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Relativistic constituent quark model of electroweak properties of baryons
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We calculate the electroweak properties of nucleons and hyperons in a relativistic constituent
quark model using the light-front formalism. The parameters of the model, namely, the constituent
quark mass and the confinement scale, can be uniquely chosen for both the electromagnetic and
weak experimental data. A consistent physical picture of the qqq system appears in this work
with a symmetric nucleon wave function and an asymmetric hyperon wave function. Only for the
strangeness-changing weak decays do we need nontrivial form factors of the constituent quark.

PACS number(s): 12.40.Aa, 11.10.St, 13.30.Ce, 13.40.Fn

I. INTRODUCTION

The purpose of this paper is to present the results of
comprehensive calculations of electromagnetic and weak
form factors of the baryon octet in a relativistic con-
stituent quark model. This model was first formulated
by Berestetskii and Terent'ev [1] and has been applied to
various hadronic processes in Refs. [2,3]. Recently, new
studies have been carried out by Jaus in the meson sec-
tor [4] and by Chung and Coester on the electromagnetic
form factors of the nucleons [5].

In a relativistic theory the Poincare invariance has to
be respected; this means, on the quantum level, the sat-
isfaction of the commutation relations between the gen-
erators of the Poincare group. Dirac [6] has given a gen-
eral formulation of methods to satisfy simultaneously the
requirements of special relativity and Hamiltonian quan-
turn mechanics. An extension of the Dirac classes of dy-
namics can be found in Ref. [7]. The light-front scheme is
in particular distinguished from the other Dirac classes.
Among the ten generators of the Poincare group, there
are in the light-front approach seven generators of kine-
matical character, and only the remaining three genera-
tors contain interactions, which is the minimal possible
number. The light-front dynamics is therefore the most
economical scheme for dealing with a relativistic system.
If we introduce the light-front variables p+ —= p + p,
the Einstein mass relation p&p" = m2 is linear in p and
linear in p+, in contrast with the quadratic form in p
and p in the usual dynamical scheme. A consequence is
a single solution of the mass shell relation in terms of p
in contrast to two solutions for p:

p = (ps+ ~')/p+, p' = +v'p'+ m'.

The quadratic relation of p and p~ = (p, p ) in the
above equation resembles the nonrelativistic scheme [8],
and the variable p+ plays the role of "mass" in this non-
relativistic analogy. It is therefore a good idea to in-
troduce relative variables like the Jacobi mornenta when
dealing with several particles. As in the nonrelativistic

scheme, such variables allow us to decouple the center-
of-mass motion from the internal dynamics. Hence we
do not have the problems with the center-of-mass mo-
tion that occur in the bag model. The light-front scheme
shows another attractive feature that it has in common
with the infinite momentum technique [9]. In terms of the
old-fashioned (Heitler-type, time-ordered, pre-Feynman)
perturbation theory, the diagrams with quarks created
out of or annihilated into the vacuum do not contribute.
The usual qqq quark structure is therefore conserved as
in the nonrelativistic theory. It is, however, harder to
get the hadron states to be eigenfunctions of the spin
operator [10].

The equation of motion of the three-quark bound
state on the light-front can be reduced to a relativis-
tic Schrodinger equation with an effective potential.
Since wave functions that are solutions of the relativis-
tic Schrodinger equation are not available, we start with
two simple baryon wave functions. The constituent quark
mass mz, the length scale parameters P, and the quark
form factors for the weak decay are the parameters of
this model. They are fixed by fitting the relevant exper-
imental data.

A consistent physical picture appears in this paper.
The nucleon consists of a symmetric three-quark state,
whereas the wave functions of the hyperons are asym-
metric with a diquark forming spin-0, V-spin-0 states
and spin-0, U-spin-0 states, respectively. Only for the
strangeness-changing weak decay do we need nontrivial
form factors. Recent works [11]have also found evidence
for diquark clustering in the baryons.

In Sec. II we give a brief summary of the light-front
formalism for the three-body bound state. Section III
contains explicitly the asymmetric wave function on the
light-front. We discuss the different choices for the ansatz
of the wave function. The magnetic moments of the
baryon octet are calculated in Sec. IV and the hyperon
semileptonic weak decays are presented in Sec. V. We
summarize our investigation in a concluding Sec. VI. In
the Appendix we give the connection between the wave
function and the effective potential.
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II. LIGHT-FRONT FORMALISM FOR A
THREE-BODY BOUND STATE

To specify the dynamics of a many-particle system one
has to express the ten generators of the Poincare group
P„and M& in terms of dynamical variables. The kine-
matic subgroup is the set of generators that are indepen-
dent of the interaction. There are five ways to choose
these subgroups [7]. Usually a physical state is defined
at fixed xo, and the corresponding hypersurface is left
invariant under the kinematic subgroup.

We shall use the light-front formalism, which is speci-
fied by the invariant hypersurface x+ = x + x3 =const.
The following notation is used: The four-vector is given
by x = (x+,x,x~), where x+ = x + x and x~
(xi, x2). Light-front vectors are denoted by boldface
x = (x+, x~), and they are covariant under kinematic
Lorentz transformations [12]. The three momenta p,
of the quarks can be transformed to the total and rel-
ative momenta to facilitate the separation of the center-
of-mass motion [13]:

exchange. In this work we limit ourselves to the tree
graph. Since we set K+ = 0 we can preserve the correct
qqq structure of the vertex. All relevant matrix elements
we investigate are related to

(p' qp+q p) V'P'+P+ = M (2.6)

where the state Ip) = lp)/gp+ is normalized according
to

(p'li ) = ~(p' —p). (2 7)

M+
(2')

E'E' M
d qdsQ

IqE3E»M')
x 4 t(g', Q', A') 4(iI, Q, A) . (2 8)

By writing down the tree graph for the matrix element in
light-front variables for K+ = 0, integrating over the neg-
ative component of the loop variables by contour meth-
ods, and replacing vertex functions by wave functions
(see Appendix), we end up with the expression

p+
P = Pi+P2+P31 ( =

P1 +P2
qJ = (1 ()plJ. (P2J

Qi = (1 —il)(s ii + Ii2i) —nisi

p+ +p+
P+ )

(2.1)
III. WAVE-FUNCTION MODELS FOR THE

BARYON OCTET

P~2 + M2

2P+ (2.2)

where M is the mass operator with the interaction term
R',

Note that the four-vectors are not conserved, i.e., p1 +
p2 +@3 p P. In the light-front dynamics the Hamiltonian
takes the form

In the light-front variables one can separate the center-
of-mass motion from the internal motion. The wave func-
tion 4' is therefore a function of the relative momenta q
and Q. The product @ = CXP with 4 = fiavor, X =
spin, and P = momentum distribution, is a symmetric
function. We consider wave functions 4 with spin-0,
isospin-0 diquarks, with spin-O, V-spin-0 diquarks, and
with spin-0, U-spin-0 diquarks, respectively. We write
the proton wave function as (N„being the normalization
for the proton)

M=M+M,
Q2~ M,' m23

+ +
il(1 —il) il 1 —il

'

2 2 2
Qg m1 m2

((1-() ( 1-( '

(2 3)

lp) = N, [-u«(eiX" + O2X") + «u (OiX" —esX")
+d (O x"+ 4.x")] (3.1)

The specific forms of the momentum wave functions P,
and spin x are described below. The A wave function is
given by

with m; being the masses of the constituent quarks. To
get a clearer picture of M we transform to q3 and Q3 by

IA) = NA [0'sx" («s —d») + &2x" (»d —ds&)

+fix~ (s« —sdic)] (3.2)
Ei+ q3 Ei2+ Q3
Ei+ E2 Ei. + E.

E,/2 ——(q + m, /2)
2 2 1/2 (2.4)

The wave functions for the other members of the baryon
octet are obtained by changing the fiavor wave function
appropriately: For instance,

(q2 + 2)i/2 E (g2 + M2)i/2

where g = (qi, q2, qs), and Q = (Qi, Q2, Q3). The ex-
pression for the mass operator is now simply

I&) = —Ip) (&~ d)

l~+) = —lp)(d s) .
(3.3)

M = @12+ +3 ) M3 = @1+ E2 ~ (2.5)
The angular momentum j can be expressed as a sum

of orbital and spin contributions,

The diagrammatic approach to light-front theory is
well known [14,15]. It provides, in principal, a frame-
work for a systematic treatment of higher-order gluon

3

j = 'CUP x p+ ) RM&s&
j=1

(3.4)
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where RM is a Melosh rotation acting on the quark spins
s~, which has the matrix representation (for two parti-
cles)

m+(M —io (n x q)(W'!Z,M((, q~, m, M)!W) =
(m+(M z+ q~~

(3 5)

with n = (0, 0, 1). In previous works [16] this rotation

has been approximated by putting M = MR. This corre-
sponds to a weak-binding limit, which cannot be justified
for a bound state in @CD. In this limit our model has a
close connection to many other relativistic quark models
as shown by Koerner, Hussain, and Thompson [17].

The operator j commutes with the mass operator M;
this is necessary and sufBcient for Poincare invariance of
the bound state.

In terms of the relative momenta the angular momen-
tum takes the form

3 = &&g x Q + &M (q, Q~, Ms, M)j» + RM(1 —g, —Q~, ms, M)ss,

i» = ~& x q+ &M((, qi, mi, Ms)sx + &M (1 —(, —q~, mz, Ms}sz .

YVe can drop the orbital contribution to obtain

(3.6}

J=).&isi ~

'Rl = 1 « —qRQI. aqI. —C—QI.
ga2 + Q2& QC2 + q&2 ( CQR + aqR ac —qI QR

1 fad+ qRQI, aqI. —dQI. t

ga2 + Q2 gd2 + q2 (dQR —aqR ad + qI. QR p

( S Q, &

g~z+ Q2 I, —QR

(3.7)

with

a = Ms + AM, 6 = m, + (1 —q)M,
c = mq + (Ms, d = m2 + (1 —$)Ms,

g~ = Qy + X/2, gI = gy
—2/2,

QR = Qi+ &Q~ QI. = Qi —~Q2.

(3.8)

The spin-wave functions in Eqs. (3.1) and (3.2) are

x1 = (TlT —lTT),

xi' = (Tll —lT l)

(3.9)

with g~ and yl' being the appropriate permutations of y~ . The spin-wave function of the ith quark is given by

T='R, and l='R,
!

(01
0 ' lp (3.10)

The functions P, in Eqs. (3.1) and (3.2) are the momentum wave functions symmetric in the quarks diff'erent from
the ith quark. We choose a harmonic oscillator and a pole-type wave function,

(3.11)

P, = (1+%,) ", (3.12)

where the X;. are the generalized forms of M2/2P:
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X3 ——
2 m2 m2 m2Q~ 77l y 77l2 m, 3

2ql(I —ri)Pq 2ql((1 —()P' 2rl(P' 2ql(1 —()/l,' 2(1 —rl)Pq
'

q
(I n-)(l O-pq+(/' + ~ (1 (-)(I n-)P:+(Pq

2PqPqri((1 —()(1 —
ql + (rI) 2PqPqql(1 —ql)(1 —n+ Krj)

Pq —/3' m' m' m'
p2 p2ql(1 ql y (rI) 2'(p2 2ql(1 ()p~ 2(1 ql)/32

'

, (1 —()&,'+((I —n)Pq, (1 —()Pq+((1 —ri)P,'

Pq2P'n(1 (n) —2nC/3' 2n(1 4)P'— 2(1 n)/3'—

(3.13)

The normalization factors Ns in Eqs. (3.1) and (3.2) are determined from (B~B) = 1. For the proton and A we get

(pip) = N„(4i+ 0»+ 414'2)uud+ (0]+0's+ 4'l0'3)udu+ (0'2+ 0's+ 4'24'3)duu

(Al~) = NA (4i). d+ (4'2)used+ (4s)ud.

Our wave functions PH and P+ only differ in their
high-energy behavior. The exponent of the pole-type
wave function can be chosen by fitting the electromag-
netic form factors of the nucleons [18]. In the limit of
vanishing quark masses the corresponding quark distri-
bution amplitudes both converge to the asymptotic form
of Ref. [14]:

in units e and e/M~, and the magnetic moment is p, =
Fi(0) + F2(0).

The anomalous magnetic moment for the A is given by

K~F2(0) = 2MANA—

oc (ql (1 —rI)(1 —() = xixgxs,

with the light-front fractions x, —:p+/P+.

(3.14) ~'q~'Q) ~. ld, l'(x;*Ix',*), (43)
2=1

IV. MAGNETIC MOMENTS

The electromagnetic current matrix element for the
transition B ~ B'p can be written in terms of two form
factors taking into account current and parity conserva-
tion:

with t., being the charge of the ith quark. The formulas
for the other members of the baryon octet are analogous.
The calculation of the spin matrix elements is tedious
but straightforward. The explicit expressions are given
in Ref. [19]. The numerical results are summarized in
Table II for the four different parameter sets given in Ta-
ble I. Parameter sets 1 and 2 are given as a reference for
symmetric wave functions (Pq = Pq), which are usually

(B', A'p'
~

J"
~
B, Ap)

= ug (p') Fi(K )p" + q,o" K up(p)
F(K)

TABLE I. The parameters of the constituent quark model:
quark masses m (GeV), scale parameter P (GeV) and quark
form factors fi and gi for the quark transition s ~ u. Note
that sets 1—3 are used for the harmonic oscillator wave func-
tion, whereas set 4 is used for the pole type wave function.

Fi(K') = (B', 1' J+ B,t),
K~F, (K') = 2M~(B', t ~+ B-, ~) .

(4.2)

For K = 0 the form factors Ej and E2 are, respectively,
equal to the charge and the anomalous magnetic moment

(4.1)

with momentum transfer K = p' —p, and the current
J" = qep"q. In order to use Eq. (2.8) we express the
form factors in terms of the positive component of the
current:

Parameters
77ltt mQ

ms
PqN
Po~
PqA

Pq~
PqZ

Pqz
Pq=-

Pq=-

fi ~

glus

Harmonic oscillator
Set 1 Set 2
0.33 0.267
0.55 0.40
0.16 0.56
0.16 0.56
1.00 0.60
1.00 0.60
1.00 0.60
1.00 0.60
1.08 0.62
1.08 0.62
1.00 1.00
1.00 1.00

Set 3
0.26
0.38
0.55
0.55
0.55
0.80
0.80
0.40
0.80
0.36
1.19
1.19

Pole type
Set 4
0.263
0.38
0.607
0.607
0.607
0.90
0.90
0.45
0.90
0.40
1.28
1.28
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used in the literature [5,20]. Set 1 uses relatively large
quark masses normally found in nonrelativistic models
(m„= mq = M„«i,~„/3). The magnetic moments can
be reproduced very well, but the semileptonic weak de-
cay data deviate by more than an order of magnitude.
I'his is due to the special choice of the P parameter for
the nucleon and the hyperons:

/3N ++ Pz PA /3:-

which results in a too large suppression for the AS = 1
transitions, since the wave-function overlap is small. Pa-
rameter set 2, on the other hand, gives good values for
the semileptonic decays but is bad at fitting the magnetic
moments. Within the symmetric wave-function model
do we find, that either the magnetic moments can be fit-
ted and the weak decay data are poorly Btted or vice
versa. The opposite statement in Ref. [3] has to be ques-
tioned because their numerical results for the magnetic
moments are wrong. Our results agree with Ref. [20] on
this point. The inconsistency just described between the
electromagnetic and the weak sector can be resolved by
using asymmetric wave functions (parameter sets 3 and
4). All electroweak properties in Table II can be fitted
with this wave function. Set 3 uses the harmonic os-
cillator wave function in Eq. (3.11), and set 4 uses the
pole-type wave function in Eq. (3.12). The only essen-
tial difference between these two types of wave functions

V. HYPERON SEMILEPTONIC BETA DECAY

In the low-energy limit the standard model for semilep-
tonic weak decays reduces to an e8'ective current-current
interaction Hamiltonian

G
H;„t —— J„L"+ H.c. ,2" (5.1)

where G 10 /M2 is the weak-coupling constant,

I"= 0.V"(1 —Vs)M. + 0pW" (I —Vs)4

is the lepton current, and

(5.2)

is the high-energy behavior [18]. The twelve parameters
in Table I are overcounted because Pqiv = PqA = P„d
and P~~ = P~= = P„, being the scale parameters for
the diquarks ud and u8, respectively. After fitting the
mass m„= mg, we fix the strange quark mass to be
m, /m„1.4 —1.6 [21]. Therefore, we have only nine
degrees of freedom, but it is not obvious that a reason-
able fit is possible, since the relations are nonlinear. VJe
get, however, an excellent agreement with data for the
asymmetric wave functions (sets 3 and 4). The neutron
magnetic moment could be improved by introducing elec-
tromagnetic quark form factors [5].

TABLE II. Electroweak properties of the baryon octet. The calculations with symmetric wave
functions (sets 1 and 2) and asymmetric wave functions (sets 3 and 4) are compared. Note that
set 1 is only able to fit the magnetic moments, whereas set 2 is best at Btting the weak decays.
Sets 3 and 4 reproduce all electroweak data in an excellent way. The magnetic moments are given
in units of the nuclear magneton; the decay rates are given in units of 10 s (except the nucleon
decay is in units of 10 s ). Experimental data are from Ref. [26].

Quantity
u(p)
V(n)
u(~')
~(~ )
S (A)
p(=-')
u(=- )
gr/fr(n ~ pe ve)

g3/2gr (Z+ Ae+ v, )
gr/fr(A ~ pe P, )
gr/fr(Z ~ ne v, )
gr/fr(:- ~ E e v, )
gr/fr(:- ~ Ae v, )
I"(n ~ pe v, )
I'(E+ ~ Ae+r, )
I'(Z ~ Ae v. )
I'(A —+ pe v, )
I (E ~ ne v)
I'(:- ~ Ae r.)
I (:- ~ Roe v, )
I'(A pu ~)
I(E ~np P~)
I (= Ap i'i )

Expt.
2.79 + 10

-1.91 + 10
2.42 + 0.05

—1.160 + 0.025
—0,613 + 0.004
—1,250 + 0.014
—0,6507 + 0.0025

1.2573 + 0.0028
0.742 + 0.018
0.718 + 0.015

—0.340 + 0.017
1.287 + 0.158
0.25 + 0.05
1.125 + 0.003
0.25 + 0.06
0.387 + 0.018
3.169 + 0.053
6.88 + 0.23
3.36 + 0.18
0.53 + 0.10
0.60 + 0.13
3.04 + 0.27
2.1 + 2.1

Set 1

2.85
—1.83

2.59
—1.30
—0.48
—1.25
—0.99

1.63
0.80
0.957

—0.319
1.594
0.319
1.76
0.29
0.47
0.14
0.16
0.10
0.02
0.02
0.07
0.03

Set 2
2.78

—1.62
3.23

—1.36
—0.72
—1.87
—0.96

1.252
0.736
0.826

—0.275
1.362
0.272
1.152
0.24
0.389
3.51
5.74
2.96
0,55
0.58
2.54
0.80

Set 3
2.82

—1.66
2.63

—1.14
—0.69
—1.25
—0.67

1.248
0.759
0.759

—0.255
1.212
0.270
1 ~ 113
0.25
0.41
3.37
6.13
2.35
0.66
0.56
2.77
0.65

Set 4
2.81

—1.66
2.61

—1.13
—0.69
—1.24
—0.76

1.260
0.704
0.745

—0.255
1.192
0.255
1.13
0.21
0,36
3.22
6.47
2.76
0.76
0.53
2.93
0.76
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Jii, = Vp —Ap, Vp ——Vuduppd+ Vusup„s, A„= Vudup„lsd+ V»up„ass, (5.3)

is the hadronic current, and V„p, V„, are the elements of the Kobayashi-Maskawa mixing matrix. The ~-lepton current
cannot contribute, since m is much too large.

The matrix elements of the hadronic current between spin-& states are

I K23 ~K ~

(B',p']V"
] B,p} = V„(p') f (K')p — ' ' "K.+ ' 'K" (p), (5.4)

K2 K(B',p']A"
~

B,p} = Vgg u, (p') gi(K )p" — io" K~+ K)' psu(p), (5.5)

where K = p —p and M, is the mass of the initial baryon. The quantities fi and gi are the vector and axial-vector
form factors, f2 and g2 are the weak magnetism and electric form factors, and fs and gs are the induced scalar and
pseudoscalar form factors, respectively. T invariance implies real form factors. We do not calculate fs and gs, since
we put K+ = 0 and their dependence on the decay spectra is of the order

2'i ((1,
qM, )

where mt is the mass of the final charged lepton. The other form factors are

(5.6)

fi ——(B', t' V+ B, t'), Ki f2 = M, (O', T V+ B, j,),
gi = (B', 1' A+ B, t'), K~g2 ———M, (B', T A+ B, J,) .

(5 7)

We generalize the Dirac quark current for the s —+ u transition by introducing constituent quark form factors fi„,
an6 g].us

u& (1 —&s)s ~ u1"(fi„,—gi„,7s)s.

We therefore have an effective fi ——fi„,fi and an effective gi ——gi„,gi. Ignoring the lepton mass the rate I' is given
by [22]

P

l1 ——P+ P lf + —P—f + 3 ——P+ P—2 &M'IVI' & 3 6 2'l 2 4 2 2 9 12
60~' (, 2 7 ) 7

+ Pg2+ 7P
—fif2+ (—4P+ 6P )gig2+ -P (f»y +5gi&g)

12 2 2 6 2 (5.8)

where P is defined as P = (M, —Mf)/M~, and AM = M, —Mf, M~, Mf being the masses of the initial and final
baryon, respectively. The K dependence of f2 and g2 is ignored and fi and gi are expanded as

K K
f1(K ) = f1(0) + 2 ~f ~ gl(K ) = gl(0) + 2 ~g ~ (5 9)

We correct the rate from Eq. (5.8) to include the effect of the nonvanishing lepton mass and the effect of the radiative
corrections [22,23].

The form factors in Eq. (5.8) are calculated by using Eqs. (5.7), (3.1), and (3.2). As an example we give the form
factors gi for the decay A —+ p/ Pi

si = (u, ( IA+lx, () = ~,&~ (SiSs(x IA+Ixg') —S2S3(x I&+lx", ) —2Ss(xp'I&+Ix )) (5.10)

The calculations for the spin matrix elements are tedious but simple algebra. The exact formulas are given in Ref. [19].
In the limit of symmetric wave functions and K2 = 0 do we get, for the above decay A —+ pt vt,

gl(o) =— N,
(2vr)

Pt (M)P(M) (6'6 —Q2&) (a'a + Q2&)

(&"+ Q')(~'+ Q') v'(5" + Q')(t'+ Q') (5.11)
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TABLE III. Form factors fq and gq for the ~arious semilep-
tonic weak P decays. Parameter sets 3 and 4 of Table I are
used.

Decay
n~p
K+~A
A~@
E —+n

gQ

~A

fi
1.00

—0.04
—1.04
—0.87
0.71
0.91

Set 3
g]
1.25
0.62

—0.79
0.22
0.86
0.25

fi
1.00

—0.05
—0.95
—0.83

0,72
0.92

Set 4
ga
1.26
0.58

—0.71
0.21
0.86
0.24

gi/fi(A Se ~.)
gq/fq(Z —+ ne v, )

(5.12)

is constrained to be —3 in the models in contrast with
the experimental value —2.11 + 0.15 for g~

——0.

The K2 dependence of the form factors fq and gq is calcu-
lated by their derivatives at K = 0. The form factor gq
vanishes or is very small as it should be. The weak mag-
netism form factor f2 agrees with the conserved vector
current hypothesis within 5%. The form factors fz and gq
are given in Table III for the various decays. We summa-
rize the ratios gt/ fq and the rates I' for all the measured
semileptonic weak decays in Table II. Sets 3 and 4 give
an excellent fit for all experimental data, except for the
ratio gq/fq for the decays A —+ p and Z —+ n. This is,
however, a general property of every quark model due to
its SU(6) flavor-spin symmetry. The ratio
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APPENDIX: CONNECTION BETVVEEN THE
WAVE FUNCTION AND THE POTENTIAL

with

I'(&) —T(&)GzGs (I (&) + I (s)
)

G, =P, —m, ,
T(') = (1 —VG, G.)-'V,

(A1)

(A2)

and similarly for I'(2) and I'(s). V is the one gluon ex-
change kernel between two quarks, and T is already the
ladder sum to all orders. It is useful to consider the sec-
ond iteration of the vertex equation, which is given by

I' = UClG2631',

where I' = (I'(~), I'( ), I ( )) and U is the matrix:

It is instructive to give some details on the derivation
of the equation of motion for the wave function.

We shall assume only two-particle forces interacting in
a ladder-type pattern so that the dynamics of the three-
body system is governed by the Bethe-Salpeter (BS) in-
teraction kernel for the two-body system and the rela-
tivistic Faddeev equations.

Using the Faddeev decomposition for the vertex func-
tion r = r~'~ + r~'& + r~3~, we can write down a BS
equation for the various components in operator nota-
tion:

VI. SUMMARY AND OUTLOOK

We have shown that there exists a relativistic quark
model with diquark clustering that provides a framework,
in which we have overall an excellent and consistent pic-
ture of the whole baryon octet for the magnetic moments
and the semileptonic weak decays. The physical picture
of the baryon octet is as follows (parameter sets 3 and 4
in Table I). There is no diquark clustering in the nucleon
sector (P~~ = Pq~). In the strange sector we have a
strong diquark clustering for the Zs (P~~ 2Pq~) and:"s
(Pq= 2'=) and a small one for the A (1.5Pq~ Pq~).
The diquark us pair (P~~, P~=) is more tightly bound
than the ud pair (P~~, P~~) as we might expect. The
low-momentum properties do not depend on the two dif-
ferent wave functions chosen. It would, however, be il-
luminating to derive the momentum wave function from
a potential. To complete the study of the baryons one
should also include the effects of higher Fock states.

I' = WgsI', W = (1 —URs) U (A5)

by writing GqG2Gs = gs+ Rs, where gs has only three-
particle singularities. We choose a g3, which puts the
quarks on their mass shells:

3

gs = (2vri)z ds 6+(pz —mz)(p, +m, ),
t=l

(A6)

where P is the total momentum of the bound state, s =
(pq + @2+ps) and p; are restricted by p,+ ) 0. We get

T(')GzT(") for i g j with k g i, j,
T(') (G&T(') + G&T(")) for i = j with k g l g i .

(A4)

The four-dimensional Eq. (AS) can be reduced to a three-
dimensional equation

g3 —(2~i) b (p2 —m2)6(ps —ms) 0(()0(1 —()0 (rl) 0(1 —rj)
g P2 —M~

with the spin projection operator

(A7)
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A+(p, ) = ) u(p, , A)u(p, , A) . (AS)

Writing

u(plA1)u(p2A2)u(p3A3) ~4j u(pyAy)u(p2A2)u(psA3),

1
g3

-() t' M3M l ~
()u(pl A 1 )u(p2 A2) u(p3 A3)

1 2 3 12)
(~" —,z,z;z,z,s,z;z„~„)

(A9)

we are led to the integral equation

I(')(q, q, A„A„A,)=, )
A', A~Asj

d q'd Q'W' (q, q', Q, Q', Ag, A~, As) As, As, A3)

x js(q', Q') f'(j) (q', Q', A'„A2, A3) . (A10)

We can write this equation in terms of the wave function
4. The Faddeev decomposition is 4 = 4( )+4( )+4( ),
the relation to the vertex function is 4('~ = j3I'('), and
writing 4' = (4( ), @( ), 4( )) we get

M'4 =M~%, (A12)

which is equivalent to the equation usually used in con-
stituent quark models [24]:

(M~2 —M')4 = WC (A11) (E» + E3 + W)C = M~4 . (A13)

with M~ being the mass of the baryon. If we put R' =
MW + WM + W2 we see that the wave function is an
eigenfunction of the mass operator M, given in Eq. (2.3):

This last equation is the starting point for an explicit
calculation of the wave function, which has been done
for the meson sector [25].
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