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‘We show that the Padé unitarized I =

1, J =

1 partial wave amplitude for W} W elastic

scattering exhibits resonant behavior for relatively low values of the Higgs-boson mass parameter
mp. The p-wave resonance can occur when /s 2 my. This is in contrast with the I =0, J =0
resonance which occurs in the W} W -Z2 Z3 system for /s < mu. The observability of the I = 1

resonance in high-energy pp collisions is examined.

PACS number(s): 13.85.Qk, 14.80.Er, 14.80.Gt

Recently, it has been shown [1-3] that the [1,1] Padé
unitarized I = 0, J = 0 partial wave amplitude for the
Wi Wy -Z9 Z9 system exhibits a resonance of mass u
with 4 < mpy. The width of this resonance decreases
as my increases. For my 2 10 TeV, the essential fea-
tures of the resonant behavior can be obtained from the
one-loop-corrected I = 0 s-wave amplitude ¢;—g which is
expressible as an expansion in powers of fs as [4, 5]
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and vo, the Higgs-field vacuum expectation value, is given
by
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The [1,1] Padé approximant for this amplitude is
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Using the fact that, for eigenamplitudes, perturbative
unitarity relates the imaginary part of the one-loop cor-
rection to the square of the Born contribution, we can
write
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For resonances which are sufficiently narrow, the reso-
nant mass p can be determined by the requirement that
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the real part of the denominator in Eq. (6) vanish at
v/s = p. The expressions for the resonance mass p and
its width F(u) given in Refs. [1, 2] can be obtained by
expanding c (s) Rec(z) o(s) about the point s = p?.

From earher 1nvest1gamons of unitarity effects in w7
scattering (6, 7], the existence of an I = 1 p-wave reso-
nance in the unitarized W} W; — W} W amplitude
of the standard model is not entlrely unexpected. The
diﬁ'erence between the I = 0 and I = 1 cases is that the
s < m% limit analogous to Eq. (1) cannot be used to
analyze the I = 1 resonance [8]. For this channel, the
corresponding expression is
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Not only is Eq. (7) independent of my, but the real part
of the associated Padé denominator,

Rec(2)1(s) = -f—s - f_z_z [—1}—3— - ﬁw} )

c§1)1(3) -

(8)

is positive definite. Consequently, there is no resonance
in this limit.

In order to determine if there is a p-wave resonance for
s ~ m¥%, it is necessary to examine the I = 1 version of
Eq. (6) using
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together with the complete expression for Rec ( ) [4].

In Figs. 1 and 2, we plot the Padé unitarized I = 1 ampli-
tude for several values of myg. The peak in the amplitude
represents a true resonance in the sense that the Argand
diagram exhibits the expected resonant behavior. For

C§1)1(3) =
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FIG. 1. The Padé wunitarized p-wave amplitude

t(WF W7 — W7 Wy) is plotted for mpg = 1 TeV (solid),
1.5 TeV (dashed), and 2 TeV (dash-dotted).

relatively low values of my < 1 TeV, the resonance is
narrow and occurs at a mass p 2 3 TeV. As my in-
creases to about 2 TeV, u decrea.ses to a minimum value
of 2.6 TeV. Further increases in my yield an increasing
value of y and an increasing width I'(mg). The behav-
ior of the resonant mass and its width as a function of
myg is summarized in Fig. 3. Also shown as a dashed
line is the mass of the I = 0,J = 0 resonance for the
same range of my [1]. The J = 1 resonance persists
even for low values of my whereas the J = 0 resonance
occurs at u = mpy for mpy sufficiently small. For exam-
ple, when myg = 500 GeV, the J = 1 resonance occurs at
p = 4 TeV with an extremely narrow width of about 30
GeV. Any discussion of resonances deduced from a Padé
unitarized amplitude must be examined to determine if

|
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In Eq. (10), to = 2 ¢ [1 o ot3 c? 12], t = c[Il 11], and we have

included a factor of 2 for the symmetry of the quark dis-
tributions in pp collisions. The integration limits yo, Yo,
and ¢, are a result of imposing a rapidity cut n¢ on both
of the final vector bosons. These limits are related to nc¢,

n =In(1/y/7), and 7 = In(1/y/7) as
Yo = min(n, n¢ + 1), Jo = min(7,nc + y),
(12)

The the value of zp, which occurs in the range of the

91 = min(7,nc — ) -
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FIG. 2. Same as Fig. 1 with myg = 2.5 TeV (solid),

3.75 TeV (dashed), and 5 TeV (dash-dotted).

the resonances are located in a region of s for which the
scheme is sensible. This point is treated in some detail in
Ref. [9], which obtains results similar to those presented
here. Finally, we note that higher partial waves also ex-
hibit resonant behavior. The J = 3 partial wave has a
resonance at u = 7.4 TeV for mg = 1 TeV, and when
mpyg = 500 GeV u exceeds 10 TeV.

We have explored the observability of the p-wave reso-
nance at energies reached at the Superconducting Super
Collider (SSC) by computing the W-palr invariant mass
distribution for the process pp — W W, X using the
effective W approximation [10-12]. When the quark and
vector boson distribution functions f and f are included,
the expression for the invariant mass distribution with
contributions from the s and p waves is

. . X 2 3 2
ap f/renfe/reny (LXMDY )
mww
[
d(cos #) integration, is determined by
. (1 N
70 = min (5 tanh(no— |y +9 ),1), (13)

where 8 = /1 — 4m,/m2,;,. The vector boson distri-

bution function f(x) used in evaluating Eq. (10) corre-
sponds to the distribution of longitudinal W's,

2 _aw (1-1)
fr(z) = An ’

T

(14)

and the quark distribution functions f(z) are the
Bologna-CERN-Dubna-Munich-Saclay (BCDMS) fit of
Harriman et al. [13].

Figures 4-6 show the results for do/dmww when
mpy = 1, 2, and 5 TeV, respectively. Even for the low-
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Mass and width of I=1 Padé Resonance
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FIG. 3. The mass and width of the p-wave resonance are
plotted as a function of my. The dashed line in the left-hand
graph is a plot of the mass of the I = 0, J = 0 resonance.

est resonance mass, corresponding to myg ~ 2, the cross
sections are not large. However, for an SSC luminosity of
10* pb~1/year, the area between my w of 2400 and 2800
GeV contains an excess of about 75 events/year above a
q g background of 140 events/year. The same area for an
integrated luminosity of 10° pb~!/year attained at the
CERN Large Hadron Collider (LHC) has approximately
23 extra events above a 220 event/year background. For
my = 1 TeV, the resonance is very narrow and occurs at
a relatively large value of myw where the magnitude of
the cross section is smaller. There are about 16 extra SSC
events/year between myyw equal 2800 and 3000 GeV out
of a total number of events, including background, of 58.
Thus, it seems unlikely that the J = 1 resonance can be
seen for my values much smaller than 1 TeV.

pp > Wi Wi X
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FIG. 4. The invariant mass distribution for the produc-
tion of WZ W pairs at an SSC energy of 40 TeV is plot-
ted for mg = 1 TeV. The dashed line is the contribution
from W W; scattering, the dash-dotted line the contribu-
tion from ¢g@ — W7 W, and the total is given by the solid
line. A rapidity cut nc = 2.5 is imposed on both W's.
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FIG. 5. Same as Fig. 4 except that my = 2 TeV. The

dashed—double-dotted line is the contribution of the s-wave
resonance in this region of W} W invariant mass.

For mpg larger than 2 TeV the width of the reso-
nance increases, which helps compensate for the some-
what smaller cross section. Thus Fig. 6 shows an excess
of 38 events/year for myw from 2800 to 3200 GeV com-
pared to 108 background events. Thus if data can be
collected over a broad range of invariant mass it may be
possible to detect the J = 1 resonance even if my is
larger than 5 TeV.

Our results for the signals one might expect in the
I=1,J=1W;§W; - W; W channel are indicative
of the observabilitif of a p-wave resonance. The other
I =1 channels, Wi Z? — Wi Z9, are potentially better
candidates from the experimental point of view since they
can be more completely reconstructed. Although their
p-wave amplitudes are the same as those in the neutral
channel, differences in the Wf Z9 luminosity and the ¢ g
background require a complete calculation to determine
the magnitude of the expected signals in these channels.
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FIG. 6. Same as Fig. 4 except that myg = 5 TeV.
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In summary the Padé amplitude for W} W; —
Wi Wi has resonances for J larger than zero as one
might anticipate [6, 7]. We have studied the p-wave res-
onance determining its position and width for a broad
range of possible values of the Higgs-boson mass param-
eter my. We have also calculated the production cross
section in p p collisions and find that the resonance should
be observable if my is larger than 1 TeV up to an my
value somewhere above 5 TeV. This region of myg corre-
sponds to a resonance position between 2.6 and 3.2 TeV.

Note added. After the circulation of the unpublished
version of this paper [University of Texas, Center for

Particle Physics DOE-ER40200-267 (1991)] we became
aware of a paper by Atkinson, Harada, and Sanda [9],
which reaches similar conclusions.
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