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Lepton masses in an SU(3)L, U(1)N gauge model
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The SU(3),SU(3)l. U(1)iv model of Pisano and Pleitez extends the standard model in a par-
ticularly nice way, so that, for example, the anomalies cancel only when the number of generations
is divisible by 3. The original version of the model has some problems accounting for the lepton
masses. We resolve this problem by modifying the details of the symmetry-breaking sector in the
model.
PACS number(s): 12.15.Ce, 12.15.Ff

In Refs. [1, 2], two of us proposed a model based on
the gauge symmetry

SU(3), S SU(3)L, S U(1)iv.

QgL, = u2 (3, 3') —1/3), (3)

In those original papers spontaneous symmetry break-
ing and fermion mass generation are assumed to arise
from the vacuum expectation values (VEV's) of three
scalar multiplets y, p, and g, which are each triplets un-
der SU(3)1.. Here we would like to point out that these
scalar multiplets do not give satisfactory masses to the
leptons and we resolve the problem by modifying the de-
tails of the symmetry-breaking sector. We then verify
that this modification does not change the model's at-
tractive feature or its compatibility with experiment.

We first give a brief review of the model. The three
lepton generations transform under the gauge symmetry,
Eq. (1), as

u2R (3, 1, 2/3), d2R (3, 1, —1/3), J2& ~ (3, 1, —4/3),

Qsl. = us (3, 3*,—1/3),

us+ (3, 1 ) 2/3), ds+ (3, 1, —1/3), Jsz (3, 1 )
—4/3) .

One can easily check that all gauge anomalies cancel
in this theory. However, note that each generation is
anomalous. In fact this type of construction is only
anomaly-free when the number of generations is divisi-
ble by 3. Thus three generations are singled out as the
simplest nontrivial anomaly-free SU(3)I.CRU(1)iv model.

We introduce the Higgs field
VL,

f = el, ' ~ (1,3, 0), (2)
&~1,

where a = 1, 2, 3 is the generation index.
Two of the three quark generations transform identi-

cally and one generation, it does not matter which, trans-
forms in a different representation of SU(3)I,CSU(1)iv.
Thus we give the quarks the following representation un-
der Eq. (1):

~ - (1,3, -1),
which couples via the Yukawa Lagrangian

~1Q1LJ1RX + ~ijQiL JjRX + H.c

where i, j = 2, 3. If y gets the VEV

(4)

(5)

QgL, = dg (3, 3, 2/3),

up~ ~ (3, 1, 2/3), dg~ ~ (3, 1, —1/3), Jg~ ~ (3, 1, 5/3),
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the exotic charged 5/3 and —4/3 quarks (Jq 2 s) gain
mass and the gauge symmetry is broken:

SU(3), @SU(3)1. C3 U(1)~
& (x)

SU(3), K3 SU(2)1. U(l)y.
(7)

Even though the model has charged 5/3 and —4/3
quarks there will be no fractional charged color singlet
bound states, and hence no absolutely stable fractionally
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+abfaL (fbL ) 7I + Ala Q1LuaR71

+A; Q'Ld R7l*+H.c. ,

where a, b = 1, 2, 3 and i = 2, 3. When the p gets the
VEV

fob
(p) =

&01
(12)

two up- and one down-type quarks gain mass. The down
quark that gets its mass from the p is not the isospin
partner of the two other up quarks.

If g gets the VEV

'U

(7l) = 0
(0)

then the remaining quarks get mass. However not all of
the leptons get mass. This is because the first term in
Eq. (11) is only nonzero when G b is antisymmetric in
the generation indices (a, b) To see th. is note that the
Lorentz contraction is antisymmetric, and the Gelds are
Grassmannian (so that this gives an antisymmetric factor
when they are interchanged) and the SU(3)L contraction
is antisymmetric. Explicitly writing the SU(3)L indices
the leptonic term in Eq. (11) we have

Gabf'aL(fgbL)'ok ~"" (14)

We have three antisymmetric factors; hence, only the
antisymmetric part of the coupling constants GI, t gives

charged particles in the model.
The usual standard model U(1)& hypercharge is given

by

Y = 2N —v 3As .

Here As is the Gell-Mann matrix diag[1, l, —2]/~3. The
model reduces to the standard model as an efI'ective the-
ory at an intermediate scale.

In the original papers [1, 2), electroweak symmetry
breaking and fermion masses were assumed to be due
to the scalar bosons

p- (1, 3, 1), q- (1, 3, 0).

These scalar bosons couple to the fermions through the
Yukawa Lagrangians

~Yap = AlaQ1LdaRP + AiaQiLuaRP + H C.
~

a nonvanishing contribution and the mass matrix for the
leptons is antisymmetric. A 3 x 3 antisymmetric mass
matrix has eigenvalues 0, —M, M, so that one of the lep-
tons does not gain mass and the other two are degenerate,
at least at the tree level.

The simplest way to remedy this situation is to mod-
ify the symmetry-breaking sector of the model. If the
leptons are to get their masses at the tree level within
the usual Higgs-boson mechanism, then we need a Higgs-
boson multiplet which couples to fL(fL)'. Since

fL(fL)' (l, 3+ 6*,0), (15)

Note that when the VEV has this form, it gives the lep-
tons their masses and together with (p), (q) breaks the
electroweak gauge symmetry:

SU(3), Igw SU(2)L U(1)y
& (p), (n) (S)

SU(3), S U(l)g.

It is now no longer obvious that the Higgs-boson po-
tential can be chosen in such a way that the all the
Higgs-boson Acids get their desired VEV's. We must
show two things: first that there exists a range of val-
ues for the parameters in the Higgs-boson potential such
that the VEV's given by Eqs. (6), (12), (13), and (16)
give a local minimum; and second that the number of
Goldstone bosons that arise from the symmetry break-
ing in the scalar field sector of the theory is exactly
equal to eight. This will ensure that there are no pseudo
Goldstone bosons arising from the breaking of a global
symmetry in the scalar sector which is larger than the
SU(3)U(1) gauge symmetry.

The Higgs-boson potential has the form

then the only scalars which can couple to fL(fL)' must
transform as a (1,3', 0) or (1,6, 0) (or the complex conju-
gate thereof). The simplest choice was the (1,3*,0) op-
tion which failed due to the fact that the 3 x 3 x 3 SU(3)
invariant is antisymmetric. However the 6 is a symmet-
ric product of 3 x 3, and it can couple to fL(fL)', so it
seems that a Higgs-boson multiplet S (1,6, 0) can give
the leptons their masses.

The VEV of S must have the form

(00 0)
0 0

V(q, p, g, S) =Al[7lt7l —v ] + A2[ptp —u ] + As[sty —lv ] + A4[Tr(S~S) —v'
] + As[2Tr(StSS'tS) —(Tr[S~S]) ]

+ As[@ l7 —v + p p u ] + A7[7/ '/7 —v + g g —w ]

+ As[sty —lv + p~p —u ] + Ag[qtg —v +Tr(StS) —v'
]

+ Alc[p'p —u'+ T (S'S) —v"]'+ A»[X'X —~'+ Tr(S'S) —."]'

+ A12[p 7l][g p] + Als[g g]['g g] + A14[p'y][y'p) + f1&i j,k'gi pjgk + f2p S g + H c.
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A detailed analysis shows that for all A' s) 0 there ex-
ist values of fi and f2 such that the potential is mini-
mized by the desired VEV's and such that there are no
pseudo Goldstone bosons. The above potential leads ex-
actly to 8 Goldstone bosons which are absorbed by the
gauge bosons which acquire a mass. However even with-
out a rigorous analysis one expects such a result to be
true for the following reasons. If the terms As, fi, and f2
are zero, the above potential is positive definite and zero
when

it zero. Now consider nonzero fi, fz .These trilinear
terms ensure that the largest continuum symmetry of
the scalar potential is SU(3)U(l). In addition to this
the fq term is linear in S and this term induces a VEV
for S proportional to the VEV of (py+) which has the
desired form [given in Eq. (16)].

The potential in Eq. (18) is the most general
SU(3)U(1) gauge invariant, renormalizable Higgs-
boson potential for the three triplets and the sextet,
which also respects the discrete symmetry

p —+ip, y —+iy, g~ —q, S~ —S.

If the fermions transform as

(20)

(19) fL ~ 1fL~ Ql j ~ Q1L) Qij ~ EQUAL)

&nR &aR) d~R idaR)

(21)

Hence the above VEVs are a minimum of the poten-
tial. Note that the Aq2, Aq3, and Aq4 terms in the Higgs-
boson potential are very important for the alignment of
the vacuum, as they imply that the three vectors (rl), (p),
and (y) are orthogonal (in the complex three-dimensional
mathematical space).

Now allow A5 to be nonzero and positive. This term
is positive in most of the parameter space of the matrix
S. For it to be negative we must have large values of
Tr[S"S] which in turn would imply large values for terms
such as A4, Aqo) Aqq. Unless we allow fi.ne-tuning of the
potential so that A4, Ago, A]] are very small, the desired S
VEV minimizes the potential. However any S VEV such
that Tr[Si'S] = v'z will minimize the potential and make

I

the entire Lagrangian is kept invariant. This symmetry
is important since it prevents the trilinear terms

~TSt ~ and &ij k&™SLS' Sk (22)

from appearing in the Higgs-boson potential. These
terms make analysis of the Higgs-boson potential more
complicated and lead to nonzero Majorana neutrino
masses. To see that without the discrete symmetry Ma-
jorana neutrino masses would occur, define

h+ )S= hz Hj o20

(h+ &0 ~++j
Note that S couples with leptons via the Yukawa La;
grangian

2dlS= ) +i [ (vil. v«o i + ll ll, H2 + liilL, Hi ) + (vt~lL + l~vI. )hi
l

+(vi'„ll + l„v«)hz + (l„'lr + l„lL,)~,'] + H.c. (24)

The neutrino gets a Majorana mass if (cri) g 0 and it is this VEV which the symmetry (20), (21) keeps equal to zero
by preventing the terms in (22). If we did not impose the symmetry we could always fine-tune (cri) to zero, but this
is a more unattractive option.

Note that the VEV's of p, g, and S break the gauge symmetry while preserving the tree-level mass relation M~2

Mz~ cos2 Hiv. [Here we define sin Hid = e/g, the ratio of the electric charge coupling to the SU(2)1, coupling after y
acquires a VEV.] One way to see this is to note that under the intermediate scale gauge group SU(2)I.CRU(l)i. , the
VEV's of p and S transform as members of a Y = 1, SU(2)I, doublet, and the custodial SU(2)c symmetry is not
broken. One can also see this explicitly by working out the vector bosons masses. The mass matrix for the neutral
gauge boson is the following in the (Ws, Ws, Biv) basis:

(a+ b+ a' ~(a —b+ a') —2tb
M2 = —gz ~(a —b+ a') s(a+ b+4c+ a') ~t(b+ 2c) (25)

~-2tb ~2, t(b+ 2c) 4t'(b+ c)

with the notation

a = 2v, b = 2u, c = 2iv, a' = 2v', t = g~/gs~~sl~ .

and M&2, , respectively. In the approximation that c ))
a, b, a', M& and M&, become

Wee can verify that detM = 0.
The eigenvalues of the matrix in Eq. (25) are 0, Mz2,

g
2 , 1+442

Mz ———(a + b+ a')z 4 1+ 342
(26)
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M~ ——4g (a+6+a'). (28)

Then, as in Ref. [2],

Mz &+ «'
Mw'

(29)

In order to get consistency with experimental data
Eq. (29) must be numerically equal to 1/cos~, where
0~ is the weak mixing angle in the standard electroweak
model. This definition of the weak mixing angle is con-
sistent with the previous definition (i.e. , sin Hid = e/g)
at tree level since we can always define

2

Mg, = —(1 + 3t')c.z' 3

Hence we can see that Mz, is very massive since it de-
pends only on m I.n Ref. [2] a lower bound of 40 TeV
have been obtained by considering the contribution to
the K -K mass difference of the heavy Z'0.

There is a charged gauge boson with mass given by

2
g2 W

482

This shows that at tree level the p parameter is equal to
one as in the standard model.

We have reviewed the model proposed in [1,2] and have
shown how to modify it to yield a realistic lepton mass
spectrum at tree level. We have proven that a Higgs-
boson potential allowing such a change exists and we have
verified that such a modification does not lead to any
problems such as a tree level p parameter diferent from
one.

The model has many unique features. In particular
it is only anomaly-free if the number of generations is a
multiple of three. Models of this type deserve our atten-
tion and study.
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