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InAationary attractors and perturbation spectra in generally coupled gravity
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A generic outcome of theories with scalar-tensor coupling is the existence of inflationary attractors, ei-
ther power law or de Sitter type. The Auctuations arising during this phase are Gaussian and their spec-
trum depends on the wave number k according to the power law k' " ', where p is the inflationary
power-law exponent. We investigate to what extent these properties depend on the coupling function
and potential. We find the class of models in which variable attractors exist. Within this class, we find

that the cosmic expansion and the scaling of the fluctuation spectrum are independent of the coupling
function. Further, the analytical solution of the Fokker-Planck equation shows that the deviations from
Gaussian behavior are negligible.

PACS number(s): 98.80.Cq, 98.80.Hw

I. INTRODUCTION

Nonminimally coupled (NMC) theories of gravity are
models in which a direct coupling of the form

ANMC: f d X& g gf(p)R
1

between a matter field P and the curvature scalar R, is
added to the gravity action. The interesting history of
such theories in general relativity and cosmology dates
back to the Dirac suggestion and to Jordan-Brans-Dicke
(JBD) models [1]. Terms with nonminimal coupling
(NMC) arise from quantizing fields in curved space [2], in
multidimensional theories [3] such as superstrings or su-
persymmetry, and in induced gravity theories [4]. On the
other hand, the La-Steinhardt notion of extended
inflation [5] (EI) and many variants within the context of
"first-order inflation" [6] reconcile a first-order phase
transition with infIation modulating the bubble nu-
cleation rate. The cosmological kinematics of NMC
theories are also discussed in Ref. [7].

No known fundamental principle predicts the function-
al form of f (P). One can find in the literature many
Ansatze: f (P)=P, as in the induced gravity model and
some version of EI; f (P) =a +bP +cP + . , as in the
hyperextended [8] design of EI; f (P)=e ~, as in dimen-
sionally reduced Kaluza-Klein theories, and so on. In
Ref. [9] nonminimal derivative couplings in f (P) have
also been taken into account. Models with a generalized
kinetic term such as n~(P)P.„P'"/P and a coupling term
4&R have also been considered [8] (the case co=const is
indeed the JBD theory and the original formulation of
EI); up to a redefinition of P these models are equivalent
to introducing a coupling such as (1). The aim of this pa-
per is to investigate in a systematic fashion the dynamical
features of models with a general coupling f (P), without
confining ourselves to a specific choice, except for the fol-
lowing requests: in the large P limit the function f (P)
grows faster than P [the case f (P)-P already being
well known], and the potential V(P), at least for large P,
can be written as

V(P) =&f™(P),
where A, and M are arbitrary non-negative constants. '

We also assume V (P),f(P) ~ 0, the equality being verified
when P eventually falls into its stable minimum. It is re-
markable that, with the above assumptions, it is possible
to find analytically, without specifying the coupling or
the potential, the class of infiationary attractors, the
order-of-magnitude amplitude of the primordial pertur-
bations, and the solution of the Fokker-Planck equation
for the stochastic fluctuations. Since f (P) is left largely
unspecified, we speak here of theories with general cou-
pling, instead of nonminimal coupling models. We also
give examples of the numerical phase space (PS) of the in-
vestigated models.

The plausibility of inflation depends on how large the
set of initial conditions is which evolve to inAationary ex-
pansion of the scale factor: the existence of an

inflationary attractor extending to values of the field as
large as possible, up to the Planck boundary, is then a
very desirable property of a cosmological model [11]. A
first result of the present paper is that we determine the
class of models with a coupling different from the stan-
dard choice P R which has asymptotic inflationary at-
tractors. We find that, in most models, either the
Universe does not inAate at all or it does so toward the
wrong phase-space direction. The main result is that, in
those cases in which a successful inflation is recovered,
the kinematics of the Universe and the main features of
the fluctuation spectrum do not depend on f (P).

II. INFLATIONARY ATTRACTORS
AND THE PERTURBATION SPECTRUM

We start from the following action [we assume Planck
units, G =c =Pi= 1 and signature (+ ———) ]:

After this work was completed we learned of independent
work of De Ritis and co-workers [10],who obtained exact solu-

tions in particular cases of the above functional relation.

47 4267 1993 The American Physical Society



4268 LUCA AMENDOLA, DIEGO BELLISAI, AND FRANCO OCCHIONERO 47

A = f d"x& —g — + g—f (P)R
16m 2

+
2

g" 4,„0,.—V(0)
1

Great simplification is obtained passing to the so-called
Einstein frame [12], i.e., deriving the field equation in the
new metric g„=e g„with

2' =lnl 1 —yfI, (4)

where y—= Sag &0. We will work here assuming /&0,
which guarantees that the new metric is nonsingular.
The old metric will be referred to as the Jordan frame.
The Einstein equations in the new frame are then

where T„is the usual energy-momentum tensor for the
scalar field P. From now on, we confine ourselves to a
homogeneous, isotropic, and spatially flat metric with a
cosmic factor a (t) and Hubble function H(t) =a /a. Un-
less otherwise stated, all quantities are meant to be ex-
pressed in the rescaled variables: a dot denotes
diff'erentiation with respect to the new time t = Je " 'dt',
the Hubble function H is in terms of the new cosmic fac-
tor, and so on. If K„=P.„P.——,'g„P.P' denotes the
kinetic sector of T„ in the original frame, the kinetic
sector K in the new Einstein frame can be written in
the form K„=F(P)K„„where

F ((b)=[16~(1 yf )+3y f'—]/16'(1 yf) . (6—)

A canonical kinetic sector is then obtained defining a new
field

where P= f—('ky, and p=—M —2. We then explore the
two-dimensional parameter space (g, M). Remarkably,
an asymptotic flat potential able to drive a slow-rolling
inflation in a Friedmann-Robertson-Walker (FRW)
metric with scale factor a(t) is found in a single case:
V-f . In all other cases, we find in the l(r, p phase space
the attractor trajectories

Af P l2f (P—, + 1)l2 (10)

in the (P, P) plane. In the Appendix, solutions of this
kind will be proven to be attractors; graphic evidence of
their attractive properties is provided by our Poincare
projected phase spaces (Figs. 1 —4). A power-law expan-
sion (for M&2) takes place on the attractors:

a =a, (1+t/r)J', p =3/p

(in the conformally rescaled time), where
~= —2/Acp) 0. The cancellation of the coupling con-
stant g from (11) occurs only in this class of models: in
the ordinary coupling f =P the cancellation does not
take place. Notice that the solution (11) as well as the at-
tractor (9) above are exact solutions as long as we take
the potential (8). From (11) we see that
H =H, (1+t/r) ', where H; =p/r.

The behavior of the cosmic scale factor is accelerated
and, hence, inflationary, only if M & v'3+2 —3.7. How-
ever, for M (2 the model enters an eternally inflating
phase, since then d Uld g & 0 and the field g is pushed to
ever growing values, never reaching the Friedmann phase
located at 1'~ —~ [from the mapping g~p follows that

1(
= Ae'"~, A =2/3P l(9 P)—,

where the negative root for 3 is to be chosen, corre-
sponding to P decreasing toward its stable minimum,
where the Friedmann behavior takes place. This corre-
sponds to trajectories

(7) d (0/d t.

This integration is not easily done, even with simple
choices of the coupling f (P). However, a powerful
simplification is attained in the limit ~P~~ ~, the same
limit in which the effect of the coupling is greater and
inflationary attractors are found. Let us denote in the
following a quantity evaluated at the initial time with a
subscript i. Then, if f' grows faster than f, we can in-
tegrate Eq. (7) into cg=ln[f (P)/f, ], and thus
f (P)=f,exp(cP), where c =(16~ 3/)'~ . It then follows
that the initial value of

hatt
is g, =0. When f' grows ex-

actly like f, i.e. , for f =P, one has instead
c(g)=2[y/(6g —I)]'~ .

Suppose now that the following relation holds between
the coupling f and the potential: V = Af . This relation
is verified, for instance, if both V and f are power func-
tions of the field, or if they are both exponentials. The
potential in the Einstein frame, in the same limit as
above, is then

U(g)=ky f"=Pexp(cog),

FIG. 1. The phase-space portrait of the model with

f (P)=P and V(P) —(t ", where n =1, m =2 and negative g is
displayed. Notice the two outward directed attractors and the
central Friedmann region. This model is outside the successful
range of parameters. All the trajectories spring out from the
singular points at infinity on the Poincare circle at angles vr/2
and 3'/2. The diagram is symmetric with respect to the origin.
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deb/dt dA/dt

m= 1

FIG. 2. As in Fig. l, with n =5, m =2. This model is inside
the successful range: the power-law attractors have a natural
end.

FIG. 4. As in Fig. l, with n =0, m =1. This phase space is
equivalent to extended inflation.

P~ —~ when f (P) vanishes]. The only allowed range is
then

The rms amplitude 6p/p of the perturbations on a
comoving scale k ' at horizon crossing (after the end of
inflation) is given by

(12) &p/p=(H'/4)k =.H (13)

Outside this narrow range, the model studied here does
not allow a successful chaotic inflation [11]. When f =P
the expansion is modified to P=p(1 —1/2g). This is
inflationary for any M if g'(0 is small enough [5].

In the original Jordan frame the cosmic scale expan-
sion is still a power law in the Jordan time, but with an
exponent pJ=(p+p)/(1+@), which is inflationary if
p)1.

Since we have our theory in the Einsteinian form, we
are allowed to employ the standard formalism [13] to
derive the perturbation spectrum at the horizon-crossing
epoch. We will see that we can determine the spectrum
without specifying the coupling function. We assume
here that the horizon-crossing condition is to be found in
the Einstein frame, i.e., that the condition only involves
the rescaled variables (see Ref. [14]).

times an order-of-unity factor [14,15] depending on the
power-law exponent p. Along the solution (9) we have

H /g=(~/2)cpH; (1+t/~)

Now, since

(14)

k =aH =a;H;(1+ t /~)~

eliminating the time between the latter equation and (14)
we obtain

5p/p=(p/2)cpH, (k/a, H, )'~" (15)

where the last factor expresses the scale dependence of
the spectrum. Since p ) 1, the spectrum grows with the
scale, as is commonly found in power-law inflation, and
becomes flat for phoo (slow-rolling inflation). Our re-
sult shows that this conclusion does not depend on the
choice off (P), as long as V =A,f

dP/dt III. STOCHASTIC APPROACH
TO FLUCTUATIONS

FICx. 3. As in Fig. 1, with n =4, m =2. This model satisfies
the condition M=2. Along the de Sitter —like attractors one
has P =$~0.

To compare the theory with the observed large-scale
structure we also need the higher-order moments of the
fluctuation distribution. In particular, it is astronomical-
ly interesting to detect possible deviations from the
Gaussian behavior of the primordial spectrum [16]. We
investigate then the stochastic properties of adiabatic
fluctuations during a power-law inAation driven by the
JBD field P. The pioneering work in this context in Ref.
[17]. Since we have now an Einsteinian theory with an
exponential potential [15], we may analytically solve the
Fokker-Planck equation (FPE) for the probability distri-
bution of the fluctuations. The only other known case of
analytically solvable FPE's is the minimally coupled
[f(P)=0] case with quartic or exponential potentials
[18]. In power-law inflation, contrary to slow-rolling
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infiation, the term f is not generally negligible in the field
equation for f. However, we show that its contribution
is not dominant in the cases investigated here, at least for
M not close to its upper bound 3.7. The condition
~P~ ((~U'~ gives in fact, when apphed to the attractor
solution (9), A /2P«1, that is, (cp) «24m. We have,
for instance, A /2P-0. 12 for M =3, which is moderate-
ly satisfactory, and A /2/3 —0.03 for M =2.5, a good ap-
proximation. We can then safely set 1(= —U'/3H and
write the Langevin equation in the useful time variable
a= fHdr:

dP U' 3

3H2

1/2

gHr)(a)

cp +gi/p cygne ( )
8~

(16)

where il(a) is the stochastic Gaussian noise due to the su-
perhorizon stretching of high-frequency modes, and g is
an order-of-unity constant [15] which depends on the
power-law exponent p. We have made use in (16) of the
(0,0) Einstein equation in the Einsteinian frame in slow-
rolling regime:

3H = 8~A.y fP'exp(c pg) . (17)

d% =—+il(a) .
p

(19)

The FPE associated with Eq. (19) is in the Ornstein-
Uhlenbeck [19] form

ae 1 a(q W) a'W
Bo.'p

B(D, W) i)'(D „W)+ (20)

where D, ='0/p is the drift coefficient and D] &

=1 is the
diffusion coefficient. One sees that the definition domain
of 4 is (0, + ~ ) for f (P) non-negative definite (remember
that y & 0). Then we must impose the refiecting bound-
ary conditions S (4 =0)=0, S(%~~ ) =0, where

S = D, W+0(D„W')—/B4 (21)

is the probability Aux. This introduces a reflecting"
term in the solution [15],which turns out to be negligible
at large times, when (~p) moves to infinity. The general
solution [19] of (20) with initial condition
W(%, 0) =-5(%—4;) is then found to be

We will denote the unperturbed quantities here with a
subscript cl, i.e., the solution to the zero-noise classical
equations of motion, to distinguish them from the sto-
chastic variables which appear in the Langevin and
Fokker-Planck equations. Let us define the new field
variable

qy = — ~ p/2 p

g V'Pe'"~~ cpgVA.

from which Eq. (16) for f~ ~ is simplified to

1

2~p (e ~ —1)

1/2

X exp
( 4 —'0„)

2p (e ~~ —1)

(4'+ 4„)
2p (e ~i' —1)

(22)

where O,&=%;e . It is easy to see that all the moments
of g are defined. In fact, the integral

M.(l()—= (g ) = f l("W(g, a)dl(, (23)

where W(l(, a) = 8'(%,a)~ J~ and
~
J~ =d%'/dg, converges

for any ~. The same is not always true for the moments
of the original field P. For instance, if f(P)=P, we
have that all the moments (P') for which v~ mp are
divergent for P~ oo .

The distribution of the field f is non-Gaussian. We are
interested in estimating its deviation from Gaussian
behavior through the skewness coefficient

s ™3(PQ t)/Mz (g —P,() . (24)

In the following we will neglect the contribution from the
refiecting term, so that we have Mi(l(r)=f, &. We may
first calculate approximately the second central moment
of 1(j, i.e., the variance, in the limit of small ~g

—l(,&~. We
will see that this is completely justified in viable theories
of inflation, due to the smallness of H, which sets the am-

plitude of the diffusion around the classical trajectory.
Expanding ~4 —'P„~ in powers of~1( —l(„~ we can write
the solution W(P) to the first order as a Gaussian with
mean g, &

and variance

D =pg (e ~~ —1)[l.y f/'e '] . (25)

We can now recognize in the square brackets, apart from
order-of-unity factors, the classical value of H . It fol-
lows that, for large a,

Q((1(—1(j„)) =H„e ~=H„(t/r) . (26)

For t ))~ we have H, &
t /~- H, . In order to avoid

exceedingly large perturbations on the microwave sky, H,
must be smaller than, roughly, 10 in Planck units, as is
evident from Eq. (15). It turns out that the deviation of 1(

from 1(,&
is indeed very small, which justifies the approxi-

mations made above. We may now calculate the third
central moment M3(g —1(„)in the following way. Let us
consider a Gaussian distribution W(V) normalized to
unity, with mean 4',

&
and variance o.. We transform it

under the mapping O'='I'(1() to W[%(g)]~'P'~, where
4'=d4/d1(. The inverse mapping is /=1((+). The
mean of f is now p,&=1((%,&), while the variance and the
higher-order moments have to be calculated. The new
distribution is W(l( ) = W [4(@)] ~

4'~. In the limit

~l(
—f,&~

~0 we may expand %(1(j) and 4" in Taylor series
around g,&. It follows that

W'(g)
~

4'
~

= (2~D) ' exp[ —( I /2D) [(p—g„)—R (ij'r —l(,~) ]], (27)
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R R
M3 (ll —p„)=—3D + (28)

where D =o ~%,'~~ and R =2D+,'I/O,'&. Here 4,'~ and

4,'I mean 4' and 4", respectively, calculated in /=it, &.

The distribution (27) is again a Gaussian curve, but with
a mean, variance, and normalization different from the
original ones. After some simple manipulations it is easy
to find

APPENDIX

Numerical phase spaces show with fu11 evidence the
stability of the trajectories labeled as 3 type in the text.
Here we prove it analytically for the case M & 2. As was
shown in Sec. II, the phase space in the large P limit is
governed, in the rescaled variables, by the dynamical sys-
tem (x = llj, y =

Q )

Let us specialize to our model. We have then that D is
given in (25), while R = cpD. —In the limit of small D,
i.e., small H, we have

x =y, y = —3H(x, y)y —U'(x),

where U' =pcpe'" . There is an attractor trajectory

c)Mx /2
0

(A 1)

(A2)

s = —3cpD' /2- H„(t/—r) . (29)

The deviation from a Gaussian distribution turns out to
be indeed negligible as long as the initial value for H is
less than 10 in Planck units. In other words, the need
for a smooth microwave background has the consequence
of a very small deviation from Gaussian behavior. Per-
turbations which crossed out the horizon when H —1 can
have a very skewed distribution, but they are now much
larger than the observable Universe. Similar conclusions
hold for the higher moments of the distribution.

IV. CONCLUSIONS

One of the most appealing aspects of chaotic inflation
is that even the simplest models possess the required
properties for successful inAation. Almost all the possible
initial conditions for a scalar field dominated universe
with a simple potential lead to a conspicuous period of
inAation. This feature implies, in the dynamical phase
space of such theories, the existence of attractor trajec-
tories over which the other trajectories converge. It
turns out, contrary to the uncoupled case, f =0, and to
the usual f =P case, that models with generic coupling
satisfy the chaotic inflation requirements only when
2~M(3. 7. The resulting power-law expansion is in-
dependent of f (P). This power-law case is noticeable be-
cause it can be adopted as a chaotic hyperextended
inflation with a kinematics independent of the coupling
function.

The scale dependence k' " ', also independent of
f (P), is an interesting signature of power-law inilation,
possibly testable with the data from the Cosmic Back-
ground Explorer (COBE) [20]. Solving the Fokker-
Planck equation we can evaluate higher-order moments
of the fluctuation distribution. This shows that the devia-
tion from Gaussian behavior on observable scales is negli-
gible in all acceptable inflationary models of the kind
studied here.

Finally, we prove analytically in the Appendix the sta-
bility of the attractors.

with cp&0 and 3 (0. Here we assume for simplicity
that H is calculated along the attractor

1/28' 1 P

2u = (u —u ) —3H(u +v) —2U',
4

2v = (v —u )
—3H(u +u) —2U' .

4

(A3)

cpxp /2
We now linearize (A3) around xo,yo =Ae, i.e. ,

around a generic point on 3e '"" . This corresponds to
C)MX plinearizing around u =0, U =U0=2Ae '. Notice that

vo (0. We get then for the coordinate u the equation (the
equation for u is not of concern in this context)

u =a&U+a2u . (A4)

It turns out that a& =0: this confirms that the trajectory
u =0 is a solution of the system (Al). The sign of az
determines the stability of the attractor: when a2 is nega-
tive, in fact, u ~0 starting from any small perturbation
uo. The process evolves with a time scale I/~az~. We
have

a~ =voce[(18—p )/2tM ], (A5)

which is indeed negative because U0 is negative and
m & &3. The stability time scale I/~az

~
goes like

(P) ', i.e., like gA, ': the process of infalling toward
the attractor is faster as $~0 or A,~ ~.

freezing the x,y dependence of H on the assumed solution
(A2). Dealing with the full function H =H (x,y) only en-

tangles the algebraic details without changing the con-
clusions. To show that (A2) is indeed an attractor, let us
define a new set of coordinates u, U, such that u =0
defines the trajectory (A2): u =y —Ae'" ~,
U =y + Ae'"" . Under this mapping, the dynamical sys-
tem (A2) becomes
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