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Test of a chromomagnetic model for hadron mass differences
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An oversimplified model consisting of the QCD color-magnetic interaction has been used previously
by Silvestre-Brac and others to compare the masses of exotic and normal hadrons. We show that the
model can give qualitatively wrong answers when applied to systems of normal hadrons.

PACS number(s): 12.40.Qq, 11.30.Hv

Recently Silvestre-Brac [1] has used a particularly sim-
ple Hamiltonian to consider systematically the stability of
ground-state exotic mesons composed of two quarks and
two antiquarks. In other papers, Silvestre-Brac and
Leandri [2] and Leandri and Silvestre-Brac [3] have ap-
plied the same Hamiltonian to other exotic hadrons.
These papers contain references to other work on the
subject.

The Hamiltonian may be written in the form

H = g m, —g a A, A.)o.
, o, /m, m

1 (J

where a is a positive constant, the X, are Gell-Mann ma-
trices, the 0.; are Pauli matrices, and the m; are effective
constituent quark masses. The terms containing the
Gell-Mann and Pauli matrices are an approximation to
the color-magnetic interaction of perturbative QCD.
Silvestre-Brac [1] omits the sum of the quark masses in
(1), but it is clear from his numerical work that he actual-
ly includes them. In a comparison of the masses of sys-
tems containing the same quarks, the sum of the quark
masses cancels out.

An especially interesting question about an exotic
hadron is whether it is quasistable, by which we mean
stable against strong decay. An exotic is quasistable
(bound) if its mass is less than the mass of the two lightest
hadrons into which it would otherwise be able to decay.

Silvestre-Brac understands that the Hamiltonian (1) is
oversimplified. Nevertheless, he lists a number of exotic
mesons which he says are candidates for being stable
against strong decay into two ordinary mesons, as he cal-
culates those exotics are bound by at least 100 MeV. He
then wonders how much his results will be changed by
improved calculations.

Perhaps a more important question is how well do cal-
culations with the simple Hamiltonian (1) agree with ex-
periment. Unfortunately, only meager experimental in-
formation exists about exotics. However, we can already
give a qualitative answer to the question of how good the
model is by comparing its predictions with the known
masses of normal mesons and baryons. We find that the
Hamiltonian (1) leads to predictions of threshold energies
which can be in error by several hundred MeV.

We see no reason why the Hamiltonian (1) should be
more accurate for exotic than for normal hadrons.
Therefore, calculations with an improved Hamiltonian

will be necessary before we can have confidence that any
candidate listed in Silvestre-Brac s paper is indeed
quasistable. Despite the unreliability of Silvestre-Brac s
results, he is to be commended for having undertaken a
systematic treatment of all exotic mesons with a Hamil-
tonian which, despite its Aaws, has been widely used in
the literature. A number of the techniques used by
Silvestre-Brac should still be applicable with an improved
Hamiltonian.

We introduce the quantity 6, defined as the difference
in mass between a collection of initial and final state had-
rons. If the initial state is an exotic hadron and the final
state is the least massive collection of hadrons with the
same quantum numbers, then the exotic can decay
strongly if 5 is positive. If 6 is negative, the exotic is
bound with respect to strong decay and so is quasistable.
Like Silvestre-Brac, we consider ground-state hadrons
only and assume that there is no orbital angular momen-
tum in the initial state. However, we relax Silvestre-
Brac's assumption that there is no orbital angular
momentum in the final state because there is no reason
why spin cannot be converted into orbital angular
momentum so long as total angular momentum and pari-
ty are conserved.

For illustrative purposes, we test the Hamiltonian us-
ing the same parameters found by Silvestre-Brac [1]. We
do this for convenience only. We have considered other
parameters as well, and have found no overall improve-
ment. The quark masses used in Ref. [1]are (in MeV)

m„=md =m =330, m, =550, m, =1650, mb =4715,

and the constant is A =a/m =20 MeV. With these pa-
rameters Silvestre-Brac [1] finds m =m „=340 MeV,
about half way inbetween the experimental values
m „=138 MeV, m„=547 MeV. He therefore says that, if
n pions are in the final state, the model underestimates 6
by about 200n MeV. We therefore emphasize tests which
do not involve pions, but we discuss pions as well.

Our first test of the Hamiltonian (1) is to consider the
masses of hadrons in the absence of the color-magnetic
interaction. Because we cannot turn off this interaction,
we get information about such masses from experiment
by spin averaging the masses of known ground-state
mesons and baryons in such a way that the color-
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magnetic interaction cancels out in perturbation theory
[4]. In those cases in which we do not have sufficient in-
formation from experiment, we make estimates based in
part on a semiempirical formula for the color-magnetic
interaction [5]. This exercise has already been carried
out [6] for mesons, and here we do it for baryons as well.

We let the mass of a normal meson or baryon contain-
ing quarks and/or antiquarks q&, q2, . . . be M&2. . . and
introduce the notation

=M, 2. . .
—gm, .

We show in Table I the values of M, 2 and E&2 for mesons
and in Table II the values of M&23 and E&23 for baryons.
We also show the quark content, with q standing for a u
or d quark.

It is seen from Tables I and II that it is a poor approxi-
mation to assume that E,2. . . is the same constant for all
hadrons. But that is one of the approximations necessary
to obtain the oversimplified Hamiltonian of Eq. (1). The
reason that the values of E,2. . . in Tables I and II vary in
a rather haphazard way is because Silvestre-Brac did not
choose the masses of the quarks so as to satisfy inequali-
ties suggested by the Feyninan-Hellman theorem [7]. But
we have verified that no choice of quark masses can make
the E; . . . approximately constant.

We next test the color-magnetic piece of the interac-
tion with mesons and baryons. We have noted that, in
the simplified Hamiltonian of Eq. (1), the constant
3 =a /m has the value A =20 MeV. But we can use
the data on the color-magnetic splitting of mesons and
baryons to obtain A in selected cases [4]. We need to re-
lax the assumption that A is a constant and write
3 = A, 2 for mesons and A = 3, & for baryons. Our no-
tation for baryons is that —3, & is the coefficien of the
term A, , Acr, o m, /(m, m ) in the Hamiltonian. The
values of A which can be obtained from the existing data
[8] are given in Table III for mesons and in Table IV for
baryons.

We see from Table III that, although the values of 3 &z

are approximately constant for mesons containing at least
one q quark, the values change considerably for mesons
containing only heavier quarks. From Table IV, we see
that we have only data for baryons containing at least
one q quark and no quarks heavier than the s. For these
baryons, the values of 3, k are approximately constant,

TABLE II. Spin-averaged baryon masses M»3 and values of
E»3 using Eqs. (2) and (3). Masses are in MeV.

Quark content

qqq
qqs
qss
sss

qqC

qqb
qSC

ssc

Mass M»3

1086
1270
1433
1587
2448
5810
2586
2736

Energy El23

96
60

3
—63

138
435

56
—14

but a different constant than for mesons containing only q
and s quarks. Thus, the assumption of constant 2 is not
borne out by experiment. We expect that the values of 2
will be still different for exotic mesons.

We next consider the annihilation of a proton by an
anti-Q baryon at rest in the reaction

Q+p ~K++K++K (4)

Thus, the simple model gets the threshold wrong by 650
MeV.

If we assume, like Silvestre-Brac, that spin cannot be
converted into orbital angular momentum, then the reac-
tion (4) is forbidden. Instead, the reaction with the
lowest-mass final state is

0+p ~%*++K++K
In this case we have

5(experiment) =726 MeV,

5( model ) =218 Me V .

(We choose this reaction because it does not have any
pions in the final state. ) The reaction (2) has not been
seen, but its observation is not necessary for the purposes
of our test of the simple model. We know the masses of
the particles involved. Therefore, we can compare the
value of 5 calculated from the experimental masses with
the value calculated from the Hamiltonian (1) with the
parameters used by Silvestre-Brac. We obtain

5(experiment)=1124 MeV,

5( model ) =474 Me V .

TABLE I. Spin-averaged meson masses M|z from Ref. [6]
and values of E» using Eqs. (2) and (3). Masses are in MeV.

Quark content

qq
qs
$$

qC

qb
SC

sb

Mass M»

612
793
936

1974
5313
2075
5397
3068
9446

Energy E&z

—48
—87

—164
—6
268

—125
132

—232
16

Quark content Vector Pseudoscalar Strength A»

qq
qs
qc
qb
sC

CC

p(770)
K*(894)
D*(2oo9)
8*(5325)
D,*(2»O)
7/$(3097)

~(138)
K (496)

D (1867)
B (5279)
D, (1969)
g, (2980)

30
31
33
31
55

137

TABLE III. Strength A» in MeV of the color-magnetic in-
teraction in selected mesons. The results are adapted from Ref.
[4].
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TABLE IV. Strength A;,. k in MeV of the color-magnetic interaction in selected baryons. The results
are adapted from Ref. [4].

Quark
content

qqq
qqs
ssq

0 3Spin-—
2

baryon

6(1232)
X*(1385)
:-*(1533)

Spin-—
2

baryon

X(939)
X(1193)
:-(1318)

Spin-—
2

baryon

A(1116)
18
19

18
20
22

18
20
22

'State does not exist.

In this case, the model is "only" off by about 510 MeV.
But we see no reason why the reaction (4) should be in-
hibited by the presence of orbital angular momentum
when the energy released is so high (1124 MeV).

As still another example, we consider the reaction

Again comparing the value of 6 from experiment with the
calculated value, we obtain

5(experiment) = —1010 MeV,

5(model) = —304 MeV,

Our last example is the simplest. Whereas experimen-
tally the splitting between the J/g and g, is 117 MeV,
the model predicts it to be only 17 MeV.

We have no reason to believe that the Hamiltonian (1)
is any better for exotic hadrons than it is for the normal
hadrons in our examples. Quite the contrary; because so
little is known about exotics we expect the uncertainties
to be greater. In conclusion, in view of the fact that the
model gets thresholds for normal hadron reactions wrong
by as much as 650 MeV in our examples, we do not re-
gard predictions that some exotic mesons are bound by
about 100 MeV as any indication that these exotics are in
fact quasistable.

a difference of 706 MeV. Even if we allow an extra —200
MeV for the pion in the initial state, the calculated
threshold is still off by 506 MeV.
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