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I = 1, J = 1 resonances in the Pade unitarized Wl R'L scattering amplitude
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We show that the Pade unitarized I = 1, J = 1 partial wave amplitude for W~+ W~ elastic
scattering exhibits resonant behavior for relatively low values of the Higgs-boson mass parameter
mH. The p-wave resonance can occur when ~s & m~. This is in contrast with the I = 0, J = 0
resonance which occurs in the Wl+ Wz -Zi, Zl. system for ~s (( mH. The observability of the I = 1
resonance in high-energy p p collisions is examined.

PACS number(s): 13.85.@k, 14.80.Er, 14.80.Gt
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Recently, it has been shown [1—3] that the [l,l] Pade
unitarized I = 0, J = 0 partial wave amplitude for the
W&+ W& -ZI ZI system exhibits a resonance of mass p
with p, + mH. The width of this resonance decreases
as m~ increases. For m~ & 10 TeV, the essential fea-
tures of the resonant behavior can be obtained from the
one-loop-corrected I = 0 s-wave amplitude cr o which is
expressible as an expansion in powers of fs as [4, 5]

the real part of the denominator in Eq. (6) vanish at
v s = p, . The expressions for the resonance mass p, and
its width I'(p) given in Refs. [1, 2] can be obtained by

expanding cI p(s) —Reel( lp(s) about the point s = p2.
Prom earlier investigations of unitarity effects in mx

scattering [6, 7], the existence of an I = 1 p-wave reso-
nance in the unitarized Wz+ WL —+ W&+ WL amplitude
of the standard model is not entirely unexpected. The
difference between the I = 0 and I = 1 cases is that the
s (( m2H limit analogous to Eq. (1) cannot be used to
analyze the I = 1 resonance [8]. For this channel, the
corresponding expression is
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Here f denotes

1

(4~vp)z ' (3)
Not only is Eq. (7) independent of mH, but the real part
of the associated Pade denominator,

and vp, the Higgs-field vacuum expectation value, is given
by
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The [1,1] Fade approximant for this amplitude is
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Using the fact that, for eigenamplitudes, perturbative
unitarity relates the imaginary part of the one-loop cor-
rection to the square of the Born contribution, we can
write

is positive definite. Consequently, there is no resonance
in this limit.

In order to determine if there is a p-wave resonance for
s mH, it is necessary to examine the I = 1 version of
Eq. (6) using

647rm~~s q s ) ( m~

(9)
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For resonances which are sufBciently narrow, the reso-
nant mass p, can be determined by the requirement that

together with the complete expression for RecI i(s) [4].(2)

In Figs. 1 and 2, we plot the Pade unitarized I = 1 ampli-
tude for several values of mH. The peak in the amplitude
represents a true resonance in the sense that the Argand
diagram exhibits the expected resonant behavior. For
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FIG. 1. The Pae Pade unitarized
' e p-wave amplitude
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nance at energies reached at the
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distribution for the
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Figures 4—6 show thow t e results fore, respectively. Even for the low-
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FIG. 3. The mass and width of the p-wave resonance are
plotted as a function of m~. The dashed line in the left-hand
graph is a plot of the mass of the I = 0, J = 0 resonance.

est resonance mass, corresponding to mH 2, the cross
sections are not large. However, for an SSC luminosity of
104 pb ~/year, the area between m~~ of 2400 and 2800
GeV contains an excess of about 75 events /year above a
q q background of 140 events /year. The same area for an
integrated luminosity of 10s pb ~ /year attained at the
CERN Large Hadron Collider (LHC) has approximately
23 extra events above a 220 event/year background. For
mH ——1 TeV, the resonance is very narrow and occurs at
a relatively large value of m~~ where the magnitude of
the cross section is smaller. There are about 16 extra SSC
events/year between m~~ equal 2800 and 3000 GeV out
of a total number of events, including background, of 58.
Thus, it seems unlikely that the J = 1 resonance can be
seen for mH values much smaller than 1 TeV.
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FIG. 5. Same as Fig. 4 except that mH = 2 TeV, The
dashed —double-dotted line is the contribution of the s-wave
resonance in this region of Wz Wz invariant mass.

For mH larger than 2 TeV the width of the reso-
nance increases, which helps compensate for the some-
what smaller cross section. Thus Fig. 6 shows an excess
of 38 events/year for m~~ from 2800 to 3200 GeV com-
pared to 108 background events. Thus if data can be
collected over a broad range of invariant mass it may be
possible to detect the J = 1 resonance even if mH is
larger than 5 TeV.

Our results for the signals one might expect in the
I = 1, J = 1 WJ+ t/t/"I R'L+ 81 channel are indicative
of the observability of a p-wave resonance. The other
I = 1 hannels, R'L ZI ~ Wz ZI, are potentially better
candidates from the experimental point of view since they
can be more completely reconstructed. Although their
p-wave amplitudes are the same as those in the neutral
channel, differences in the W& ZL luminosity and the q q
background require a complete calculation to determine
the magnitude of the expected signals in these channels.
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FIG. 4. The invariant mass distribution for the produc-
tion of Wz Wz pairs at an SSC energy of 40 TeV is plot-
ted for m~ ——j. TeV. The dashed line is the contribution
from Wl+Wz scattering, the dash-dotted line the contribu-
tion from qq —+ W~ W~, and the total is given by the solid
line. A rapidity cut g~ ——2.5 is imposed on both W's.
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FIG. 6. Same as Fig. 4 except that mH ——5 TeV.
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In summary the Pade amplitude for WL+, WL,
Wz+ Wz has resonances for J larger than zero as one
might anticipate [6, 7]. We have studied the p-wave res-
onance determining its position and width for a broad
range of possible values of the Higgs-boson mass param-
eter mH. We have also calculated the production cross
section in p p collisions and find that the resonance should
be observable if mH is larger than 1 TeV up to an mH
value somewhere above 5 TeV. This region of m~ corre-
sponds to a resonance position between 2.6 and 3.2 TeV.

Note added. After the circulation of the unpubhshed
version of this paper [University of Texas, Center for

Particle Physics DOE-ER40200-267 (1991)] we became
aware of a paper by Atkinson, Harada, and Sanda [9],
which reaches similar conclusions.
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