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Temperature dependence of electric and magnetic gluon condensates
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The contribution of Lorentz nonscalar operators to finite temperature correlation functions is
discussed. Using the local duality approach for the one-pion matrix element of a product of two
vector currents, the temperature dependence of the average gluonic stress tensor is estimated in the
chiral limit to be (E + B )~ = (7r /10)bT . At a normalization point p = 0.5 GeV we obtain
b 1.1. Together with the known temperature dependence of the Lorentz scalar gluon condensate
we are able to infer (E )T and (B )T separately in the low-temperature hadronic phase.

PACS number(s): 11.50.Li, 12.38.Lg, 12.38.Mh

Correlators of currents with the quantum numbers of
hadrons are known to be useful to obtain information
about the masses and couplings of hadrons; they are em-
ployed in the QCD sum rule approach and in lattice cal-
culations. In both approaches the correlators are con-
sidered at large Euclidean distances or imaginary times
where the dominant contribution comes from the lowest
state with the corresponding quantum numbers. QCD
sum rules give predictions also for form factors and struc-
ture functions of hadrons. (For a recent review of appli-
cations of QCD correlation functions see Ref. [1].)

In recent years there has been increasing interest in
finite temperature QCD and hadronic physics due to
the expectation that at high enough temperatures the
QCD vacuum, specified by nonperturbative condensates
of quark and gluon fields, will "melt" and undergo a tran-
sition to a quark-gluon plasma. Melting is usually un-
derstood in the sense that chiral symmetry restoration
and deconfinement take place. The former means that
with increasing temperature quark condensates evapo-
rate, while the latter means that hadrons do not represent
stable degrees of freedom. It was shown by Leutwyler and
his collaborators [2] using the chiral Lagrangian approach
that the quark condensate indeed decreases with rising
temperature. From the usual QCD sum rules at T = 0
it is well known that the properties of hadrons are, to a
large extent, determined by nonperturbative quark and
gluon condensates [3]. Naturally, a large number of pa-
pers were devoted to the generalization of QCD sum rules
to finite temperature in attempts to relate the tempera-
ture dependence of the hadronic spectrum to the temper-
ature dependence of the condensates (see, e.g. , [4—6]). In
this case the vacuum average of the product of currents
becomes the Gibbs average over the thermal ensemble.

To calculate the Gibbs average one must choose a basis
for the states. As argued in Refs. [5, 7] at temperatures
which are much less than the energy scale of confine-
ment the appropriate basis is that of hadronic states,
rather than the quark-gluon basis used in early papers
on the subject (see, e.g. , Ref. [4]). Using this basis it
was also shown [5] that at low T the thermal correla-
tors are expressed as a mixture of zero-temperature cor-
relators with different parity. It is also clear that if the
operator product expansion (OPE) is applied to a ther-
mal correlator then the temperature dependence appears
only in the matrix elements .of the operators (conden-
sates), the coefficient functions being obtained through
a perturbative calculation at T = 0. QCD sum rules at
low temperature were recently reexamined along these
lines in Ref. [8].i At high temperatures, corresponding
to the quark-gluon plasma, the calculation of thermal
correlators should be performed in a basis consisting of
quark and gluon states. In this case the perturbative
temperature-dependent parts of the condensates due to
quarks and gluons from the thermal ensemble may be
included in the coefficient functions [6].

Thus the QCD sum rule method, understood as a tool
to get information about the imaginary parts of correla-
tors via analyticity, seems to be tractable both at very
low and very high temperatures, but not in the region of
a phase transition where a drastic rearrangement of the
spectrum takes place.

An additional feature of finite temperature sum rules is
the appearance of new condensates due to Lorentz non-
scalar operators; these were, of course, present in the
OPE, but gave zero contribution when averaged over the
vacuum. At finite temperatures Lorentz invariance is
broken and these operators should contribute [1,6]. The
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same applies to the case of finite density [9]. However,
each of these new condensates is an unknown nonpertur-
bative parameter. In principle they may be fixed from the
physical spectral densities of the correlators, just as in the
zero-temperature case the now well-established conden-
sates were fixed by the hadronic spectrum.

Consider the correlator of two isovector vector cur-
rents at finite temperature T and Euclidean momentum
q, where T (( Q = —q2 and Q2 & 1 GeVz:

i d x e'~* ) (n~2 j„(x)j„(0)e( )) ~n)

= (g~ q —q„q )Ci(q, T)+u„'u'„C2(q,T), (1)

where 2 denotes a time-ordered product, j„=z (up„u-
dp„d), u'„= u„—(u q) q„/q is the transverse
part of the heat bath four-velocity u~ and 0

T in(P—„(n~e ~ ~n)). Equation (1) is the most gen-
eral expression compatible with conservation of the vec-
tor current. The Lorentz-invariance-breaking term pro-
portional to u'„u' must be absent at T = 0. This means
that C2(q, T) goes to zero as T ~ 0, while Ci(q, T) be-
cornes the usual zero-temperature correlator. Notice that
Eq. (1) may be considered to be the amplitude for for-
ward scattering of a virtual photon by the heat bath.
Then the imaginary parts of Ci and Cz are the structure
functions of deep inelastic scattering of leptons by the
heat bath [u+ is similar to the transverse component of
the target momentum, p„—(p q) q„/q2].

At low T, when the contributions from all particles
except pions are exponentially suppressed in the Gibbs
average, the functions Ci and C~ may be estimated by
expanding in the density of thermal pions. In the first or-
der of this expansion only matrix elements over one-pion
states are taken into account. This approximation was
made in Ref. [5] for Ci. The one-pion matri~ elements
were estimated via PCAC (partial conservation of axial-
vector current) and current algebra. It was shown that
Ci and its counterpart from the axial channel are given
by T-dependent mixtures of their zero-temperature val-
ues and, as a result, the corresponding screening lengths
tend to converge with increasing temperature.

The purpose of the present article is to estimate C2.
Let us start from the one-pion matrix element in the
chiral limit:

8 —z'i(qadi), ~Dp~q + qadi)~Dp)q) ) q = u) d, s) . ~ . ,

8„„—G„G„—4g~,„,Gp~G )

where D„is the covariant derivative. Graphs which cor-
respond to the contributions of these operators to the
matrix element in Eq. (2) are shown in Fig. 1. If the nor-
malization point for the operators is taken to be p2 = Q,
then the operator Hay pg does not contribute to the OPE
in the leading log approximation, and the contribution of
twist-2, spin-2 operators to Eq. (2) involves

, ( (p)18"„.+8„".
I (p)) =, ( (p)18„".'-8„.

1 (p))

(4)

Here we neglected the contributions of heavy quarks. The
matrix element of the total energy-momentum tensor is

(vr(p) ~8'~'~vr(p)) = 2p„p [the states are normalized such

that (vr(p)~m(p')) = (27r)s2E6'&s&(p —p')], while the ma-
trix element of the gluon energy-momentum tensor,

(~(p)18„.l~(p')) = 5ppp, (5)

contains an unknown constant b. This constant is related
to the matrix element of the energy density of the gluon
field |= 2, (~(p)IE'+ 8'l~(p))~=~

Note that ti depends on the normalization point, p„in
the operator product expansion. This dependence will
be discussed later.

Let us try to estimate b within a quark-hadron du-
ality approach, saturating the amplitude of Eq. (2) by
hadrons, (m~Tj„(x)j„(0)~vr)= P„(~~j„(x)~n)(n~j (0) ~vr).

Focusing on spin-2 contributions to Cq, we then have

2 —b c 1 p(s) Fg (Q2)

where F„(Q) is the part of the form factor (~(p) ~ j„~n(p
+q)) proportional to p„and p(s) is the spectral density in
the s channel. The states ~n) are normalized as in Eq. (5),
the n-state contribution to p(s) being vr6(s —rn„).On the
left-hand side (LHS) of Eq. (7) the term c/Q denotes the
contribution of three difFerent spin-2, twist-4 operators

d'& e"*(~(p)l&jp(&)j (0) l~(p)), (2)

where we assume p T (( Q, since Eq. (2) is to be
integrated over p with Bose occupation probabilities. If
0&,&, ...& is an operator of Lorentz spin n, then the ma-
trix element (m(p)~O~, „,„„~~(p))oc p„,p~, p„„,and
cannot be reduced via PCAC to a vacuum matrix ele-
ment. It is clear that at low temperatures, T (( Q, the
main contribution to Cg comes from operators of lowest
spin, namely spin 2. In leading twist there are two spin-
2 operators which are related to the energy-momentum
tensor:

FIG. 1. Diagrams contributing to (a) (n]8~»~ ~n) and (b)
(sr~8„,„,~~). The dashed lines correspond to gluons.
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[10] whose individual contributions cannot be separated.
The constants b and c are considered as parameters to be
fitted. The ellipsis in Eq. (7) corresponds to spin-2 terms
of higher twist. Note that Eq. (7) is just the sum rule
for the second moment of the deep inelastic structure
function, J0 F2(x, Q )d2:, divided by Q . It is valid in
the asymptotic region, Q ~ oo, with all higher states
in the s channel equally important in this region. Our
goal here is to see whether Eq. (7) can be satisfied in a
region of intermediate Q2 ~ 1 GeV2 where the RHS may

I

be approximated by the contribution of a few low-lying
states.

First consider the case of charged pions. The low-
est states in the s channel are the 7r and ai(1260)
mesons. Assuming p dominance for the form factors
(which is known to be a good approximation for the
pion form factor up to Q 2 GeV ), (elj„ln)

(m —/gp) sr (vrpln)(Q +m ),where s~ is the p-meson
polarization vector and g~/4~ 2.9. We obtain, for the
RHS of Eq. (7),

48m 1 1 2 2 2 1h2 2 2 2(. .. , +, ,(. . . a.„.+ri, , (Q — .,)+- .„.(Q + ., )

Here we used

(9)

(10)

The notation corresponds to that of Ref. [13]. Note that gp = gp within the p-dominance approach The . couplings
g~, p and h, ~~ cannot, of course, be determined from the ai width alone. To this end we use an effective chiral
Lagrangian with spin-1 mesons [12—14]. In this approach the constants in question are expressed in terms of parameters
of this Lagrangian which are fitted to reproduce masses and widths. The Lagrangian in question contains a massive
Yang-Mills part and two higher derivative terms:

1Tr(FL FLPv + FR FRPv) + ~2Tr(ALALy, + ARARAT)

t(Tr(—D„UD UtF " + D„UtD UF " ) + o TrF „UF""Ut,

where U = e xp(2ip/ F), p = p 7 /~2, AL = 2(V„+A„),AR = 2(U„—A„),F„R= B„ALR —8 AL R—
ig AL R, AL R and the covariant derivative D„U= cj„U—igA„U+igUA~+. The quadratic piece of this Lagrangian
is nondiagonal in B„Pand A„.After diagonalization the physical masses are given by

2 2 ~0 2 2 1 ~ 2 g FPr~
V A a l

m0+
1 —o ' 1+can i, 4

(12)

and F is related to the physical coupling F = 135 MeV through

F =ZF g F„1—o. m~
4mo 1+o m~

(13)

The couplings g~, ~, h~, ~, and g~ are expressed through g, (, a and the meson masses by

2Z' t' 2 (~+ g()F. &1-~') (14)

g, ~ = 2(m& + m& —m )h, ~~ +
l 2 l

(1 —a.)(1 —Z ) + 2g(Z( I —cr2 )

/2(1 —o') (1 —o.) (1 —Z )
(16)

In Ref. [11] the transverse photon structure function in the region of intermediate 2: was calculated starting from the VVVV
four-point correlation function, using the OPE in the photon virtuality p and extrapolating to p = 0. One could think of
doing the same thing for the pion structure function, starting from the AVVA correlator. It can be shown, however, that just
as in the case of the longitudinal photon structure function, there are difFiculties in the extrapolation to on-shell pions. The
AVVA box diagram also cannot be used, via a triple dispersion relation, to model the continuum contribution to the real part
of the forward scattering amplitude in the usual manner because of the zero momentum transfer in the t channel.
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Here we retain a nonzero mass for the pion for the purposes of fitting the coupling constants. The widths are expressed
through these couplings as

and

1 32I'p —— ~q ~ g6~m,

E~
+1~P~ 2 ga1P7l' + ga1 per14+ma mp

2
'

iq i'h, p
mp

(17)

(18)

With the four available parameters g, cr, (, and mo it is possible to fit both the masses and the widths of the p and
the ai [14]. We have refitted these parameters using a recent value of the width, I', = 400 MeV [15, 16]. There are
two possible solutions:

(A) ~ = 0.340, t, = 0.446, g = 8.37,

(B) ~ = -0.291,

which correspond to

( = 0.0585, g = 7.95,

(A) g, ~ = —5.42 GeV, h, ~ = —16.7 GeV

(B) g, ~ = 4.25 GeV, h~, p
= —2.05 GeV

p = 0.52,

p = 0.33.
(20)

Here the quantity p is the ratio of polar- and axial-vector
contributions to radiative pion decay. Both solutions
are reasonably consistent with the positive experimen-
tal value of 0.4 discussed by Holstein [13]. However,
it can be shown that the opposite sign soluti-on, (B), is
excluded by the @CD sum rule estimates of Ioffe and
Smilga [17] for the two form factors entering the nondi-
agonal matrix element (cia~„~ir) They u. se couplings gi
and g2 to parametrize these form factors in a p domi-
nance approach, and the relation to g,p„and h, p is
given by

2g m p

g2(Q'+ m')'(Q'+ m' )
(22)

The result of taking into account the sr* is shown in Fig. 2

(ir*~p(q)ir(p)) = g' d' p may be roughly estimated using
the rather uncertain data [15] on the width, I'.' = 200—
600 MeV and 1'„.„p——3I'. . This gives g* = 5. The
contribution of the sr* to the RHS of Eq. (7) is then

gagP7f = glma1) ha1Pm =
may

2
mp

gq + g2
mg

While the absolute values of gj and g2 obtained in
Ref. [17) contain large uncertainties, they are definitely
of the same sign, thus ruling out solution (B). Therefore
we choose the like-sign solution (A).

We shall display our results for the RHS of Eq. (7)
multiplied by Q, which according to the LHS should
give the linear relation (2 —b)Q + c. The results from
Eq. (8) are given by the dashed line for the charged pion
ease in Fig. 2. It is seen that there is a good linear
dependence for Q~ & 0.9 GeV . We cannot use values of
Q larger than plotted in the figure since higher states,
which are not accounted for, become important and p
dominance is not applicable either. There is an excited
pion state 7r*(1300) which may contribute for the values
of Q in question. Its coupling to per defined through

We note that the minus sign in Eq. (18) is correct in con-
trast to Refs. [13,14] which are written with an incorrect plus

sign.

charged

2-.

CY neutral

I

q' (cev~)

FIG. 2. The RHS of Eq. (7) multiplied by q shown as
a function of Q . In the case of charged pions, the dashed
curve is obtained with m'- and aq-meson intermediate states
and the solid curve also includes the m meson. In the case of
neutral pions, the dashed curve is obtained with an w-meson
intermediate state and the solid curve also includes the w'

meson.



4088 V. L. ELETSKY, P. J. ELLIS, AND J. I. KAPUSTA 47

by the solid line. It is clear that the eEect of the a* is
quite small. By Btting a straight line to the curve we
estimate b = 1.14 and c = 1.14 GeV2.

The matrix element of the gluon Beld energy density,
Eq. (6), must be the same for charged and neutral pions.
This may be used to check our calculation. So, let us
now consider the case of neutral pions. Isotopic spin
invariance forbids the ~ and a& mesons in the 8 channel
so the lowest allowed state is the w meson. The upper
vertex has the form

2m', Q'

gpss

(Q +m)(Q +m) g ) (24)

To be consistent we should use the value of the coupling
constant g p obtained from the decay u ~ ~p using p
dominance [18], g ~ 14.9 GeV . The corresponding
Q~ dependence of Eq. (24) (multiplied by Q~) is shown
in Fig. 2 by the dashed curve for the neutral case.

There is, however, an excited state, u*(1390), which
can contribute. The dominant decay mode is to the per
channel and taking this to account for the full width
of 230 + 40 MeV [15], we deduce a coupling constant

p~ —5 29 GeV . The result of including both the
and a* is shown by the solid line in Fig. 2. There is a
noticeable curvature and a linear fit in this case results
in larger uncertainties: b = 1—1.2 and c = 0—0.3 GeV2.
While the value for b agrees with the one obtained from
charged pions, it is clear that the intercept c is difFer-
ent. This should have been expected since c involves the
contributions of quark operators and their averages over
charged and neutral pions need not be the same.

Thus, we adopt the value b 1.14, corresponding to
a normalization point p, Q 1 GeV. This is in good
agreement with the value b = 1.03 deduced from the anal-
ysis of Ref. [8] in which the matrix element (vrI8„"+"I7r)
was extracted from a fit [19] to the quark and gluon dis-
tribution functions in the pion. In the leading log ap-
proximation the dependence on the normalization point
is determined by the renormalization group. However,
as is well known [20], operators of the same twist get
mixed under renormalization due to radiative gluon cor-
rections. The diagonal combinations in the case of two
quark flavors are

PV PV + PV 8 PV

[0]

44
87

32
87

(25)

The numbers in square brackets are the anomalous
dimensions p of the corresponding diagonal operators
which are renormalized multiplicatively:

n, (pz) ln(Q/AgcD).(Q') 1( /A )
' (26)

~(~(p)~(q) l~(p+ q)) = g..."~-s.~$p.q. ,

where s and s~& are the polarization vectors of the w and
p mesons. Then the contribution of the ~ to the RHS of
Eq. (7) is

where AqcD = 150 MeV. Then the evolution of b, defined
by Eq. (5), under a change of the normalization point is

given by

/{p) — y ~44/87) + t {g)~44f8716
11 (27)

It can be seen that according to Eq. (27) b decreases with

p, and becomes zero at y, = 1.1AqcD. At the standard
normalization point used in QCD sum rules, p = 0.5
GeV, we get b = 1.06. Note that the small value of
the normalization point for which b = 0 (meaning that
there is no gluon component in the pion) agrees with
the results of Ref. [21] where it was shown that a quark
model description of deep inelastic scattering of leptons
on nucleons is consistent with experimental data pro-
vided p, —m

Coming back to finite temperatures, the temperature
dependence of the condensate (Ez + B ) is determined
by the integral over the thermal pion phase space:

(E'+B')~ = 3b
~'p

I pl b~'T4
(27{.) exp(lpI/T) —1

(28)

T' (
3645~y(~y —1)F, I

» T" —
4)l

(30)+ ~ ~ ~

where A„275MeV is a scale encountered in the three-
loop calculation of the pressure of a hot pion gas within
chiral perturbation theory [2]. The sign of this contri-
bution corresponds to the melting of the gluon conden-

where the factor of 3 in front of the integral accounts for
the three charge states of pions. The structure function
t z in Eq. (1) is obtained in the same way:

xzT4 ( c & (Ts'i
&~(Q, T) =, , I

2-b+, +" f+ o
I

(29)

where c =
& c,h, z,d+ 3c„,„t,~ = 3 is the charge averaged

value of the constant c.
Let us now briefly summarize what is known about be-

havior of condensates at low temperatures in the chiral
limit. The temperature dependence of the usual (Lorentz
scalar) condensates at low T was considered on the ba-
sis of chiral perturbation theory up to three-loop order
[2]. The low T expansion of the quark condensate begins
with a term of order Tz/F, because for pions with zero
momentum the matrix element (7rIqqIvr) is nonzero and
proportional to ( OqIqI)O/F. In the case of the operator
G„t "",which is a chiral singlet, the one-pion matrix
elements vanish. The T dependence of the gluon conden-
sate is related through the trace anomaly to (e~)z. The
first nonzero contribution to this matrix element appears
only at the three-loop level. As a result, the T depen-
dence of the gluon condensate begins at order T /F:
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dence is rather weak at low T and, at T 150 MeV,
the condensates are changed from their T = 0 value by
only about 1Fo. The fact that the change is small is qual-
itatively consistent with the results extracted from the
lattice data [6]; however, we do not agree with the lattice
predictions for the sign. We suggest that the lattice cal-
culations are probably not sufBciently accurate to predict
such small effects.

We notice that keeping m finite would not affect the
values of 6 and c within the accuracy of our approach.
The only differences would appear in the integral over
the thermal distribution function, Eq. (28), and in a lower
order contribution to Eq. (30). It is straightforward to
perform the calculation numerically and this results in
the solid curves shown in Fig. 3. We observe that Eq. (31)
is a good approximation; indeed, for the electric field the
results are indistinguishable. We remark that at very low

T, T && m, we have, for p = 0.5 GeV,
FIG. 3. The curves labeled B and E give, respectively,

(B )7 /(B )o and (E )7 /(E )p as a function of temperature.
The normalization point is p, = 0.5 GeV. The dashed curves
give the results for zero pion mass and the solid curves corre-
spond to nonzero pion mass. In case E these two curves are
indistinguishable.

sate with rising temperature. However, this melting is
much slower than in the case of the quark condensate,
and (G )z is practically constant up to T ~ 150 MeV,
that is, in the region of applicability of the approximation
of a hadronic gas.

One-pion matrix elements of Lorentz nonscalar oper-
ators cannot be estimated using the soft pion approach,
because they are proportional to the pion momentum p.
Since p T, the corresponding condensates naturally
vanish as T —+ 0. Since (B —E )7' (B —E )p, we
get from Eq. (28) the T dependence of the condensates
of chromomagnetic and chromoelectric fields:

(B') = (B') —0.033m'./'T'/2e---/T

(E2) (E2) + 0 20rn5/2T3/2e —rn~/T
(32)

The numerical effect is exceedingly small, but it is in-
teresting to observe that the magnetic condensate (B2)z.
slightly decreases at very low T before increasing. The
behavior of (E )7 is, however, monotonic.

Finally we brieHy comment on the effects of higher
spin and twist operators. The averages of Lorentz non-
singlet operators of spin larger than 2 are necessarily pro-
portional to higher powers of T and their contribution
to thermal correlators will be suppressed by powers of
T2/Q2. The operators of spin 2, but of higher twist, are
suppressed by p~&/Q, where ph is some hadronic mass
scale AqcD. In the case of vector currents three twist-
4, spin-2 operators [10] contribute to the constant c in
Eq. (7) and to disentangle individual contributions some
extra information must be used. In our opinion, this
problem deserves further consideration.

bar'
(E')T = (E')o+

20
T'

where (B2)o = —(Es)o 2 x 10 GeV4, using a
renormalization scale p = 0.5 GeV. We indicate the
predicted ratios (B )T/(B )e and (E )7/(E )o by the
dashed curves in Fig. 3. It is seen that the T depen-
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