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Cauchy horizon singularity without mass inflation
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A perturbed Reissner —Nordstrom —de Sitter solution is used to emphasize the nature of the singu-
larity along the Cauchy horizon of a charged spherically symmetric black hole. For these solutions,
conditions may prevail under which the mass function is bounded and yet the curvature scalar
R p~gR ~~ diverges.

PACS number(s): 97.60.Lf, 04.20.Jb

I. INTRODUCTION

The external gravitational field of a black hole formed
by collapse settles down to the Kerr-Newman solution
of general relativity. These generic stationary black hole
solutions have a rather curious featur" the inner hori-
zon acts as the boundary of predictability for external
initial value problems. However, Penrose [1] pointed out
that this inner (Cauchy) horizon is a surface of infinite
blueshift, and thus partial absorption of the radiative tail
of the gravitational collapse leads to a divergent flux of
energy along it. This suggests that the back reaction of
perturbations on the geometry may generate unbounded
curvature along the Cauchy horizon (CH). Detailed cal-
culations, which analyzed the evolution of gravitational
perturbations, confirmed the divergence of the energy
flux [2], and for charged spherical black holes Poisson
and Israel (PI) [3] showed that a scalar curvature sin-
gularity does form at the CH when the above influx is
accompanied by the outflux emitted from the collapsing
star. Since they found the mass function diverges, they
called it a mass inflation singularity. An exact solution,
based on the work of PI, was used by Ori to examine the
nature of the singularity in some detail [4], and he showed
that an observer who falls into the black hole experiences
finite tidal distortion at this singularity.

The presence of a cosmological constant (of arbitrary
magnitude) modifies this picture in a nontrivial manner,
and serves to emphasize an aspect of the singularity along
the CH which has so far been ignored. The leading di-
vergence of the curvature scalars is not contained in the
Weyl scalar, but rather in B p~pR ~~ .

For a generic perturbation of a Reissner-Nordstrom
black hole in de Sitter space, the CH can be stable
for some values of the charge (e) and the mass (m)
[5, 6]. These configurations are quite rare though, and
require ~e~ )m. In [5] it was speculated that this space-

time might provide a counterexample to the conjecture
that nonscalar curvature singularities are catalyzed into
stronger scalar curvature singularities, once perturbed.
This was based on the observation that the Weyl cur-
vature of the solution to the Einstein field equations
(for simple spherical perturbations) is dominated by the
proper time integral of the energy flux along the hori-
zon. It was shown in [5] that this flux behaves like
E(v) - e~(" "')" a d

as

II. AN APPROXIMATE SOLUTION

The spherically symmetric line element can be written

where v ~ oo on the CH. The constants K, and r, are the
surface gravities of the inner and cosmological horizons,
respectively. Thus one finds values of the charge and the
external mass of the black hole for which K, ( r, & 2K„
and the observed energy density grows without bound,
but 42 is finite.

Although these observations are correct, a scalar cur-
vature singularity does form along the CH contrary to the
speculation in [5). We will demonstrate this fact using a
model in which perturbations of a Reissner —Nordstrom-
de Sitter black hole are modeled by crossflowing streams
of null dust, as in [3]. The singularity is characterized
by the divergence of B pR ~, where the dominant be-
havior is proportional to the influx of blueshifted radia-
tion. We wish to emphasize that this behavior should be
present in all spherically symmetric solutions, where the
outflux from the star is continuous, and does not require
a nonzero cosmological constant. However, the presence
of a cosmological term shows clearly that the divergence
of the mass function is not necessary for the presence of
a scalar curvature singularity.

4239 1993 The American Physical Society



PATRICK R. BRADY, DARIO NUNEZ, AND SUKANYA SINHA 47

r;g, b + Kggb = 4&TT~b y

1 fv= —cl.& = ——12m-r3

m= (4~) r—3T bT b,

3e2 A 3

(2.4)

(2 5)

(2 6)

where a semicolon indicates the covariant derivative as-
sociated with do 2, and T~b is the 2x 2 submatrix of the
stress-energy tensor.

For crossflowing null dust, the stress-energy tensor is

ds = do +r dA, do = g~bdx dx, (2.1)

where d02 is the line element on the unit two-sphere,
and latin indices a, b, . . . , range over (0,1). Along with
the scalar function r(x ) we introduce m(x ), f(x ), and
r(x ) defined by

b 2m(x) e A 3
g r rb= f(x ) =1 — + —— r, —(2.2)) ) r T 3

K = —28~f (2 3)
It is also convenient to use null coordinates U, V on the
"radial" two spaces so that do.2 = —2e2 dUdV and v =
v(U, V). It is now easy to generalize the derivation of the
field equations in [3] to include a cosmological constant.
The result is

Clr = —2K. (2 9)

Using (2.2), (2.5), and (2.9) we obtain the wave equation

on at U = Up. In the pure inflow (outflow) regime
the solution is an ingoing (outgoing) Vaidya —Reissner-
Nordstrom —de Sitter spacetime with mass function m(V)
[m(U)]. The global structure of the spacetime with cross-
flow is shown in the Penrose diagram of Fig. 1. The loci
of the three apparent horizons, in the pure inflow region,
are given by the positive roots of f = 0. The ingoing
sheet of the inner horizon is r = r, , and of the cosmolog-
ical horizon is r = r, . The outer apparent horizon settles
down to the constant radius r = r„ for asymptotically
large v, and the function K evaluated at a particular hori-
zon gives the surface gravity of that horizon.

We choose V such that V = 0 at the Cauchy hori-
zon. Note that this does not specify the coordinate com-
pletely, but ensures that it may be regularly related to
the Kruskalized advanced time associated with the inner
apparent horizon. Our eventual aim is to construct an
approximate solution which is valid as V + 0.

Taking the trace of (2.4) we find that r(U, U) also sat-
isfies

T„=p;„l„l„+p „tn„n (2.7)
[in{re )] = —(3e —r —Ar ), (2.10)

where l&
———O„V and n„= —B„U are radial null vectors

pointing inward and outward, respectively, and, p;„and
p „t represent the energy densities of the inward and out-
ward fluxes. Covariant conservation requires that they
are given by

pin = I;„(V)
4mr2

I „i(U)
pout =

4vrr2
(2.8)

Let us imagine that the inflow is turned on at a fi-
nite advanced time V = Vo and the outflow is turned

FIG. 1. The global structure of the spacetime, with cross-
Aowing null dust. EH is the event horizon, CH is the Cauchy
horizon, and the cosmological horizon is at r = r&. The lines
U = Up and V = Vp at which the fluxes are switched on are
also shown.

which can be integrated formally to

re = agr (U)gz(V) exp [F(U, V)],
with

(2.11)

F(U, V) =—1
Up Vp

~2v'
dU'dU', (r') —3e + A(r')

{2.12)

n exp [F(U, 0)] (2.13)

near to V = 0.

The functions gr(U) and g2(V) are determined by the
boundary conditions along the null rays V = Vo and
U = Up, and o. is a constant with the dimension of length.
In [7] and [3] it was shown that null coordinates exist
such that g2(V) is well behaved as V ~ 0; in particular,
we can rescale the coordinates so that gq(0) = 1. This
guarantees that V = —(const) x e "i", where y„ is the
surface gravity of the static portion of the inner horizon.
Similarly, provided we limit ourselves to values of U near
to Up, we may set gr (U) = 1 without loss of generality.

In order to proceed, we must estimate the behavior of
the integral (2.12). The crucial observation (which was
made in [3] but not carried to its full consequences) is
that the integrand is negative for r & r, , and we expect
the leading behavior to come from near the CH. Thus, if
it diverges, the integral must diverge to negative values
and re " ~ 0. As an immediate consequence of this, we
see from (2.12) that this would require that r go to zero.
Since we expect r(U, V) to be a well-behaved function,
with the slow contraction of ingoing null rays governed
primarily by the outflux from the star, we conclude that
a good approximation to the metric coefficient is
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With this ansatz we can rewrite (2.4) as

(2.14)

(2.15)
(r ) g~ —F~(r ),~ —2L „t(U),

(r'), vv -——2L; (V),
where F is treated as a function of U alone from here on.
The solution of these equations is then given by

r = r (Up, Vp) —2
V

dV'
v'

dV"L;„(V")

U

e V —2
Fl

Ul

EL— (Ull)dUII dU I

(2.16)

We still have not determined in detail what the function
F(U, 0) is, but it is unimportant in the ensuing analysis.

Before proceeding to analyze the curvature singularity
which forms due to the infinitely blueshifted influx, we
presenresent the solution of Eq. (2.6) for the mass function. In
these coordinates and using (2.13) it is easy to integrate
this to

shows that the metric is well behaved provided r is
bounded away from zero. In this section we examine
the nature of the singularity that is present for a gen-
eral outflux. There are three essentially different possi-
bilities: (i) complete stability when r., ) K, , (ii) diver-
gent influx but finite-mass function when 2K, & K,. )~„
and (iii) both divergent influx and mass function when
r, ( r, . Defining a = e /rni and 5 = Ami/3, where mi2

is the asymptotic value of the mass function in the pure
inflow region, we have plotted these conditions in Fig. 2.
Some useful relations involving the surface gravities are
also given in the Appendix.

We wish to focus our analysis on case (ii), where no
mass inflation has occurred despite the presence of the in-
finite energy density. At first sight, one is tempted to con-
clude that the spacetime is regular, since we know that
the mass function characterizes the Weyl curvature scalar
@2 oc m/rs within spherical symmetry. However, with
a moment's thought one realizes that Eq. (2.7) implies
that B pB~~ diverges on the CH. Thus it should come
as no surprise that the Kretchsmann invariant, given by

m(U, V) = n e L „t(U') dU'
Up-

[L;„(V')]dV' (3.i)

+m(Up, Vp) —P [V'I;„(V')]dV' (3.2)

[U'L~„t(U')] dU', (2.i7)

&( c—

I; (V) K(V)[ V/n]—
near to the CH. This is proportional to the energy den-
sity of the influx, as measured by a free-falling observer
crossing the CH in the pure inflow region. Notice that it
diverges provided r, ) r, . The behavior of the prefac-
tor in (2.18) is unimportant, so we take K(V) ~ const
as V ~ 0 (if the cosmological constant is zero, then
r, = 0 and R(V) is given by the analysis of Price [8]
as K(V)

~
ln( —V/n)~ "). Since it is slowly varying

compared to the other factor in (2.18), we can write

(2.is)

where P and p are constants. The contribution from the
pure inflow (outflow) region is finite for realistic pertur-
bations, and it is only when both fluxes are present that
the first term can lead to a divergence of the mass func-
tion.

The functional form of the luminosities I „t(U) and
L;„(V) is as yet unspecified, so we now specialize to the
case of interest. In [5] and [6] it was shown that for a
generic perturbation the initial conditions on the influx
should be
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The mass function is proportional to (2.19), so it will
diverge as V ~ 0 unless 2K, & e, .

III. THE CAUCHY HORIZON SINGULARITY

Our solution, given by (2.13), (2.16), and (2.17), gives
conditions under which the mass function is finite, and

FIG. 2. The ab plane. Along curve 1 r& ——r&, and along
curve 2 r, = r~. (a) The region of physical interest is bounded
by the axes and curves 1 and 2. (b) A close up of the physical
region. In the shaded portion no mass infiation occurs, but
energy densities are divergent on the CH. Above tnss, both
the mass function and the energy density diverge, and below
is the region of complete stability.
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to leading order, also diverges like the measured energy
density provided that the outflux from the star is non-
vanishing. This shows that a scalar curvature singularity
forms along the CH whenever a blueshifted influx and
continuous outflux from the star are present.

IV. CONCLUSION

For completeness, we will take the Ori model limit of
our solution. This is achieved by replacing the continu-
ous outflux by a 6-function source at U = Uo and then
integrating over U where possible. The result is

as pointed out by Yurtsever [10], would be similar to the
situation in plane-wave spacetimes where perturbations
do not capture the generic structure for colliding waves.
Finally we suggest that it is rather premature to discuss
the strength of the singularity which forms, or the possi-
ble fate of an astronaut who falls into a black hole, since
it is likely that tidal forces will be substantially enhanced
if the singularity in more realistic models is spacelike.

Some of these issues are currently under investigation
and details will be presented elsewhere.
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where b = e & &, and is in complete agreementU=Up '

with [4]. Since L „t(U) = 0 for U ) Uo, it is clear that
the leading term in (3.2) is absent, and the divergence of
the curvature scalars is proportional to the mass func-
tion. Therefore this model misses the leading behav-
ior discussed above, but we wish to stress that the tidal
forces (and hence tidal distortion) experienced by a free-
falling observer in both models are almost identical.

In our opinion the result (3.2) is rather important. It
shows that L „i(U) must be continuous in order to see
the full nature of the singularity which forms along the
CH. Based on this observation it is tempting to specu-
late that asphericities may act to change the nature of
the singularity by pushing divergences [proportional to
L;„(V)]into the Weyl curvature. Indeed, asymptotic and
perturbative analyses [9] of the singularity inside a more
realistic black hole suggest that the leading terms are in
the radiative part of the Weyl curvature. It seems to us
very important, then, to further investigate the internal
structure of black holes in aspherical models.

At the present time, the indications are that the singu-
larity which forms inside a realistic black hole is null. A
question which deserves some attention is, how generic is
this null picture? Within spherical symmetry, we see that
the singularity becomes spacelike when r(U, V) ~ 0. The
decrease in r(U, V) (near the CH) is governed primarily
by the outflux from the star [Eq. (2.16)], and thus the null
portion of the singularity can be quite large. It is pos-
sible (likely) that the presence of shear in more realistic
models will change this, provoking a spacelike singularity
which is asymptotically null near P in Fig. 1. This would
be consistent with the perturbative analysis in [9] and,

APPENDIX: THE SURFACE GRAVITIES

In order to obtain the physical regions in the ab plane
in Fig. 2, and to examine the conditions on the surface
gravities we found the following useful.

Lake [11] introduced a rescaled quantity x = r/mi,
where m~ is the mass of the black hole, so that the scalar
function f is given by

—b 4 x 2x2

f= .„(* b) (A1)

The surface gravity at any horizon r is similarly given by

+ 2a
1 2—

m, bx3„ ( 2)

b= y —2y+ a
4

3 + v'9 —8a
2

(A4)

which allows us to plot the boundary of the regions of
interest.

By construction, the roots of (Al) satisfy 0 & x, & x, &
x„and we know that the surface gravities are always
greater than zero. These facts and (A2) tell us that

3 —Q9 —8a 3+ Q9 —8a
x, &x, & &x, .

2
'

2

We now observe that for a = 9/8 we have x, = 3/2
and, since this satisfies (Al), b = 2/27. In fact, for these
values of a and b we have x, = x, = x, [11].

Finally, the coalescence of the two or more roots occurs
when r„=0. Using (Al) gives
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