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A model of baryogenesis is described which gives rise to fluctuations in baryon number that are large
on small scales but of low amplitude on large scales. This provides a mechanism for primordial black-
hole formation, and allows the possibility of a critical density of dark matter in baryonic (and anti-
baryonic) form. Since high-density regions naturally possess both signs of baryonic excess, our model
also predicts a small fraction of the mass density of the Universe to be in the form of compact anti-
baryonic regions. These objects may be observable via a redshifted annihilation feature in the diffuse ex-
tragalactic y-ray background, as both steady sources of y-ray radiation and annihilation-powered y-ray
bursters at cosmological distances, by a distortion of the spectrum of the 3K background radiation, or by
the presence of antihelium nuclei as a rare component of high-energy cosmic rays.

PACS number(s): 98.70.Vc, 95.35.+d, 98.80.Hw

I. INTRODUCTION

The large-scale structure in the Universe is assumed to
be formed by gravitational instability from initially small
primordial density inhomogeneities. The origin of these
inhomogeneities remained unknown even a decade ago.
A breakthrough was achieved with the development of
the inflationary universe scenario, in which the exponen-
tially rapidly rising scale factor results in the transforma-
tion of small-scale (both in amplitude and wave length)
fluctuations of quantum fields into cosmologically in-
teresting density perturbations [1-4]. Energy density
fluctuations generated by the inflaton field are of
sufficiently large amplitude to account for structure for-
mation. (In fact, they are too large with a natural
strength of the inflation coupling and special care must
be taken to reduce them to a sufficiently low value.) This
mechanism generates so-called adiabatic perturbations
when inhomogeneities in the matter energy density are
about the same magnitude as those in the radiation densi-
ty. The perturbation spectrum is of the Harrison-
Zel’dovich form that is (practically) scale independent.

Unfortunately, these two features make the simplest
models questionable. Adiabatic perturbations are strong-
ly bounded from above by the strict limits on angular
fluctuations of the background radiation temperature [5]
and the scale-independent spectrum poorly describes the
observed structure on large ( R 10 Mpc) scales [6], at least
when normalized in the conventional way to fluctuations
in the galaxy counts. These shortcomings of an otherwise
elegant model have stimulated consideration of other pos-
sibilities which could give rise to a nonflat spectrum
and/or to isocurvature (or isothermal) fluctuations. The
latter are fluctuations in the chemical content of the
primeval plasma [e.g., fluctuations in baryonic charge (B)
density] with a constant total energy density. Baryon
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number fluctuations are transformed into energy density
fluctuations during the later stages of the evolution of the
Universe when baryons (or, generally speaking, any other
particles) become nonrelativistic.

A number of models for creation of isocurvature fluc-
tuations have been proposed during the last decade
[7-22] with a variety of spectra ranging from flat to those
possessing a prominent peak at a particular wavelength.
We will show in what follows that a specific spectrum of
(isocurvature) baryonic charge-density perturbations can
be generated in some scenarios of baryogenesis. We
show, in particular, that there can exist very large fluc-
tuations in baryonic charge density at sufficiently low
spatial scale that their existence does not contradict the
bounds on AT /T. Moreover, the sign of baryon asym-
metry can be different in different regions of high baryon-
ic density, so that we can expect both high density and
small size baryonic and antibaryonic regions. There is no
observational difference between the two if the density is
so high that those regions collapsed at some early epoch
into compact stellar remnants and black holes. In fact,
the model described here presents a new mechanism for
early black-hole formation from large amplitude iso-
thermal fluctuations at small spatial scales. In this case,
dark matter in the Universe would be in the form of
baryonic (and antibaryonic) black holes. Smaller uncol-
lapsed bubbles of antibaryonic matter would be observ-
able either as pointlike sources of y radiation or, if they
annihilated earlier, as some bright spots in the otherwise
isotropic background radiation. If the number density of
these objects were sufficiently high, early pp annihilation
could result in the distortion of the spectrum of back-
ground radiation. Unfortunately, there is too much free-
dom in the model to make any specific predictions. The
amount of uncollapsed antimatter may vary from an un-
noticeable amount to an amount in contradiction with ex-
isting data.
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We will consider two possible mechanisms for the real-
ization of such scenarios. One is based on spontaneous
charge symmetry breaking in a first-order phase transi-
tion. This mechanism proves to be considerably less
effective in creating a baryon asymmetry than a second
one that we give, but we still present it since the features
may be of more general interest.

Another possible mechanism for generation of a large
baryon asymmetry in a small fraction of space is based on
the model of baryogenesis by the baryonic charge con-
densate () [32]. Our only modification of the original
scenario is an introduction of a rather generic coupling of
x to the inflaton field ®. This coupling permits genera-
tion of a large value of () in a reasonably small part of
space, while in the rest of the space (y) would have a
much smaller value. Except for this difference, baryo-
genesis proceeds along the same lines in both phases.
The net result for the baryon asymmetry can differ by
several orders of magnitude.

For the realization of both mechanisms, it is necessary
that the bubbles of the broken phase neither coalesce nor
disappear by the epoch of baryogenesis. Since the size of
the baryon asymmetry of the Universe is proportional to
the amplitude of C, CP violation, it should be different in-
side and outside the bubbles. In fact, if spontaneous sym-
metry breaking is the only source of C, CP violation the
baryon asymmetry could only be generated inside the
bubbles while outside of them the Universe would be
charge symmetric. If, however, there is another source of
C, CP violation, namely an explicit one, the asymmetry
would be generated in both phases while the size of the
asymmetry might be very different. After baryogenesis is
over, the bubble walls can, and in fact must, disappear so
as to avoid excessive inhomogeneities in the cosmological
energy density. In other words, after baryogenesis, the
phase transition should proceed in the reverse direction
restoring the charge symmetry of the vacuum state. The
temporary existence of the broken phase remains im-
printed, however, in inhomogeneities in the baryon num-
ber density. Thus we end up with a homogeneous back-
ground baryon asymmetry coming from explicit C, CP
violation and strong but presumably short-scale inhomo-
geneities inside the former bubbles of the broken phase.
To avoid possible confusion, we mention that we use the
term “‘bubble” both for the bubbles of the broken symme-
try phase separated from the symmetric (false) vacuum
state by a domain wall and for the high baryonic number
density remnants of such bubbles. The characteristic
wavelength of the baryon density perturbations is deter-
mined by the onset of the phase transition. To make the
scale cosmologically significant, the phase transition
should take place during the inflationary stage. Such a
scenario has been considered in Refs. [14,15].

There are many features in common between these
mechanisms of generation of large baryonic charge-
density fluctuations. Both are based on a specific phase
transition going back and forth once in the early
universe. The same kind of coupling of the underlying
scalar field to the inflaton field is necessary in both cases.
As a result, the bubble evolution is essentially the same in
both cases.
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The paper is organized as follows. In the next section
the first model based on spontaneous breaking of charge
symmetry is discussed. The kinetics of the bubble forma-
tion is considered in Sec. III. The results of this section
are applicable both to the first model as well as to the
case of the baryonic charge condensate. The latter is de-
scribed in Sec. IV. The evolution of the bubbles with
high baryon number density, after the bubble walls that
separate two different vacuum states have disappeared, is
considered in Sec. V. Cosmological implications and
conclusions are presented in Sec. V1.

II. CHARGE SYMMETRY BREAKING

A mechanism which gives rise to the bubbles of high
baryon number density can be realized as follows. As-
sume that there exist two sources of charge symmetry
breaking, spontaneous and explicit. If the spontaneous
symmetry breaking proceeded through the first-order
phase transition which started at the inflationary stage
and did not terminate during baryogenesis, one would ex-
pect that CP-odd amplitudes were not universal space in-
dependent quantities but had different values inside and
outside bubbles of broken phase. Correspondingly, the
size of the baryon asymmetry is different inside and out-
side the bubbles. The resulting picture depends upon the
characteristic bubble size Iz and upon the relation be-
tween the amplitude of explicit CP breaking, €,, and that
of spontaneous CP breaking, €,. Onset of the phase tran-
sition during the inflationary stage permits /5 to be on a
scale that is astronomically large. The value of I is very
much parameter dependent and can be larger or compa-
rable with the horizon size /, or much smaller, down to
stellar size or even below. The first case has been con-
sidered in Refs. [14,15] where the island universe model
was discussed. Here we concentrate mostly on the case
Iy <<1,, so that the baryonic charge inhomogeneities are
observable inside our universe.

If the amplitude of spontaneous symmetry breaking is
small in comparison with the explicit one, €, <€,, there
would be relatively small fluctuations in the baryonic
number density over the uniform baryonic background.
In the other case, €, <€, there would be denser baryonic
or antibaryonic regions in the low-density baryonic back-
ground. While we cannot make specific predictions, we
can use observations to constrain the model. The absence
of visible pp annihilation sets strong limits on bubble size
and bubble separation [23].

Spontaneous CP violation [24] is achieved by a conden-
sate of complex scalar field ¢. We assume that its poten-
tial has the usual form

2

U(¢)=m§,f|¢|2+xr¢f“1nl:;l% . (1
The logarithmic factor in this expression comes as a re-
sult of summing higher loop corrections [25]. There
should be, of course, some other terms either in U(¢) or
in Yukawa coupling of ¢ to fermions which are not in-
variant with respect to phase rotation ¢—¢exp(ia) so
that CP breaking becomes operative. The effective mass
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factor m2; should generically include the contribution
from different kinds of interaction of ¢ with other fields:

m2g=m3+ER +BT A (P—D,) . )

Here the first term m3 is the vacuum mass of ¢ (barring
the contribution from A;®?%). The term £R comes from
the possible nonminimal coupling of ¢ to the curvature
scalar. During the inflationary stage R =12HZ, in the
radiation-dominated stage R ~O0, and in the matter-
dominated stage R ~¢ 2. The third term is a result of
temperature corrections to the effective potential which
became effective when the Universe was heated as a result
of inflaton decay (the Gibbons-Hawking temperature
effects are hidden in a redefinition of £). There should be
some other temperature corrections to U(¢) but they are
not essential for our purpose. The last term comes from
the general renormalizable coupling of ¢ to the inflaton
field

Line =4 |¢*®*+glg*® .

There can also be terms of the form (g#®*+H.c.) which
are not considered here. Here ®, is a constant. We as-
sume for definiteness that the chaotic inflationary
scenario is valid [26] (though our model is compatible
with other inflationary scenarios), so that ® evolved from
large values @ > mp; and @ > &, down to zero.

With all these terms taken into account, m2g can pos-
sess the rather peculiar oscillatory behavior (shown in
Fig. 1) which is necessary for realization of our model.
To get this nonmonotonic time dependence, some not
particularly strong fine tuning might be necessary. All
the parameters in Eq. (1) may have either sign. We as-
sume, however, that A; and ®, are positive to ensure a
minimum of m%; during inflation. Numerically, ® is very
large in the chaotic inflation scenario, ® >>Myp,. We as-
sume that @, is also large, ®;>myp, so that ® becomes
equal to @, in the course of inflation. On the contrary,
the coupling constant A, should be very small, A, <107°.
Otherwise, loop correction would induce effective )»2<I>4
interactions with A,~A2> 10" 12, This in turn would give
rise to unacceptably large energy density fluctuations
[1-4]. As we see below, A; should be even smaller
(A;<107!%) to ensure a successful realization of our
second scenario. This fits the notion of a very weak cou-
pling of the inflaton field.

Little is known about numerical values of £. Confor-
mal invariance (which is absent in our model) implies

=1, while for Goldstone bosons (also absent) £=0 [27].
Radiative corrections to minimal gravitational coupling
of ¢ give rise to generically nonzero § proportional to a
power of essential coupling constants which gives a rath-
er small result £ S 1072, although £=0(1) is not exclud-
ed. The temperature correction term BT? arises from in-
teractions of ¢ with the thermal bath and is proportional
to the interaction strength. f3 is of the order of A for the
A¢* interaction and of the order of the coupling constant
squared for Yukawa or gauge couplings. Usually >0,
but it is also possible for B to be negative [28]. A reason-
able value for A is about 102 as is typical for supersym-
metric models.
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To ensure the behavior shown in Fig. 1, the following
conditions should be satisfied:

mi+ER <0, (3a)
m3+A,®PI+ER >0, (3b)
mi+A,®+pT%>0, (3c)
m3+Ar,®1<0. (3d)

Note that R might be different in Egs. (3a) and (3b). We
assume that mf‘) is of the order of H ,2 and, with
H,;=(107°-10"%myp and A;=10"1°-10712 all the
terms in Eqgs. (3) are more or less of the same order of
magnitude. A naive estimate of the reheating tempera-
ture is T, =1/ mp H; but a weak coupling of the inflaton
to matter makes T, proportional to the Yukawa cou-
pling constant g ~A}"*<1073. Hence, BT?%, is similar to
other terms in (3).

At the beginning of inflation, ® is large and so m%; > 0.
The potential U(¢) (1) has a minimum at ¢=0 and

charge symmetry is unbroken. With diminishing m?g,
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FIG. 1. (a) The evolution of the effective mass of the baryon
number-generating field ¢ driven by the inflaton field ®. (b) The
shape of the potential U(¢) for different values of the effective
mass of ¢. In the first scenario with spontaneous charge sym-
metry breaking, baryogenesis should proceed while U(¢) still
has the second minimum at ¢0 while baryogenesis by the sca-
lar field condensate starts when this minimum disappears.
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another minimum at ¢+0 is formed which gradually be-
comes deeper than the one at ¢=0. Still, the transition
probability between the two minima is exponentially
suppressed. Even for m =0, when the barrier between
two extremes of U (¢) is absent, the transition probability
is very small. For the case of the —A|¢|* potential, it is
determined by the so-called Fubini instanton and is pro-
portional to exp(—8w/3A). For the Coleman-Weinberg
potential [Eq. (1)] the transition probability is slightly
larger but still negligible [29] for small A.

For negative m2;, the suppression is absent, and the
phase transition is of second order without bubble nu-
cleation and supercooling. If, however, m2; is negative
only during a finite time, the phase transition may not be
accomplished, and only a few bubbles of new phase are
formed. When mZ2; becomes negative, the process starts
as a second-order phase transition with ¢ moving to the
bottom of the potential according to

t} , 4)
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where ¢; is the initial amplitude of (quantum) fluctuations
with sufficiently long wavelength ;. The latter scales
during inflation as [ =[,exp(Ht). When m2; once again
becomes positive, the local maximum at ¢ =0 turns back
into a local minimum and, if ¢ is smaller than the critical
value ¢, ~m /A!'/2, it should roll back to $=0. If during
the period At, when m?%; <0, ¢ rises above ¢,, bubbles of
new phase may form. It is evident that the probability of
bubble formation must vary between O and 1 depending
upon the behavior of m.s. The production probability as
a function of time depends upon how fast the inflaton
field @ evolves near ®,.

Two limiting cases can consequently be considered.
First, W is a sharp function of time. In this case, the dis-
tribution in bubble sizes is also narrow, strongly peaked
near a particular value of /5. In another limiting case,
when the inflaton evolution is slow in comparison with
the rate of rise of ¢ [Eq. (4)], the bubble production prob-
ability is a slowly varying function of time for a (model-
dependent) time interval Az. That case corresponds to
the situation when the fluctuations of ¢ during this
period reached and exceeded the critical value ¢.. The
earlier a bubble formed, the larger would be its size and
the larger would be the average distance between the
bubbles. Correspondingly, their distribution in / is

d_N ~l—4+K
dl ’

where « corrects for the possibility of a larger probability
of earlier bubble production.

When @ evolves away from &;, the effective mass
squared becomes positive and the potential barrier reap-
pears. This barrier separating the two minima should ex-
ist at least until baryogenesis so that the symmetry is not
restored. It is achieved if m % at this stage [Egs. (3b) and
(3¢c)] is positive but not too large. In Fig. 1(b) the mo-
ment of baryogenesis in this scenario corresponds to
t=t,. Subsequent cooling would again lead to m2; <O if
condition (3d) is valid. The symmetry would be broken

9
ZHZngﬁ( SH

é=¢;exp {

(5)
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over all space and the domain walls would disappear.
Another possibility to get rid of the walls might be real-
ized if m%;=m3+A®?> 0 and is so large that the second
minimum at ¢ =0 vanishes and symmetry is restored over
all space (but after the baryogenesis epoch). We show in
the next section that quantum fluctuations of ¢ in the de
Sitter background are essential for the dynamics of the
bubble formation in the case of |m .| <H, and we will
calculate more accurately the probability of their produc-
tion and the bubble spectrum.

To summarize, we see that it is possible (and perhaps
even natural) to obtain at the end of inflation a peculiar
space pattern of CP violation, when in relatively small
and chaotically but uniformly distributed pieces of space,
CP-odd amplitudes are rather large, while in the rest of
space they are (much) smaller. The details of the picture
such as bubble size, number density, the relative values of
CP-odd terms, etc. are very much model dependent.
Moreover, there is no theoretical input for the parame-
ters of the model, and so we are unable to calculate the
relevant quantities. Instead, we adopt a different ap-
proach, namely we assume that such a scenario was real-
ized and discuss the observational consequences.

III. BUBBLE FORMATION AND SPECTRUM

We assume that initially m2; is large and positive so
that U(¢) [Eq. (1)] has only one minimum at $=0 and
there is no ¢ condensate. Initially, a large value of m2; is
naturally realized in the chaotic inflationary scenario due
to the term A,(®—®,)%. In particular, in the chaotic
inflation scenario, the inflaton field ® evolves from a very
large value ® >myp down to zero. When ®=®, the
contribution from the term A,(®—®,)? into m?%; van-
ishes, and it may happen that for some period of time
|m | <H,. We neglect for simplicity in what follows the
contributions R and BT? into m.;. During this stage,
the behavior of ¢ was governed by its quantum fluctua-
tions which are known to arise during inflation [1-4].
The probability distribution of the fluctuations P(¢,t)
satisfies the equation [3,30]:

oPp _Hi 3P, 1 9

3t 8% 34>  3H, 9

AU
P3

Here U is the potential energy of ¢ and P is normalized as

. (6)

[dg¢Pig,n=1. @)

If the potential term is negligible, { ¢?) rises as H >t un-
til it reaches the limiting value of the order of H*/m?
(for U=m?2¢?) or H?/V A (for U =A¢*), but if the slope
of the potential is negative (as in our case for large ¢), the
stochastic rise of ¢ turns into a classical rolling down.
The change from quantum to classical behavior takes
place when the variation of ¢ due to quantum fluctua-
tions, 8¢,, becomes smaller than 8¢, originating from
classical rolling down the potential slope. Quantum fluc-
tuations can be visualized as Brownian motion with steps
H in the time interval H ~!, while classical evolution is
governed by the equation of motion, so that
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8¢, ~H ~102U /3¢? for the same time interval At =H ~!
(see, e.g., Ref. [26]). For the case of U(¢)=—A|p|* the
regime is changed from the quantum into the classical
one at

¢ ~H*/M , ®)

The result is slightly different for U(¢)=A|¢|*n|¢|? /02,
but this change is not essential for our estimates.

Thus the following picture for the evolution of ¢
emerges. When m g becomes smaller than H, quantum
fluctuations of ¢ start to develop in accordance with Eq.
(6). The probability for ¢ to reach the value ¢ . becomes
non-negligible. After reaching this value, ¢ starts to roll
down to another potential minimum at ¢ =o. If m 4 was
smaller than H for a sufficiently long time, the phase
transition to the broken-symmetry phase would be ac-
complished over all space and the alternating regions
with opposite sign of CP-odd amplitudes would occupy
all of the Universe. If, however, the duration of low m
was short, the probability of bubble formation would be
small and the bubbles of CP-odd phase would be spatially
separated, filling only a small fraction of space. In con-
trast to the previous case, such a picture is not excluded
by observations even if the size of the bubbles and the dis-
tance between them is smaller than the present-day hor-
izon.

The phase transition would take place, roughly speak-
ing, if ¢ exceeds the critical value ¢, =0 (m /V'A) which
corresponds to the maximum of U(¢) when & << P, and
m.; once again becomes large. We assume that ¢, is
larger than ¢, or in other words that m ;> H at the end
of mﬁatlon When ¢ reaches ¢ it evolves classically as
(t —ty) ' with tg=A "4 H L

Thus the phase transition would be quickly accom-
plished practically everywhere once ¢ >¢... The linear
size of the fluctuation when it reaches the value ¢,
which by assumption is considerably larger than (¢(¢)),
is typically of the order of H ~!. Bubbles of smaller size
are energetically unfavorable while the probability of a
fluctuation with / > H ~! and large ¢ > (¢(z)) is small.

The fraction of the volume of the Universe occupied by
bubbles of broken charge symmetry phase can be evalu-
ated as

e)=[arH [ “dg P40 . ©)
i qc

The factor H enters since it is the inverse characteristic
time scale of the development of the fluctuations. This
expression is valid if € << 1. Though the distance between
the bubbles is exponentially increasing, their size is rising
with practically the same rate, and so € rather weakly de-
pends on the expansion. This is precisely true if the bub-
ble walls are at rest in the comoving frame. However,
even if they move with the speed of light, the relative in-
crease of a bubble with initial size / is given by the factor
(1+2H /I). For bubbles with typical size ] =H !, this
yields a factor of 3 and the order of magnitude estimate
(9) remains valid.

There are a few conditions which should be satisfied by
the parameters so that this picture is realized. These con-
ditions are seen in the final expression (20) but it is
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worthwhile to analyze them before giving the formal
solution of the equations. Firstly, the duration of the
inflation At, after the inflaton field reached the value @,
should not be too long so that the size of the bubbles
would be much smaller than the present-day horizon:
H;At; =50. Secondly, the period At,, when ® is close to
®, so that |m | <H;, should be bounded from above
and from below. The bound from above follows from the
condition that the phase transition takes place only in a
small fraction of space. Since {¢?) is known to rise as
H ,t/477' (see, e. g .. Ref. [2]), one should demand
H}t /47 <¢2 =H}/\. Hence H;At,<4m*/A. On the
other hand, Atz should be large enough so that there was
sufficient time to reach the value ¢,.. This gives the con-
dition H;At, > /H;= 1/V'A. These conditions are
satisfied for reasonable values of A: 1072<A < 1.

The condition |m | < H; means that A,(®—®,)?< H,
or in other words A, ®At3~H2. Correspondingly, the
variation of ® after it passed the value ®; would be ap-
proximately

AD=d Ar, ~(H; /V M)At /At,) .

To get a consistent picture (in the framework of the
chaotic inflationary scenario), one needs A®=0 (myp,).
The above condition can be realized if A; < 107 !° even for
H; as small as 10 °mp, (the latter is necessary for
sufficiently small density fluctuations). Such a small cou-
pling of the inflaton field to ¢ seems unnatural but this is
of the same order of magnitude as the self-coupling of the
inflaton, so that this may reflect the universal weakness of
the inflaton interactions. In other inflationary scenarios,
A® can be much smaller than myp, and the restriction on
A, may be relaxed.

The potential U (¢) near the minimum ¢ =0 can be ap-
proximated by the harmonic term U=~m?%;|¢?. In this
case, Eq. (6) can be solved analytically. The initial distri-
bution of ¢ was determined by the effective mass m2; at
an early inflationary stage when the amplitude of the
inflaton field was large and m?%; was also large [see Eq.
(2)]. In this case, ¢ was initially concentrated near the
origin, and so the initial distribution of ¢ can be well de-
scribed by a & function 8(¢). The solution of Eq. (6) with
such an initial condition is known to be Gaussian:

P(¢,1)=C (t)exp[ —¢*/2{p(t)*) ], (10)
where
H13 t 2 t —
2 — 1 ’ <~ 2
(X(1) o fodt exp | =35 ft’d?meﬁ(t) (11)

and C(t) can be found from the normalization condition:

[ Pdg=1.

This gives
=2m(¢*)) "% (12)

The number density » and the size distribution of bub-
bles, dn /dl, can be found as follows. The rate of the in-
crease of the relative volume occupied by the broken-
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symmetry phase at the moment ¢ is
é=HW , (13)

where
W= fd)chqﬁ P(¢,1)

[see Eq. (9)]. It can be expressed through n as
3 dn
dtdl -’

As we have argued, the bubble size distribution at the
moment of their formation is strongly peaked near H ~!,

é=[dll

dn . . —1
I di ad(l—H ™),
where n satisfies the equation
n=H{W(t)—3Hn (14)

and W is defined by Eq. (13).
Since the bubble size is completely determined by the
|

2 4

H} 2m

2 _ 1 ®
)y=—L["a - -
() 41T2fo NP "3y T o

This integral can be easily evaluated in the particularly
interesting case u?/3myH,; << 1. Then only the linear (in
7)) terms in the exponent in (18) are essential and

3H}

2 = . (19)
(%)) 8w [ma+ut(t —t,)?]

Substituting all the factors into expression (15), we ob-
tain the following distribution of the bubbles in the post-
inflationary stage

dn _ 1 exp[ —8—y In%l /L(z)] (20)
dl V271* [8+yn*l/L(2)]"*
where
_4772m%
3AH}
_ 4mlpt
Y

L(z)=H; 'zexp[H,(t,—t,)],

and z =T, /T is the ratio of the reheating temperature at
the end of inflation to the running temperature. The dis-
tribution (20) remains valid until the bubble size [/ is
larger than the horizon. After this, dynamical effects be-
come essential which depend upon the density contrast
and equation of state. We will consider them in Sec. V.
The bubble mass is given by the expression
M(l)=m12,113/8t2, and when the bubble reenters the hor-
izon at the moment ¢,, it is equal to M (I =t,)=mpt, /8.
The distribution of bubbles in mass can be obtained from

2
Om— it —t )2+t —t, =2+t —t,)t —t,—7)]
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epoch of their production ¢,
[(t)=H; 'exp[H,(t —1,)], (15)

the size distribution of bubbles at the end of inflation ¢, is
given by

dn _ 1 lnHIl
d ¢ ¢  H,
1 e InH;l
== f¢ch¢P b1, i, (16)

The distribution of this shape remains after inflation at
least until the bubbles reenter the horizon.

P is given by Eqgs. (10)-(12). The probability has the
maximum value when the inflaton field ® is near ®,;. The
effective mass of ¢ in this region can be represented as

mig=mg+utt—1,), (17)

and hence {¢*(#)) is equal to

Eq. (20) and, up to a nonessential preexponential factor
logarithmically depending on mass, is given by

6
dn m p;

s T T 1 €Xp

dM w3 ’ (21)

—a— ;Z—an(M/MO)

where a=8+16/y and
My=1m}H; 'exp[2H,(t,—t,)—8/y] .

In fact, the omitted common factor results in a
redefinition of a but since the numerical value of the
latter is not known, we will not take account of it. In
what follows, we assume that 5, y, and M, are free pa-
rameters, and consider the cosmological implications of
the possible existence of objects with high baryon (anti-
baryon) number density possessing the mass distribution
(21). The calculations presented above allow us-to ex-
press 6, v, and M, through ‘“fundamental” parameters
H;, my, p, and A, and show that it is possible to get M,
in the range (1-10%)Mg, @ >>1, and y /4 < 1 with natural
values of the fundamental parameters. The result (21)
was obtained formally for a fixed value of the baryon
asymmetry f3, but one can see that the mass distribution
remains essentially of the same form for uniformly distri-
buted 8. Indeed, in the latter case, the distribution would
be modified by a power-law factor and the latter can be
reabsorbed into expression (21) by a redefinition of the
parameters.

The potential U(¢) is not harmonic of course for large
¢, especially near the top of the barrier, and the expres-
sions (20) or (21) should be considered only as approxima-
tions. Nevertheless, the exponential dependence of both
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the scale factor on time and the probability distribution
on ¢? makes one believe that the exact expressions do not
drastically differ from the approximate ones presented
here.

In the more realistic case, U(¢) deviates from harmon-
ic behavior when ¢ is far from the origin. This would
modify the simple results presented here but the qualita-
tive behavior should remain unaffected. In particular,
since the probability of quantum fluctuations of ¢ with
large amplitude is largest when the potential is the most
shallow or, in other words, when m2; is smallest, the
mass distribution of the bubbles should be peaked at
some particular value M, similar to that given by the ap-
proximate equation (21).

IV. BARYOGENESIS SCENARIOS

As we shall see in what follows, the model considered
here is especially interesting if the magnitude of the
baryon asymmetry inside the bubbles 85 is much larger
than that observed in the Universe, B,=~3X 107 '% It is
not easy to get 3 considerably larger than [, in most
baryogenesis scenarios (for a review see, e.g., Ref. [31]).
In fact, the general trend is <3, and the ingenuity of
the model builders is aimed towards getting the largest
possible 8. The only exception is the model of Ref. [32]
where the authors obtained 8> 1 and attempted to dimin-
ish its value by various mechanisms. This model proves
to be very appropriate here as we see in what follows.

The simplest way to have a larger value of 3 inside the
bubbles is to assume that the nonzero ¢ generates CP
nonconservation which is much larger than that outside
the bubbles. Though it is easy to construct such models,
it is difficult to get large 3 in any natural version of them.
If, for example, the baryon asymmetry is generated in
out-of-equilibrium decays of heavy particles, there are
several suppression factors which make it hard to get B
larger than 10™*. In fact, natural values of 3 are of the
order of or below f3;,. The origin of the suppression lies,
first, in the entropy dilution which is usually by several
orders of magnitude and, second, in the inherent small-
ness of CP-nonconserving effects in particle reactions.
Such effects require an interference of CP-odd and -even
amplitudes, so that CP violation manifests itself only in
higher orders of perturbation theory. Strictly speaking, it
is not formally excluded that the CP-violating amplitudes
are of the same order of magnitude as the CP-conserving
ones and thus the difference in branching ratios for
charge-conjugated channels can be large. This would
permit generation of a large B(8>10"3) inside the bub-
bles because of possible large CP-violating effects induced
by a nonzero ¢. However, concrete realizations of this
mechanism need specific fine-tuning and so do not look
particularly appealing. Thus it is worthwhile to consider
other possibilities for strong baryogenesis inside the bub-
bles.

In this connection, the model of Ref. [32] is a promis-
ing alternative. The basic features are the following. The
baryon asymmetry is first accumulated in the form of the
condensate of the scalar superpartner of a colorless and
electrically neutral combination of quark and lepton
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fields {x). This condensate might be formed during the
inflationary stage if baryonic and leptonic charges were
not conserved and the potential U () has flat directions.
When inflation was over, the decay of this condensate
could give rise to a large, B=0O (1), baryon asymmetry.
It is easy to accommodate this scenario with our model.
It can be done by a simple substitution of y instead of ¢
in all of the previous expressions. Thus the condensate of
x would be formed only in relatively small bubbles in the
same way as the condensate of ¢ has previously been
formed. This condensate could give a large baryon asym-
metry inside the bubbles while outside, where {y) =0,
the baryon asymmetry is small.

For the realization of this scenario, the effective poten-
tial U(y) during inflation should, as above, have two
minima: at y=0 and at y=00. If the barrier between
them becomes small, e.g., due to the mechanism con-
sidered in the previous section, the field x could penetrate
the barrier and move to the other minimum at nonzero Y.
This minimum might disappear at a later stage, forcing
to return back to the origin at Y =0. It can be done with
a very simple behavior of the effective mass

mig=mi+r(®—@))? (22)

[compare with Eq. (2)]. For large ®, m?%; is large and
U(x) has the only minimum at y=0. If ® is near ®,,
another minimum at Y=o might exist and be deeper
than that at y=0. Thus it would be possible for Y to roll
down to the second deeper minimum in some part of
space by the mechanism described in Sec. III. Inside the
bubbles, the amplitude of y is large, Y= H,/VA>>H,
even if y did not evolve down the potential minimum.
When ® passes through the point @, and becomes small,
m2; once again became large so that the minimum at
X =0 might vanish. As a result, ¥ has to return back to
the original minimum but now it could have a large
baryonic charge which would be revealed after Y decay
into fermions.

For a better understanding of the dynamics, the follow-
ing mechanical analogy is instructive. The baryonic
current of y is given by the expression

JE=iB(x*a,x—3,x*x), (23)

where B is the baryonic charge of ) particles. For spa-
tially homogeneous Y, the baryonic charge density can be
visualized as the angular momentum of a pointlike body
moving in the two-dimensional potential U(Rey,Imy).
This is conserved for a spherically symmetric potential
U(lxh.

It is essential for the model that jff is not conserved,
otherwise the charge density would die out during
inflation and not accumulate as we originally assumed.
The necessary asphericity is induced by the quartic terms
like, e.g., ¥*+x**, while near the origin at small |y|, the
potential is B conserving, U()()zm)z(l)(lz. Those x’s
which succeed in passing over the potential barrier might
acquire a nonzero angular momentum by the same mech-
anism as in the original model [32] if the slope of the po-
tential of the phase of y is not large in comparison with
H,;. As a result the phase of Yy may be apart from the
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equilibrium point of the potential. So when inflation ends
and the Hubble friction becomes small, a nonzero angular
momentum may arise. This angular momentum would
remain when Y returns to the origin after the second
minimum disappears. The subsequent B-conserving de-
cay of xy might provide a large baryon asymmetry in
small spatial regions.

We will not dwell further on the details here because
they are essentially the same as in the original version of
the scenario [32], the only difference being that the con-
densate of x is not formed uniformly in space (see, how-
ever, Ref. [19]) but only inside a small fraction of the to-
tal volume of the Universe. Since the baryonic charge of
X is created by the quantum fluctuations of the latter, its
value and sign can be different in different bubbles. This
is in contrast to the model of spontaneous CP violation
considered in the beginning of this section when the am-
plitude of B is the same for all the bubbles and only the
sign is different.

Another promising possibility for creation of large Bp
is given by the model of spontaneous baryogenesis [33]
when a Goldstone-type field is coupled by baryonic
current J 5 as

Lin=3,pJ} /A, (24)

where A is a constant with dimension of mass. The
baryon asymmetry generated in this model is proportion-
al to the time derivative 9. The latter can be large for
those ¥ which penetrate the potential barrier, thus per-
mitting a large baryon asymmetry inside the bubbles.

The baryon asymmetry generated inside the bubbles
should not be destroyed by later processes with baryonic
charge nonconservation (if they took place). This is
definitely true in the first scenario with spontaneous
C (CP) breaking, since all the features of the baryogenesis
inside and outside the bubbles remain the same with the
only difference arising in the amplitude of C(CP) break-
ing. This is not obligatory in the second scenario. How-
ever, if this mechanism generates nonzero (B —L) and
the later processes conserve it, the asymmetry is evidently
not destroyed. Another possibility is that the baryo-
genesis considered here goes at a low temperature T
(which can be due to a very weak inflaton coupling to the
matter fields) and no other processes with baryon non-
conservation were effective below T'.

An interesting question is whether our model is compa-
tible with the extensively discussed topic of electroweak
baryogenesis (for a review see, e.g., Ref. [31]). Cosmolog-
ically interesting bubbles where the conditions for a gen-
eration of a large baryon asymmetry were created could
only be formed during inflation and should not dissolve at
least until baryogenesis. After that, the domain walls (if
they existed) separating the bubbles from the rest of the
Universe should disappear to avoid the well-known
cosmological problems [34]. In the standard
SU(3)®SU(2)®U(1) model with minimal particle con-
tent, this scenario is hard to realize. It remains question-
able if the observed baryon asymmetry can be generated
in the standard model [35] or whether an extension of the
latter is necessary by an introduction of additional Higgs
fields, by supersymmetry or by some other means. It is
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not clear if our model of inhomogeneous baryogenesis
can be realized in these limited frameworks or even in
one of the many less restrictive “realistic” particle phys-
ics models. However, it is definitely possible to introduce
in an ad hoc manner the necessary fields and interactions
in a consistent way such that the proposed scenario is
realized.

V. BUBBLE EVOLUTION

Initially the energy density contrast 8p between the
bubbles of higher baryonic charge and the rest of the
Universe is very small. During the inflationary stage, the
difference of energy densities between the two phases is
by assumption much smaller than the energy density of
the inflaton. This energy difference completely vanishes
after baryogenesis when the phase transition was comp-
leted everywhere and the bubble walls disappeared. We
assume that the sizes of the bubbles prior to this were
much larger than the horizon so that the surface effects
were not essential. It is possible, however, that the initial
density contrast was significant. In this case, the scenario
would be more complicated and, in particular, small size
black holes might form. If the initial 8p was not large
enough for that, the density contrast should disappear in
the course of the Universe evolution since the equation of
state inside and outside the bubbles was the same.

The energy density contrast remains zero until the
QCD phase transition when practically massless quarks
transformed into nonrelativistic nucleons and the equa-
tion of state inside the bubbles started to deviate from the
relativistic one, p =p/3. Depending on the value of 3,
these deviations could be either initially small nonrela-
tivistic corrections or could almost instantly change the
relativistic equation of state into the nonrelativistic one,
p=0. Because of the different equations of state inside
and outside the bubbles, density inhomogeneities would
develop. Small-density inhomogeneities might also ap-
pear before the electroweak phase transition when
quarks, especially ¢ quarks, acquire masses. These inho-
mogeneities soon disappear (as 1/¢) when the equation of
state relaxes back to p =p /3. Although §p~0, there was
a temperature difference between the two phases due to
the different chemical potentials of the baryons. The
latter is negligible outside the bubbles but could be of the
same order as the temperature inside the bubbles. The
energy density of relativistic plasma with g effective de-
grees of freedom (g =gbosonic+%gt‘ermiionic) and baryonic
chemical potential u=£T is equal to

2 2
p=——gT* 1+£%+ﬂfi : (25)
30 gm 8m'g
This gives
152 | 30et |'*
T,=T, 1+—25+—4i , (26)
T 87'g

where T; and T, are the temperatures inside and outside
the bubbles, respectively.

The baryon asymmetry of the Universe is defined as
the ratio of the baryonic charge density to the entropy
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density, and can be expressed through & as

N
p=—t =105 1, 5 | @7
S g e

For B of order 1 and g =~10?%, the temperature inside the
bubbles can be several percent below the surrounding
temperature. The fate of a bubble depends upon its size
and the magnitude of the baryon asymmetry B. The
latter is not necessarily a universal constant for all the
bubbles but may be distributed stochastically, as argued
previously.

Very small bubbles with size smaller than the quark
diffusion distance d should disappear by the time of the
QCD phase transition. In comoving coordinates, d can
be evaluated as (t/g,.)'/? where I, is the quark mean
free path, /.. ~(ocN) '=T "' This gives

d=t/T)'? . (28)

Bubbles of larger size survive to the QCD phase transi-
tion, and their evolution would depend upon the develop-
ing density contrast. One more factor might also be of
importance; namely, the QCD phase transition should
depend on the magnitude of the baryon asymmetry and
proceed differently in the regions with different 3. In par-
ticular, in bubbles with very large 3, the phase transition
is inhibited since the large energy density of the massive
nucleons makes it energetically unfavorable (see, e.g.,
Ref. [36]). The gain in vacuum energy 8p,,. should be
larger than the loss due to nonzero nucleon mass
8pp =mpyng~PmyT?, so that the phase transition could
proceed only at sufficiently low temperatures

]/3 Spvac
(100 MeV)*

100 MeV

T <100 MeV
mB[))

(29)

The large chemical potential of the baryons could also
change the nature of the phase transition, making it
strongly first order. This might open a way for creation
of quark nuggets [37], identified as those pieces of space
where the phase transition has never been completed.
We assume here, however, that the phase transition has
proceeded in the same way everywhere and postpone the
above problems for a future investigation. We neglect
also the temperature difference (26) which affects the on-
set of the phase transition.

The evolution of the bubbles with size /5 smaller than
the horizon size / at the moment of the QCD phase tran-
sition depends upon the relation between /5 and the Jeans
wavelength A,

AMy=c,(mm¥, /8pp)/?, (30)

where ¢; is the speed of sound inside the bubble and §pp
is the energy density contrast developed due to the
different equations of state inside and outside the bubbles
after the QCD phase transition. Initially §0=0 and the
bubble temperature is smaller than the temperature of the
surrounding plasma, firstly, due to the above-mentioned
effect (26) and, secondly, because the latent heat of the
phase transition heats the plasma of heavy particles to a
smaller temperature than that of the light ones.
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For the case of Iz <Aj, one would expect that the den-
sity contrast is governed by sound wave propagation
which ultimately smoothed it down to zero. This is not
necessarily so in our case because the usually positive en-
ergy density contrast §p >0 implies simultaneously posi-
tive pressure differences §p >0 while we encounter the
opposite situation when 8p >0 and 5p <0 because of the
smaller plasma temperature inside the bubbles. Hence,
although initially /; was smaller than Aj, this condition
might be reversed in the course of the evolution. This is
not, however, the case for adiabatic compression (or ex-
pansion) when ¢, =(5T/3m)'/? and A;~(TD)'/?l. Since
Tl =const, the ratio A/l does not change. Thus we
should expect that the condition A;> [z always remains
valid for those small bubbles so that they do not collapse
and would form diffuse clouds of baryons or antibaryons.
In the latter case, there should be prominent annihilation
processes on the boundary which would result either in
disappearance of small clouds if there were sufficiently
many baryons around or else in emptying the space of or-
dinary matter around the anticlouds. In the latter case,
the clouds would survive to the present day in almost
empty space, producing rare events of high-energy y
quanta. Note that these clouds are not necessarily spher-
ically symmetric because the shape of the initial bubble
could be arbitrary in contrast to the case when the bub-
bles are formed in a first-order phase transition.

Bubbles of large size, Iz > Ay, would form compact ob-
jects, either stars or black holes, at a very early stage of
the evolution of the Universe. Stars of antimatter could
emit considerable energy due to annihilation of the ac-
creted matter. With a sufficiently large amount of sur-
rounding matter, they should radiate at their Eddington
limit,

O]

Lgy=3X10*Lg 31

The lifetime of such objects is of the order of 5X10°
years. If the accretion rate is below the limiting one (e.g,
due to the surrounding deficit of matter), the luminosities
would be smaller and the lifetime would be larger. Those
objects can be observed as y-ray sources isotropically dis-
tributed over the sky. Infalling matter is likely to form
an accretion disk heated by the annihilation radiation.
We expect that the inner edge will continuously break
away and annihilate in a series of discrete events. The
duration of an individual event would be something like a
few crossing times at ~ 10—100 Schwarzschild radii, or of
order a second, and so may be identifiable as y-ray burst
events. If y-ray bursters are cosmologically distant, as
inferred from their isotropy and number-flux distribution
[38], annihilation would be the most efficient, and hence
preferred, form of energy release. At cosmological dis-
tances, the emitted photon energy in a y-ray burst is
~10%7%0 erg, corresponding to annihilation of ~1076 to
107* M. Particle acceleration is likely to occur in such
energetic phenomena, and an interesting signature of
such annihilation events would be via observation of rare
light antinuclei and in particular of antihelium-4 in cos-
mic rays.
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The bubbles with I >h at the QCD phase transition
have a strong possibility of forming black holes. The
mass inside the horizon in the radiation-dominated Fried-
mann universe is equal to

M,=m3t/8~4X10*My(t /sec) . (32)

If 8p/p is of the order of 1 at the moment of reentering
the horizon—that is, when I/p=t¢—black holes with
mass (32) should form. The energy density contrast be-
tween the bubbles and the surrounding matter developed
when the nonrelativistic baryons began to dominate the
bubble energy density. It took place at the moment

tmp ~ 10787 % sec (¢>107* sec) . (33)
Subsequently,
Sp/p—L(1—=32t\p /211)

and the bubble size was close to its gravitational radius.
Simultaneously the condition Iz > A; was fulfilled, and the
bubbles started to shrink, collapsing into black holes.
The minimum mass of the black holes depends upon the
value of 3,

M, =max(4M,4X 10728 °M) . (34)
The number density of these black holes is given by Eq.
(21) where a, 7, and M, can be chosen so that the obser-

vational constraints are satisfied.

VI. COSMOLOGICAL IMPLICATIONS

There is considerable freedom in our model since the
essential parameters cannot be fixed theoretically.
Hence, we cannot make rigorous theoretical predictions,
but indicate how different physical effects arise as param-
eters are varied.

Varying the parameter ¥, we can change the spectrum
(21) from being sharply concentrated near M, to being
broad, with abundant objects of mass several orders of
magnitude different from M. The parameter « fixes the
total number density of the bubbles.

The model considered here opens the interesting possi-
bility that the dark matter in the universe is baryonic. To
reconcile the model with existing observations, the bub-
bles of high-density baryonic or antibaryonic matter
should predominantly form black holes. As reference
values, we take M0=102M@ and ¥ =0.4. In this case,
the bulk of the mass in the Universe would be contained
in black holes with masses in the interval (10°—10*)M.
With an appropriate a in Eq. (21), one can get the num-
ber density of these black holes to correspond to the
amount of dark matter in the Universe. Larger black
holes can also be formed. The relative number density of
black holes with M =10"My is about 5X107° with
respect to those with M =10°My. These bigger black
holes could serve as rare seeds for galaxy formation with
smaller ones forming surrounding halos in the same way
as in the more conventional cold dark matter model.

As a by-product, the model explains early quasar for-
mation if the latter are black holes powered by matter ac-
cretion. The epoch of black-hole formation is determined
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by Eq. (33). This is much earlier than is allowed in the
standard cold dark matter model when black holes are as-
sumed to be formed by nonlinear growth of inhomo-
geneities in almost uniformly distributed matter. Note
that in the present scenario, the usual objections against
baryonic dark matter are avoided. There is no nu-
cleosynthesis bound on the baryon-to-photon ratio be-
cause the regions with high 8 occupy a negligibly small
fraction of space which ultimately collapsed into black
holes or formed compact starlike objects. Hence, the ob-
served abundances of light elements arise from regions of
low B where nucleosynthesis proceeds in the standard
way, while in regions with higher 3, heavier elements
might be produced. This would not be in conflict with
observations if these heavier elements are not dispersed
on the sky but confined inside the black holes and possi-
bly inside primordial stars or quark nuggets.

Some fraction of high 8 bubbles which are below their
Jeans wavelength would form dispersed clouds of matter
or antimatter where heavy elements or antielements
could be formed during primordial nucleosynthesis.
These clouds as well as primordial massive stars that
ejected matter could be the sources of heavy metals (and
antimetals) in the early universe. One of the possible
scenarios of strong baryogenesis based on a large CP
violation inside the bubbles predicts a constant value of
|B] for all the bubbles. In that case, any contradiction
with the observed element abundances can be easily
avoided, since an arbitrary amount of baryonic matter
can be hidden in black holes.

For the case of uniformly distributed 3, there should be
a considerable quantity of high-density baryonic matter
outside black holes. This can result in formation of
quark nuggets [37] and primordial stars, while a small
amount may be dispersed into clouds. If we assume that
the mass distribution of the bubbles is peaked near
(102-10%)M, then between 10™* and 107° of the total
mass of the Universe should be in the form of quark nug-
gets or primordial stars as well as any ejecta from the
latter. This would result in the primordial enrichment of
the Universe, presumably to an extreme population II
level, with heavy elements. The ratios of heavy elements,
such as the r and s process proportions, should differ
from those in population II stars with, for example,
[Fe/H]R —2. Primordial enrichment of cosmic rays
would yield spallation products, including Li, Be, and B,
that is chemically decoupled from spallation products
generated by conventional cosmic rays. A possible signa-
ture would arise in the dependence of, for example, Be
and B on Fe/H that should be linear at very low Fe/H.
One would also expect to observe antinuclei in cosmic
rays, although their number density should be reduced in
comparison with primordial heavy elements due to an-
nihilation.

We would like to note that much more work is neces-
sary here to refine these suggestions. Firstly, primordial
nucleosynthesis with 3 of order 1 should deviate very
much from the standard one. Secondly, the formation of
compact starlike objects and their evolution might be
very different from the usual case of star formation from
cold matter. A detailed investigation of these phenomena
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could result in interesting bounds on the properties of the
model and on the values of the essential parameters. We
think, however, that this is outside the scope of the
present paper. Our aim here has been to describe a mod-
el which could in principle produce the phenomena de-
scribed above. We may be quite sure that the scenario
can be made compatible with the existing observational
data since it is possible to conceal high B regions in the
form of black holes with arbitrarily good accuracy so that
almost, or even absolutely, no trace of them remains, ex-
cept for their mass. In the limiting case when all bubbles
formed black holes at an early stage, there is no way to
test the specific predictions of this model, although one is
of course strongly constrained by the requirement that
the ratio of mass in black holes not exceed that in ordi-
nary matter and in radiation according to the observed
parameter range. It is difficult to exclude this model but
at the same time hard to prove its validity.

Another argument in favor of nonbaryonic dark matter
is based on the standard model of inhomogeneity growth.
The latter can reach the value

(8p/p)~(z; +1)(&p/p);

(for Q=1) starting from initially small (§p/p);. The
bounds on the angular variations of the cosmic mi-
crowave background radiation, AT /T, restrict (8p/p); to
approximately 10~* on galaxy cluster scales. Growth of
inhomogeneities in baryonic matter could begin only
after hydrogen recombination, that is after z =10
Hence there is not sufficient time for baryonic (8p/p) to
reach a value of the order of unity. The usual conclusion
from this argument is support for the thesis that the in-
homogeneities developed in dark nonbaryonic matter
which does not interact with electromagnetic radiation
and became unstable with respect to gravitational cluster-
ing after the epoch of first matter domination, z ~ 10%. It
is evident that this argument is not applicable to our
model. There is of course large AT /T in a baryon-
dominated model, but at angular scales where relic fluc-
tuations have been erased by the finite thickness of the
last scattering surface.

Isocurvature fluctuations of large but insufficient am-
plitude to have become bound and collapsed in the
radiation-dominated era, namely, with amplitude of order
unity, would survive as bound clouds during and after
recombination provided their masses are at least
10°*~10°M ¢, [39]. Annihilations from the rare antimatter
regions that survive as discrete regions have observable
signatures. These include spectral distortions of the cos-
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mic microwave background, which restrict the amount of
energy release in annihilations in the early universe
through the chemical potential distortion that character-
izes any energy input arising at [40] 10* $z 5108, thereby
probing isocurvature fluctuations of amplitude as large as
~10* The current limit [41] w/kT $5X 1073 translates
directly to an equivalent limit on Ap,/p, in energy
released via early annihilations. In the range
10*2z 2 10%, the annihilation radiation is absorbed, and
would result in a Comptonization distortion of the cos-
mic microwave background spectrum, the interpretation
of which depends on the detailed thermal history of the
absorbing medium. Any positive evidence for either type
of distortion that is near the current limits would be a
reasonably natural outcome of a model such as that advo-
cated here with energy injection at very high redshift. At
z 5107 the diffuse y-ray background directly restricts the
antimatter annihilation rate: the ratio of the energy den-
sity in the y-ray background to that in the cosmic mi-
crowave background is ~ 107> It has indeed been sug-
gested [42] (see also Ref. [43]) that redshifted annihilation
radiation may be responsible for a feature near 1 MeV in
the isotropic y-ray background spectrum.

Constraints on the amount of dark matter in black
holes in the Galactic disk were presented in Ref. [44].
The arguments of this paper based on the observed metal
abundance are not applicable here since in our case the
formation mechanism of black holes is different from the
traditional one by stellar evolution and so does not lead
to an enhanced metallicity. X-ray emission generated by
the gas accreted by black holes gives a rather strong
bound on massive black holes in the Galactic disk. Any
substantial component of dark mass in the disk probably
does not consist of massive black holes. These arguments
do not exclude black holes more or less uniformly distri-
buted in the (extended) halo.

At the present time, the most promising way to detect
the type of dark matter proposed here is via the ongoing
searches [45] for gravitational microlensing in our galac-
tic halo by monitoring several million Large Magellanic
Cloud stars: these experiments are sensitive to compact
halo objects with masses up to ~ 100M .
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