,
S=(p+p)V/T, is conserved. For convenience we define

U effectively acts as a potential term in the equation of
motion for C'. H=R/R is the Hubble constant, while p
is the energy density and p is the pressure in all fields ex-
cluding the g field.

The energy-momentum tensor of matter, T",«„, is
conserved independently of the energy-momentum tensor
for the scalar field, T~+ . The conservation equations are

As a first example, take the original Brans-Dicke mod-
el where cu is constant and

my'=N= 2~

Also, we take V(g)=0. In the limit co=oo, Brans-Dicke
gravity is the same as Einstein gravity; here we consider
arbitrary co and comment on experimental bounds on co

below. We are interested in the behavior of the solutions
during the hot radiation-dominated era of the early
Universe. We assume that nonrelativistic matter energy
density is negligible. Then p =p/3 and p —3p =0.

We first obtain solutions to the equations of motion
Instead of finding @(t), R(t), and T(t), it is more tract-
able to parametrize R, T, and hence H and the horizon
radius, dh„;„by @. We then find approximate solutions
for @ as a function of time in different regimes. Before
moving on to the second case of co%const, we address the
horizon problem in the context of our solutions.

A. Solutions to the equations of motion

S=R T (8)

where S =S~4(m /30)gz and gs is the number of relativis-
tic degrees of freedom contributing to the entropy. For
practical purposes we can take g& =g, .

Once the equation of state, p(p), and the forms of
@(g) and V(g) are specified, these equations describe the
evolution of the scale factor, the energy density, and the
Planck mass. In specific, the equations of motion (2) and
(3) and the conservation equation (7) determine @(t),p(t),
and R(t) up to four constants of integration. Notice that
S is the constant of integration from integrating the ener-

gy equation (7). We take the other three constants to be
the initial value of 4, the initial value of 4& [equivalently

~ ~

@R = —C and H=-
3@

(10)

where C is a constant of integration which can be posi-
tive, negative, or zero. If C=O, then @=0 the Planck
mass has a constant value which we call mp&, and the
Universe evolves in the usual radiation dominated
fashion, but with G=1/mp]. Note that if C)0, then

With co constant and V(g)=0, the N equation of
motion during the radiation dominated era reduces to
4+3H4=0, so that
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4 & 0, while if C & 0, then 4 & 0. Here we take ~=0 to il-
lustrate the behavior of the solutions. (In the Appendix,
we present the solutions for ~=+1.) First we solve Eq.
(2) for M.

2N
[1++1+2'/3+(4S y/R )(@/0& )],

It follows from adiabaticity that

S'" 5 y'"- 6T(@)= =— 4'~ exp sinh6 . (18)
R(N) C e 2e

The Hubble constant H(@) is obtained from

dR d@ C dR
R d@ dt R4d@

where y(t)=(8m/3)(m /30)g, (t). Note that all three
terms inside the square root are positive quantities. We
choose the sign in front of the square root in such a way
as to obtain an expanding universe with H )0. Thus, for
C & 0 we take the plus sign in Eq. (11),whereas for C &0,
we take the minus sign in Eq. (11). Throughout the rest
of the paper, the upper sign in equations will refer to the
case C&0 and the lower sign to the case C &0. Substi-
tuting 4 from Eq. (10) into the square root in Eq. (11)
and using H=R /R, we have

X [sinh6+2ecosh6]

The comoving horizon size is

(20)

dhoriz f' t dt' d@'
R(N) "0 d@' R(4&')

RN dN
C N(t =0)

where in the last step we used Eq. (10). We find
'2

3/2 C 1/2
8(@)= exp sinh~6

C g3 2 26'

dR d@ 1+ 1+ 2' +4S 4/3~@C —2R2
R 2N 3

1/2

(12)

(21)

where we have used 4&= —C/R(@) in the last equality.
We can integrate this to find

We define
horiz

R(@)
C e 1 1

S ~ y tanh6 tanh6(t =0) (22)

y(e) =4s ""yc-' 1

1+ 2'/3 (13) If N(t =0) starts out far from 0&, i.e., 6(t =0)»1, Eq.
(22) becomes

and note that y is always a real positive quantity. The in-
tegral of Eq. (12) becomes

dhoriz C ~ exp[ —6]
S 4/3 p slnh6

(23)
R(N)

1/2

yx dX' f + 1+ 2'' dC'
r X'~ 1+X' (14) As discussed above, R (@), T(C&), H(C&), and dh„;, (@)

are determined only up to the arbitrary constants N, C,
and S. For instance, Eq. (18) shows that one can choose
the temperature at a given value of 4 by choosing C/S
and N appropriately. The fourth and last constant of in-
tegration, @(t=0), is determined when t(N) is found in
Sec. III B.

Even before we determine @(t), we can understand the
general sketch of the Universe's evolution. We will find
that, in all cases, the field @ asymptotically approaches
the value N: for C)0, N approaches N from above;
whereas for C&0, N approaches 4 from below. For
C=O, &=4 for all time.

Let us first consider the case of C&0. As mentioned
previously, this corresponds to N &0 and e& 0. In order
for the scale factor to satisfy R & 0, from (17) we can see
that we need 6 ~0, i.e., N ~ 4. In addition, we need the
scale factor to grow in time; again, this requires N & 0. In
short, for C &0, N starts larger than @ and decreases to-
wards the asymptotic value 4.

For the case of C &0, we have @& 0 from (10) and
e &0. To obtain R ~0, we need 6 ~ 0, which in this case
corresponds to the opposite limit of @~@. One can
show that as 4& grows towards its asymptotic value (i.e.,
6 drops), as long as ~e~ & —,

' (i.e., co & 0), dR /d6 &0; the
scale factor grows in time. In short, for C &0, N starts
smaller than N and grows towards the asymptotic value

As we have seen, as N approaches 4, for ~e~ & —,
'

where subscript i refers to initial values. We find the
(positive) solution

=sinh ~ e ln
—1/2

6=@in
4

In many of the equations below we express the field in
terms of 6 rather than @. As we will show below, 6 is
always positive sernidefinite for any value of C: it ranges
from 6=0 for @=@to 6= ~ for N far from N. From
Eqs. (13), (15), and (16), we obtain an expression for the
scale factor,

2e sinh6

Note that the product (Ce) is always positive semi-
definite.

Here, 4=@;exp[—(1/e)arcsinh(y, ' )]; i.e. we have ab-
sorbed the constants of integration (which depend on the
initial values of @ and y) into @. Here, c =+(1—
+2'/3)'~ /2 (as noted above, an expanding universe
corresponds to the plus sign in e if C & 0, or the minus
sign in e if C & 0). For convenience, we define
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(o) &0), R(N) grows and thus the temperature drops adi-
abatically. In addition, one can show (again for co&0)
that the comoving horizon size grows, as does H 'R
We will see below that the size of a causally connected re-
gion can grow great enough to resolve the horizon prob-
lem. As the Universe cools below the temperature of
matter radiation equality (T, =5.5AMh eV, where QM
is the fraction of the critical density contributed by
matter), the reign of radiation yields to that of matter and
the nature of the solutions changes. During matter dom-
ination, the equation of state is p (p ) =0, and p —3p =p.
This alters the dynamics considerably. Thus there is a
built-in off switch to end the radiation-dominated
behavior of R (@),T(N), H(@), and dh, n, (@).

We will quantify these statements below and find con-
straints on some of the constants of integration needed to
resolve the horizon problem. In the next section, we find
approximate descriptions of the behavior of @ as a func-
tion of t. Actually, the resolution of the smoothness

problem and the evolution of the cosmology can be un-
derstood without knowing @ as a function of t. The
Universe will pass through the familiar stages of baryo-
genesis, nucleosynthesis, rnatter domination, etc. , as the
temperature passes through the relevant energy scale. To
follow the evolution of the Universe all one needs to
know is the temperature as a function of @. One need
not know the actual age of the Universe. Still, to ground
the solutions in a slightly more familiar setting we will in-
dicate below how the Universe evolves in time.

B. The age of the universe

We will determine the time evolution of the Brans-
Dicke field N in two different limits: N far from @
(6))1),and 4=4 (6«1). As we have seen, initially

may be large for C&&0 (C&0) or small for 4) 0
(C&0). While N is far from its asymptotic value 4, the
term N/@ contributes significantly to the equations of
motion [see Eq. (2)], and the evolution of the Universe is
modified relative to that of an Einstein universe in a com-
plicated way as Eqs. (17)—(23) show. Once C&=4 how-
ever, the Universe evolves with time as an ordinary
radiation-dominated cosmology with the Planck mass M0
replaced with mpi =@'

To uncover @(t), return to 4= —C/R [cf. Eq. (10)].
We integrate this equation to find

J d C 'R 3(@')= Ct, — (24)
W(t =0)

where R(C&) is given in Eq. (17). To get a rough feeling
for how N changes with t we find approximate solutions
to this integral for two regimes: (1) N far from the
asymptotic value 4 and (2) @= (I).

1. @far from 4
First we consider the early regime where N is far from

N, i.e., 8»1. The integral on the left-hand side of Eq.
(24) is easiest to evaluate if rewritten in terms of B rather
than @. Then we can approximate sinhe=e /2 in
evaluating the integral. The lower limit of the 8 integral
is determined by the boundary condition: R (t =0)~0.

We see from Eqs. (25) and (17) that initially

R (t) ~ t(1 +@2)/(1 +6E) . (26)

remember that @=+1/2(1+2')/3)'/ . It is interesting to
consider the nature of these solutions for large deviations
from Einstein gravity (i.e., small o)). Take C &0 for
co —+0, and thus e—+ —

—,'. In this limit, N —+ t while
R —+constant. Note that this behavior of the scale factor
could also be seen directly from Eq. (17). On the other
hand, for C&0 with co —+0, t —++—,

' and N —+t ' while
R —+t' . Again, the behavior R ~@ ' could be seen
directly from Eqs. (17) and (18).

2.

The previous approximation breaks down for 4=@.
Again, it is easiest to work with 6=6 in(4/4). When
4&/4 is near 1, then 6«1 and R [6(4)]~6 '. The
lowest-order contribution to the integral yields

1/2
( C )2(g)

—1/28= (27)

or, equivalently,

+ C2
2 3/2 1/22Sy 4 t

' 1/2

(28)

where the plus sign refers to C &0 and the minus sign to
C &0. (By assumption, we are working near 4=4 so
that the exponent must be small for this approximation
to be valid. )

Since Eq. (28) implies that 6(t) ~t '/ (times a posi-
tive constant), we have R ( t) ~ 6 ' ~ t '/ . So, as @ ap-
proaches N, the Universe evolves as an ordinary
radiation-dominated universe with one modification; the
Planck mass M0 is replaced by N '

In the standard hot big band model described by Ein-
stein gravity, the age of the Universe as a function of
temperature is given by

M0
Einst

2 1/2 T2y
As 4& approaches 4, we can see from Eqs. (28) and (18)
that the age of the Universe as a function of T(N) mimics
this form,

t(C )= (29)
1/2T( @)2

where mp1 =N ' . Incidentally, this is exactly the result

For all values of C, this initial value of the scale factor re-
quires B(t=O)~~; i.e., C&(t=O)~oo for C&0 while
4(t =0)~0 for C &0. Thus, our fourth and last integra-
tion constant is determined. [Given C, S, and 4, R (t =0)
and N(t =0) contain the same information via Eq. (17)].
We can now evaluate Eq. (24) to find

2 —1/( 1/2+ 3e)

(1/2+ 36)y
3/2

Se3

x (@1/2t
)
—) /(1/2+3E)
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one obtains for C =0 (@=0}and 4=4. As discussed in
the introduction, if mp1 &Mp, the Universe is older at a
given temperature than an Einstein universe with Planck
mass Mp. We will show below that if the comoving hor-
izon volume is to become smooth at high temperatures,
then mp1 must greatly exceed Mp.

C. Horizon condition and discussion

To explain the smoothness of our present Universe, a
region causally connected at some early time must grow
big enough by today to encompass our observable
Universe. Since we can see back to the time of decou-
pling, or perhaps nucleosynthesis, the size of the observ-
able Universe is roughly the distance light could have
traveled since that time, htp Hp where Hp is the
Hubble constant today. Thus we can take the present
comoving Hubble radius, 1/(HoRo), as a measure of the
cornoving radius of the observable Universe; here Rp is
the scale factor today. Then the smoothness of the ob-
servable Universe can be explained if a comoving region
of radius at least as large as 1/HpRp is in causal contact
at some time t, before nucleosynthesis, i.e.,

1 1

H, R, RpHp
(30)

where subscript c denotes values at the time causality is
satisfied.

We can express both H(@) and Ho in terms of the tem-
perature and the Brans-Dicke field @. Substitution of ex-
pression (18) for T(4&) into Eq. (20) for H(@) gives

H(@)=y' [sinh6+2ecosh6] .~yp T(N) 1

(y 1/2

The Hubble constant today can be written as

T2
1/2 0

Hp ap
0

(31)

(32)

C 1/2
2E Mo

T, sinh6, +2@cosh6, T (33)

where P=[ (yt, )l a]'o~ [g, (t, )/g, (to)] '~3. To resolve
the horizon problem, this constraint must be satisfied pri-
or to matter/radiation equality.

Although it is possible for the causality condition (33)
to be satisfied while @ is still far from 4, we find that, for
co~ 1, the solution to the horizon problem that deviates
the least from Einstein gravity is obtained for N=N in
Eq. (33). In other words, for co~ 1, the lowest possible
value of N,'~ =mp, ( T, ) that solves causality is given by
4&, =4. [For C (0, @ is always less than 4, yet the pre-
vious statement still holds, e.g. , if co-500, to better than
lgo,' the lowest value of N, g, again for the example of

where T0=2.6X10 GeV Mp is the value of the
Planck mass today, and ao=y(to)rlo =(8m/3)(m I
30)g~(to)go, where rlo-10 —10 is the ratio today of the
energy density in matter to that in radiation. Also, we
use adiabaticity, RT=S '~ ~(S/g, )'~, to write the
causality condition as

m-500, is obtained for 4, -0.997@. If N «N, both N
and 4 are driven to.higher values than if they are equal
to each other; this is to be expected because for large N,
the large factor of exp(6, ) in the denominator makes the
causality condition harder to satisfy]. From now on, we
will examine the causality constraint for 4 near its
asymptotic value N.

For N =4, e =0, sinhe =0, coshe = 1, and the causal-
ity condition becomes simply

m p) T((g) )

Mo To
(34)

where m p&(t, ) =m p&
=4 ' . We can specify the tempera-

ture at which we would like to resolve the causality
dilemma. We are free to choose the temperature at
which &=4 since this is equivalent to making an ap-
propriate choice for the ratio of the arbitrary constants
S/C [see Eq. (18)]. [Since 5/C ~ T /&0, this amounts to
making a choice fort (t, ); in principle one should check
that this choice is consistent with measurements of G/G
today. However, since 4O=R, in many cases the time
derivative may be quite small and therefore unobservable
by the present epoch. ]

As an example, we consider T, -3X 10' GeV, roughly
the scale of grand unification. Then the causality require-
ment becomes mp1 ~ 10 Mp. If, instead, we take
T(@,=4)=1 MeV, roughly the temperature of primor-
dial nucleosynthesis, then condition (34) requires
mb) 10 Mp.

We can verify that the Universe is old in this model.
We showed with our approximate expressions for mp, as
a function of time, that when @=@,the Universe evolves
as an ordinary radiation-dominated universe with one
modification; Mp is replaced by mp1. In this limit

mp1t(4)=
2y ~ ~2T(lg) )2

(35)

Since t, ~ 1/H, and to ~ 1/Ho, Eq. (30) is equivalent to
the statement that

t(4) ~ to

R(4) Ro
(36)

mp1t(4) =tE,„„
0

(37)

at a given temperature. In a standard cosmology,
tE;„„-(MeV/T) sec. For T, -3X 10' GeV, then
tE;„„—10 sec while t(@)-10 " sec. For T, —1

MeV, tE;„„—1 sec and t(4)-10 sec-3 yr.
If, as an extreme case, we take T(@,=4} to be the

temperature of matter/radiation equality, about
5.5Q~h eV, then the causality condition requires

mpl ~ 10 Mp (38)

Since mp, does in fact exceed Mo we see from Eq. (35)
that the Universe is older at a given temperature than in
the standard cosmology. Writing Eq. (35) in terms of
tE;„„the age of a cosmology described by Einstein gravi-
ty, gives



4288 JANNA J. LEVIN AND KATHERINE FREESE 47

At T, —1 eV, tE;„„—10' sec-10 yr, and t(C&)
—10 tE;„„—10 yr. Our solution to the causality prob-
lem indeed makes the Universe at T, older than in the
standard model. However, we see that even if we push
T, to this ridiculously low value of 1 eV, the total age of
the Universe today need not be changed; i.e., one can still
have to —10' yr. In any case, all observable measure-
ments of the "age of the Universe" measure the amount
of time subsequent to matter domination. An arbitrarily
large amount of time could have elapsed prior to decou-
pling without any conAict with experimental measure-
ments.

D. Problems and constraints

The obvious difficulty with this resolution to the hor-
izon problem is fixing the value of the Planck mass to be
Mo by today. In the Brans-Dicke model studied here
without a potential, the Planck mass will be hard pressed
to make it to the value Mo today. During the matter-
dominated era, @ will initially continue to decrease with
time for C )0 and increase with time for C & 0 [8]. For
C(0 then, the Planck mass will only grow larger. For
C &0, it is conceivable that N will approach the value of
Mo during the matter-dominated era. However, observa-
tions constrain the parameter m to be )500 for a mass-
less Brans-Dicke theory. The rate at which N changes
depends on m and is very suppressed for large co. Thus a
large co would confine @ to near its value at the time of
matter/radiation equality, which, as we have seen, may
be large. For example, with ~=500 and N ' = 10 Mo at
T, —1 eV, then today No ) 80MO. This limit can be
avoided if there is a potential for N, e.g. a mass term such
as V(it)=(m&/2)g . The interactions measured in the
time-delay experiments fall off rapidly outside the range
over which the @ field acts. If N has an associated mass
m &, then the range over which @ acts A, -1/m

&
could be

smaller than the distances over which the observations
are sensitive. Therefore a massive Brans-Dicke model
could elude observation even if co is small [9].

There are also observations of the rate of change of the
gravitational constant. These observations impose a
much weaker constraint than the time delay experiments.
They suggest co )5. For comparison, if co =5 and

=10 Mo, then one could have %0 =MD up to or-
der 1.

Another issue of concern is the value of the Planck
mass, and thus the Hubble constant, during nucleosyn-
thesis. If mpiAMo during nucleosynthesis, then the pre-
dicted elemental abundances will be affected. To resolve
the horizon problem, we found that the asymptotic value
m p]

=4 had to be much larger than Mo. If, for exam-
ple, m p&

——m pi »Mo during nucleosynthesis, then
H(@)~ T (4)/m pi and the large Planck mass slows the
expansion of the Universe. Consequently, the tempera-
ture at which the weak interactions freeze out is lowered,
the n/p ratio is maintained at its equilibrium value
longer, and the value of the n /p ratio during nucleosyn-
thesis is smaller. This works to decrease the production
of He. Compatibility with observations would then
force Qb, the fraction of critical density in baryonic

IV. CASEb: apXconst

A. Solution to the equations of motion [11]

Here we extend the analysis to the more general case of
co not constant, again with no potential for the Brans-
Dicke field. We will find the solutions to R(N), H(@),
and T(4) here. The solutions during the radiation-
dominated era are very similar in spirit to the previous
solutions for co=const. However, the case of co not con-
stant does allow the possibility of a small value of co at
early times which matches onto co )500 today. (Actually,
the observational constraints need to be reinterpreted if
co%const. )

If @ has any functional form other than the minimal
~ g, then co=8m@/(8@/Bf) will also be a function of

The equation of motion (3) in the radiation-dominated
era for the case of no potential is

e+3HC, d M O' C'

3+2co 3+2'
so that

(39)

matter, to be larger. Actually, since the Hubble constant
can be so much smaller than in the standard model, a sit-
uation may arise where the weak interactions are still in
equilibrium during the time of He synthesis; then the nu-
cleosynthesis calculations would have to be redone. We
have not investigated the consequences for abundances of
other elements, such as deuterium, lithium, and He. We
suspect that, unless the Planck mass has returned to its
present value by the time of nucleosynthesis, matching
observations on all elements simultaneously will be im-
possible.

One could insist that the causality condition is solved
for temperatures greater than an MeV and then invoke a
potential to drive mp& to Mo by the time of nucleosyn-
thesis. This would also accommodate the C=O scenario
where mp& is constant at the value mp& needed to solve
causality. For the previous results to hold, the potential
would have to remain inconspicuous during the early
evolution. The potential suggestion will be studied else-
where.

While the Planck mass drops and the strength of gravi-
ty grows, the Universe will cool. Notice from (34) that
the ratio m pi /Mo must be greater than the ratio
T(4)/To. Thus, the causality condition in (34) requires
that, subsequent to T(4), the Planck mass must drop fas-
ter than the temperature does. Since H=R/R, the
causality condition is equivalent to the statement that
Ro)R„ i.e. , R )0 (for R ~t~, this implies p ) 1) [10].
Thus, this period where mp, drops faster than T is associ-
ated with accelerated growth of the scale factor (however,
note that MAD does not require the 60 e-foldings of ex-
pansion that inflation does). It may be that during this
stage persistent anisotropies and inhomogeneities which
could not be smoothed out by causal microphysics are di-
luted by the rapid growth of the scale factor. Further, it
is during this stage that density perturbations responsible
for the formation of large-scale structure could be im-
printed.
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@R C
(1+2'/3)' 3&5

2' /3
6(1+2'/3)

(40)

The comoving horizon size is

horiz
I cl

2yS'"
1 1

(48)
tanhX tanhX(N, )

We can use results (39) and (40) in Eq. (2) as we did in the
previous section. This time, we define

&=4S4/3&C-2+~2 (41)

[this time, there is no factor of (1+2'/3) ' in our
definition of y]. Again, we obtain Eq. (14). Since co(@) is
as yet unspecified here, we define

X(@)=+J, [1+2'(N')/3]'i
4 24' (42)

'~ =sinhX(@) . (43)

From Eqs. (41) and (43), we can find

R(C )=
2S "3@i"e'"sinhX(e)

It follows that

2Sy1/2 1/2 .T(4)= @'~ sinhX(4) .
Ic

(44)

(45)

For use in the constraint (30), we find H (@)as before,
2

H(e) =4y'"—S
C

sinh XN'
(1+2'/3)'i

X [ ( 1+2'�/3 )
' cosh X+sinhX ] (46)

H(C&) can be expressed in terms of the temperature and X
using Eq. (45) in Eq. (46).

HC=
(1+2'/3)'

X [(1+2'/3)'~ coshX+sinhX] . (47)
I

where the upper (lower) sign refers to C) 0 (C (0) and
X(N) )0. We have absorbed all constants of integration
into the constant N. If one prefers to work in terms of
initial values, then one can relate them through the in-
tegral

(1+2'/3)'~ =+arcsinh(y, '
) .

@d+
~'; 2N

The solution to (14) in this case becomes

In order to solve the smoothness problem, we need

1 ) 1

H(@, )R (@,) HORO

as before. This gives a constraint similar to the co=con-
stant scenario. Written in terms of the temperature, the
constraint is

@ 1/2 (1+2' /3)'i MC c 0

[(1+2',/3)' coshX, +sinhX, ]

(49)

where p is defined below Eq. (33) and again the subscript
c indicates the values at the time causality is solved.
Again, the causality condition can be satisfied with small
X, (i.e., sinhX, -O and coshX, —1); then Eq. (49) be-
comes

c 1/2 T

Mo To
(50)

(51)

Since co ~ N ', ~ is small for large values of N. As N de-
creases, ~ increases and automatically turns off the
change in @. With this form of co we find X(4) to be

We see that a large early value of the Planck mass can
solve the causality condition at high temperatures.

Again, as in the case of pure Brans-Dicke gravity, N
approaches an asymptotic value 4 from either above or
below. We can see this by looking at Eq. (40). For co )0,
we can see that N~ C/R —+0 as R ~ ca, and @ ap-
proaches the constant value 4. Notice that Eq. (44) is
consistent with this behavior: as N approaches
X(4&)~0 and the scale factor grows very large.

As an example we take @(P)=4 exp(P/g) where fr is
a constant mass scale and N is a constant with units of
mass squared. Then

X(@)=+ sinh
3

2'(@)

' 1/2
—sinh

3

2'(+ )

1/2

+ [ [1+2'(@)/3]' —[1+2'(@)/3]' (52)

The description of this cosmology is very similar to the
co=const scenario. Initially, N is either positive, nega-
tive, or zero. If @ is positive, then the Planck mass starts
small and increases toward the asymptotic valueIp1

=4 . If N is negative, then the Planck mass begins
large and decreases toward mp1. To satisfy the causality
condition when the Planck mass is at the asymptotic
value mp„we need mp, /Mo ~ 13T/To.

One can choose the functional form of co( &0 ), or
equivalently of @(P), so that m, drops faster than T
does. We have found that one way to get the Planck
mass to drop quickly enough is with a negative cu. Al-
though we could certainly write down such a scheme, a
negative cu corresponds to a negative kinetic energy term
which may be plagued with ills. Alternatively, for
E'

2 and so very small values of co, it may be that such
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a large ratio of Planck masses is not needed. The value of
co could then grow to exceed 500. We are currently in-
vestigating this possibility.

tion. In a separate paper we also discuss the monopole
problem and the fiatness problem [12].

V. CONCLUSIONS

In a MAD cosmology, the Universe is older at a given
temperature than in a standard cosmology, old enough to
explain the smoothness of our observable Universe. The
comoving size of a causally connected region 1/(HR ) is
correspondingly larger. Since the observed Universe only
reaches out to about recombination (or possibly back to
nucleosynthesis), a rough estimate of the comoving radius
of the observable Universe is the present comoving Hub-
ble radius Ho '/Ro-hto/Ro, where b, to is roughly the
time elapsed since the Universe became matter dominat-
ed. The smoothness of the observable Universe can be
explained if the Universe ages sufficiently so that the
comoving horizon size at the temperature of nucleosyn-
thesis is H '/R ~b, to/Ro. Observations of the age of
the Universe from the Hubble diagram, nucleocosmo-
chronology, and ages of globular clusters only place lim-
its on the age of the Universe subsequent to the time
when stars formed; thus, the Universe may in fact be-
come much older in the radiation-dominated era than
one would expect from the standard model.

We found that an early period with large Planck mass
ages the Universe sufficiently so that our entire observ-
able Universe was once causally connected. For a scalar
theory of gravity without a potential during the
radiation-dominated era, the Planck mass approaches an
asymptotic value, mpi. This asymptotic value can be
chosen to satisfy the causality condition at a specified
temperature T, :

mp, /Mo T, /To . (53)

For instance, if T, -3X10' GeV, roughly the scale of
grand unification, we need the asymptotic value mp]
~ 10 Mo. Or, for T, —1 MeV, the temperature of nu-
cleosynthesis, we need m p&

~ 10 Mo. However, it is
difficult for the Planck mass to drop quickly enough after
T, so that it reaches M0=10' GeV by today. In fact, we
expect that the Planck mass must drop to today's value
Mo by the time of nucleosynthesis so that the standard
predictions of element abundances will not be drastically
altered. In the original Brans-Dicke model, mph is unable
to reach Mo in time. We suggest that mp& may be driven
down to almost its present value by the time of nu-
cleosynthesis if there is a potential in the theory for mph
or if a negative Brans-Dicke parameter co could be
tolerated. As the Planck mass drops and the strength of
gravity grows, the cosmological expansion will accelerate.
During this stage a spectrum of primordial density per-
turbations may be produced. Quantum fiuctuations in 6
or other particle fields may lead to significant density per-
turbations in the matter background. It is possible that
density perturbations relevant for large-scale structure
can be produced. Inevitably, any perturbations would
imprint some signature on the cosmic background radia-
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APPENDIX

NR = —C and H =—
34

(Al)

Solving Eq. (2) for H with CWO and vWO gives

2@
[I+2m)/I+y —Q y ] (A2)

where e =+(1+2'/3)' /2, y is defined as in (13), and

2C2
(A3)

Using H=R /R, the definition of y, and rearranging, we
are left with the integral

2'' X &I+X —Q'X'

1/2
(p I

(A4)

Integrating this equation and using R = (eC/S )

X (y&b) ' g'~, from the definition of g, we find

eC 1 1

S y' 4' sinh2e+Q exp( —26)

]. /2

(A5)

where, as before, 6=gin(N/4). The temperature of the
Universe is found from adiabaticity to be

&/2 ZT= ~ @'~ [sinh e+Q exp( —26)]'
eC

(A6)

The causality condition becomes

We present here the solutions to the equations of
motion during the radiation-dominated era for a Brans-
Dicke theory with v=+1. The 4 equation of motion
reduces to N+ 3H@=0 so that, as before,
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g 1/2 (sinh 6, +Q exp( —26, )j' Mo
2E

sinh~B, +2@sinhB, coshB, +Q ( I —2e)exp( —26, )

Notice that as Q ~0 (A5), (A6), and (A7) reduce to the corresponding results for a liat Universe. Similarly, for large
6, e —+0, and we have the same causality condition as in the case of the Oat Universe. We will further discuss the
case of nonzero curvature, together with the issue of fatness, in another paper.
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