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Neutrino heat conduction and inhomogeneities in the early Universe
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Constraints on parameters of inhomogeneous nucleosynthesis, namely, the overdensity and size of
baryon lumps, are found by calculating the blackbody neutrino heat conduction into the lumps, which

tends to inAate them away. The scale size for eKcient heat conduction is determined by the mean free

path A, of the neutrino, and so we compute A, in our case of a high-temperature plasma with low chemical

potential, and find a general result that many-body effects are unimportant, simplifying the calculation.
We And that in the region of interest for nucleosynthesis, neutrino inflation is important for overdensities

& 104.

PACS number(s): 98.80.Cq, 13.15.—f, 95.30.Cq, 97.10.Cv

I. INTRODUCTION

Most calculations concerning the early Universe, such
as big-bang nucleosynthesis, assume that the Universe
was homogeneous. But with the likelihood that several
phase transitions occurred after the big bang as the
Universe cooled down, perhaps it is more accurate and
more natural to assume that the Universe was
significantly inhomogeneous during certain epochs [1—3].
The electroweak phase transition, for example, may have
produced baryons and created overdense baryon lumps
that survived until the nucleosynthesis epoch [4]. The
eff'ects of such overdense baryon lumps on primordial nu-
cleosynthesis have been extensively investigated [1,5 —7],
and they can significantly afFect the primordial abun-
dances of the elements. In fact, new observations of
beryllium to boron abundances might be explained by as-
suming inhomogeneous big-bang nucleosynthesis (IBBN)
[gl.

But as much as these inhomogeneities may be generat-
ed, they will also tend to smooth themselves out due to
diffusion. For example, it is well known that any (small-
scale) inhomogeneities present during the nucleosynthesis
epoch will be completely smoothed out at cooler temper-
atures by photon diffusion [9,10]. There is an analogous
eff'ect at higher temperatures when the neutrino is still
coupled to the plasma yet still has a long enough mean
free path to conduct heat and smooth out inhom�-
og�eneiti.

In this paper, we will calculate the evolution of an
overdense baryon lump subject to this mechanism, called
"neutrino inAation. " Neutrino inAation can be more pre-
cisely described in the following way. Any overdense
baryon lumps in the early Universe will quickly come to
pressure equilibrium with the surroundings, but the extra
baryon density will cause the temperature of the lump to
be slightly lower. The neutrinos, because of their rela-
tively long mean free path, will be the most efficient con-
ductors of heat into the lump, inAating the lump and re-
ducing its overdensity. Using a simple model for heat
conduction, we will find an equation for the overdensity
as a function of time (or temperature of the Universe), to
see how the lumps evolve from 100 to 1 MeV. The re-

suits will show that certain sizes and overdensities of
lumps cannot exist at 1 MeV, and this has the added
benefit of reducing the allowed parameter space used in
IBBN calculations.

Knowing the neutrino mean free path A, is important
for setting the scale for efficient heat conduction, so in
Sec. IV we calculate X for a relativistic gas at high tem-
perature and examine the issue of many-body efFects.
Note here that the eff'ects of neutrino inAation have previ-
ously been qualitatively estimated [1,11],but the calcula-
tions in this paper give a much more accurate picture of
the neutrino heat transport.

II. NEUTRINO INFLATION

We will start out by assuming a spherical overdense
baryon lump that may have originated from a variety of
mechanisms such as a first-order quark to hadronic-
matter phase transition. The lump has a baryon density
nb much greater than the background density (n„))nb ),

0

mass M, and radius R. We will be concerned with tem-
peratures between 100 and 1 MeV, that is, shortly after
the quark-hadron phase transition, but (roughly) before
the neutrino decouples from the plasma. In the following
calculations we will neglect the presence of pions and
brieAy discuss their efFects in the conclusion.

At 100 MeV the Universe is radiation dominated and is
filled with p —,e —,v, v, y, all in equilibrium. The total
radiation energy density is p„d=N,&aT and pressure
p„d=X,ffaT /3. Assume the baryons make up an ideal
gas with pb = nb T.

If there is any difFerence in pressure between the lump
and the background, then the lump will have a charac-
teristic pressure relaxation time ct„&„=R.So as long as
R «c(Hubble time), the lump will quickly reach pressure
equilibrium with the background, and we can write

I, T+—,'2V, ffaT =
—,'2V,ffaT0+nb To .

0

So we can see that the temperature of the lump must be
slightly less than the background temperature
T= To oT. To first order i—n oT, Eq. (1) becomes
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6T 'Qo nb '90

T X~ nb
(2)

Note that this equation holds for any lump whose radius
R =A, between the temperatures To and T.

where 6„is defined to be the overdensity and go is the
present baryon to photon ratio. Note that q is not con-
stant because of muon and electron annihilation at 10 and
005 MeV. As a result, g(100( T & 10 MeV)=3. 6i)o,
which also takes into account the fact that the neutrinos
decouple at 2 MeV. We will use the middle of the road
value go=3 X 10,which gives a fractional baryon den-
sity 0& =0.13/h .

Our goal is to find how the lump's overdensity evolves
with time, so let us first calculate the rate of heat conduc-
tion into the lump. The way in which heat is conducted
into the lump depends upon how large it is compared to
the mean free path k of the neutrino. In this section we
will assume R =k. We will look at larger and smaller
lumps in the next section.

If R =A, , then the blackbody neutrino radiation in the
background plasma is approximated to be perfectly ab-
sorbed throughout the lump. The energy Aux into the
lump is [12]

III. LARGE AND SMALL LUMPS

In the above scenario, we have assumed that the neu-
trinos efficiently conducted heat into the entire lump, and
for this to be true, the size of the lump must be on the
same order as the neutrino's mean free path A, . What if R
is larger or smaller than the mean free path?

In the case R &&A, , the neutrinos are "free streaming"
in the sense that they have approximately the same tem-
perature inside and outside the lump. On average, every
neutrino crossing the lump deposits an energy

R E (To) E(T—)
CP g 2

R 3.155T . (8)

The number of particles crossing the lump in time t;„&is
N =~R t;„tg; n„,and so .by using (2) and (8) we find the
total energy deposited into the lump per unit time to be
(for R «A, )

@=—g [p;(To)—p;(T)]= g p;(To)
1 6T

(3)
dE mR 7 4 906n

dt 2A. 16

where i is the type of neutrino (there are 2X3=6 of
them). Note that any sterile neutrinos will only slightly
change N,z, and any efFects due to massive neutrinos
(m « T or m „))T) will be negligible.

Therefore, using (2) and (3) we find the rate of heat
conduction into the lump to be (for R = A, )

dE 2 2 7 4 9o~n

dt
=4~R @=4aR 6 aT

16 N~
(4)

1

T2
32' Q+

3
(6)

Combining Eqs. (4)—(6), noting that —,'mR m nb 5„=M
0

and nb
= ( 3.6/2. 7 )il oa T, and integrating, we get a rela-

tion for overdensity as a function of temperature of the
evolving Universe for a lump of mass M:

1

g4/3( T)

(8 X 10 MeV)i)o/ +
N tt (M/M~)' T To 5 (To)

(7)

Any added heat AE will add to the volume of the lump
an amount b, V =6,E/p„d(t), and since the number of
baryons in the lump is constant we can write

5„(t)V(t)

&&/p„,(t)+ V(t)d6„6„
(5)

dt V(t)p„d(t) dt

It is more convenient to speak in terms of 6, as a func-
tion of temperature rather than time. By using the Fried-
mann equation we can get a relationship between time
and temperature:

1//2

where N', ~ is the number of particle degrees of freedom in
the plasma minus the neutrinos, since they are approxi-
mately free streaming through the lump. For the value of
A, , we will use the relation XT =const, which is calculat-
ed in the next section for T =100 MeV. Any deviations
from a constant value (explained in the next section) will
have a negligible e6'ect on our results. After integration,
Eqs. (5), (6), and (8) yield (for R &(A, )

1 3 3'90
3 3 1(T To )+— (10)

where A, ,oo is the mean free path of the neutrino at 100
MeV in units of cm, and T is in units of MeV.

If R ))A, then neutrino conduction is less important.
But as the temperature decreases, the mean free path in-
creases as —1/T, and so eventually any lump smaller
than the horizon size will reach the regime R =A, and the
neutrinos can penetrate into the entire lump. Before that
time the lump's density will decrease only around the
edges, and, indeed, one could even calculate the evolution
of an initial "top hat" density distribution as A. gets
bigger. For simplicity though, we assert that if R ) 10K
then any neutrino diffusion is negligible, and no neutrino
conduction occurs. Therefore, as an approximation to
find the density evolution of any lump of any size, we will
use the following method. For R ) 10k., 6=const; for
10K, & R & A. , we will use Eq. (7); for A, )R we will use Eq.
(10). Note that the radius of the lump obeys the equation
R =Ro(TO/T)(5o/5)' . That is, the lump not only ex-
pands with the Universe, but also its comoving radius in-
creases because the neutrinos are inAating it.

The results of these calculations are shown in Fig. 1,
which shows the evolution of a lump beginning at 100
MeV and given an initial overdensity and radius.

Figure 2 is a combination of the results in Fig. 1, show-
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FIG. 1. Density evolution of overdense
baryon lumps from 100 to 1 MeV. The radius
given is the lump's initial physical radius at
100 MeV, and each line starts at the lump's ini-
tial overdensity. For larger initial radii, the
lump's overdensity does not change until its
size is comparable to the mean free path of the
neutrino.
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IV. MEAN FREE PATH: IS THERE SCREENING' ?

As shown in the previous two sections, the mean free
path A, sets the scale for determining how the neutrinos
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ing what maximum possible overdensities can finally exist
at 1 MeV. The knee in the graph is sensitive to the tem-
perature at which we started the evolution, namely, 100
MeV, because this also determines the range of sizes of A.,
and therefore which lump sizes will experience efficient
heat conduction (it is most efficient for R =A, ). What if
the lumps were formed earlier? We have made a crude
extension of the model to higher initial temperatures, as-
suming that for T & 100 MeV the quarks in the plasma
are free. The extension of the model (dotted line in Fig.
2) shows that since at higher initial temperatures A, is
smaller, the smaller lumps are constrained even further.
It is interesting to note that no overdense lumps with
R & 3 X 10 cm can exist at 1 MeV. An equivalent state-
ment is that at any temperatures greater than about 1

GeV, any lumps that are equal in size or smaller than the
mean free path of the neutrino will be completely washed
out almost immediately. It should also be noted that the
extra constraints that come from the extension of this
model only affect lumps that are smaller than those that
are of interest in the current IBBN calculations [5,6].

will conduct heat into the lump. What is the mean free
path of a neutrino in a high-temperature plasma? We
will answer this by first determining whether many-body
effects are important.

When a neutrino weakly scatters, via the neutral
current, off of an electron in an electron gas, the electron
will recoil. But the way the electron recoils (and so the
neutrino) will depend upon its interactions with the other
electrons in the gas. Therefore, the cross section of a
neutrino in an electron gas must include the many-body
effects between the electrons. All of this information is
included in the polarization propagator [14,15]. Here, we
will consider only electromagnetic interactions between
electrons because they are the strongest.

Following the notation of Horowitz and Wehrberger
[16], the differential cross section for neutral-current in-
teractions of a neutrino of initial energy E and final ener-
gy E' in an electron gas can be shown to be

GF E'2

Im(L„II" ),32~' E
with I.

„

the neutrino part of the matrix element squared
and H" the electron polarization propagator including
vector and axial-vector vertices. Horowitz and
Wehrberger calculated II" in the limit kf )) q ~

or
T ))

~ q, where
~ q ~

is the momentum transfer (high-
density limit), and showed that screening effects are im-
portant. In our case, however, the chemical potential is
zero and the electrons and neutrinos are thermal, giving
~q~ =T. Fortunately, the polarization propagator is very
simple in this case. Schematically, the imaginary part of
I.„H~ is

10 Im(L„II~ )=

10
0-2

I I I I I I I I I I u I I I I I I I I I I I I I I I I I I I I I i I I I 1 I I I I I I I I I I I I I I I I I I I I I I

10 10 10
Physical Radius(cm) at 1MeV

I I I I ltfll I I I I IIII

10 and so we want to find the important terms in the expan-
sion of H":

FIG. 2. Upper limits on overdensity at T = 1 MeV. Because
large overdensities are dissipated quickly, only overdensities
below this line can exist at 1 MeV. The solid-line graph shows
the excluded parameter space for lumps created at 100 MeV.
The dotted line shows the extra excluded parameter space if the
lumps were created at a much higher initial temperature ( To )2
GeV).
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In the limit of high temperature and ~q~=T, we can
roughly estimate the relative contribution of each dia-
gram. The density-dependent part of each diagram goes
as

TABLE I. Mean free paths of neutrinos in the early Universe
[excluding pions and other neutrinos (see text)]. There is almost
an exact T' dependence, but there are no p —or ~—at 1 MeV, so
the mean free paths will be slightly longer.

p+qj '~ p
d4p

p(p+q), » +1
e' e

P P

Y T

T=100 MeV

2.3 cm

2.3 cm

11 cm

T=1 MeV

5.5 X 10' cm

22 X 10' cm

22 X 10 GIH

-e' j dp dk 1
e Tp(p+q) k(k+q)»a+1

We will assume that all chemical potentials are zero,
and at large temperatures we will take as a good approxi-
mation that 1 fk.= 1 —f,= 1,—where f is the fermion
occupation number at momentum p. In the relativistic
limit, Tubbs and Schramm [15] have shown that the rate
of ve collisions is

e' d4p 1

q' P(P+q) e»o+I

2 2
T4=e'T'

q
2

G2
[(gag~ )'+ —,'«v —g~ )']-', S.277

and in our limit, the polarization propagator becomes

2

IP — 1+e +e + . . T =(1+e + )TV 2 2T
q

2

(12)

Note that normally q and p scale differently than T, mak-
ing H" a diverging or slowly converging series. But in
our limit T is the only scale, and so we can expand H" in
powers of e . Therefore, to an accuracy -e we can ig-
nore all diagrams other than the single particle-hole bub-
ble. Put another way, to an excellent approximation we
can assume the gas is noninteracting and there are no
screening effects. This is a general result: If we quasi-
elastically scatter a particle off of a relativistic gas of tem-
perature T))p and ~q~ = T, then to order g we can as-
sume the gas is noninteracting and no screening occurs.
Here g is the coupling between the particles of the gas
[17]. This result also has the simple interpretation that
since the kinetic energy of the neutrino is about 1/a
times greater than the average potential energy between
the electrons, we can ignore the interactions between the
electrons.

This makes calculation of the mean free path easy be-
cause now we can assume that the neutrino scatters in-
coherently off of one particle at a time. This is a well-
known limit.

For simplicity, let us first assume that we have a gas of
electrons and neutrinos at temperature T. Then the rate
of verve collisions suffered by a typical neutrino with
momentum k is defined to be [18]

1 2d p d k' d p'
2m 2E 2m. 2Ek 2m 2E .

X [(2~) 5 (k +p —k' —p')

X ~W~ f (1—fk )(1—f„)].

where g'=g+1 is the vector (or axial-vector) coupling
which includes both charged and neutral currents, E is
the average energy of the neutrino, and p, is the energy
density of the electrons. Similar expressions arise for
gases of p —,e+, v, and v.

We must be careful about finding the total cross sec-
tion of the neutrino in the plasma. Recall that we are in-
terested in lumps small enough that neutrinos almost free
stream through them. If we want the neutrinos to depos-
it energy into the lump, they must do so via ve or vp col-
lisions. Any vv~vv will not affect such small lumps
(R (X), so in computing A, we will exclude vv collisions.
The only exception is vv —+e+e, vv —+p p, and we
will include these.

Therefore, the mean free path A, of a neutrino in a plas-
ma of all above possible particles (ignoring hadrons) is

—1
GI'- 4—

F. QA;p;— (15)A, =(R„,)

V. CONCLUSIONS

This calculation is only a simple model for neutrino
inflation. For example, we have assumed that all of the
muons instantaneously annihilate at 10 MeV, when actu-

where 2, is the coupling coefficient for particle I'. As-
suming all particles to be relativistic, the average rate of
collisions of a typical v, or v, is found to be

R =3.1GFT at T=100 MeV,

R =1.3GFT at T=1 MeV .

Similar expressions can be calculated for the other two
neutrino flavors, and the mean free paths are in Table I.
The ~ neutrino has a larger mean free path because it
does not participate in any charged-current scattering in
the absence of ~'s. Since for small lumps the energy de-
posited goes as 1/k, we used an averaged value
I /A, =

—,
' g, 1/k, for the mean free path.
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ally they slowly annihilate from 100 to 1 MeV. Also we
have ignored the presence of pions which will increase
N, ~ and decrease the mean free path of the neutrino. But
these added effects from the muons and pions will partial-
ly cancel, and rough calculations show the error to be
well within the built-in uncertainty of this simple model
for heat conduction (namely, that we did not solve exact-
ly by using the Boltzmann equation), which is probably as
much as a factor of 2. The main point is that we have
used standard physics to show that neutrino heat conduc-
tion effects cannot be ignored for inhomogeneities in the
Universe above 1 MeV, and in particular, for lump sizes
of interest to IBBN, neutrino infIation is important for
overdensities ) 10 . Therefore one is not free to choose
any values in parameter space for lumps at 1 MeV.

As a second point of this paper, we have found that for
a relativistic thermal gas, to a very good approximation
the particles do not participate in any screening effects
when they scatter, and this simple result is useful for cal-
culating the mean free path, and thus heat conduction, in
such a gas.
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