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Uncertainties in coupling constant unification
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The status of coupling constant unification in the standard model and its supersymmetric extension
are discussed. Uncertainties associated with the input coupling constants, m„threshold corrections at
the low and high scales, and possible nonrenormalizable operators are parametrized and estimated. A
simple parametrization of a general supersymmetric new particle spectrum is given. It is shown that an
effective scale MsUs& can be defined, but for a realistic spectrum it may differ considerably from the typi-
cal new particle masses. The implications of the lower (higher) values of a, (MZ) suggested by low-

energy (Z-pole) experiments are discussed.

PACS number(s): 12.10.Dm, 11.30.Pb

I. INTRODUCTION

Implications of precision Z-pole, 8' mass, and neutral-
current data for the standard model were considered pre-
viously in Ref. [1]. Constraints on the top mass were de-
rived, and the value of a weak angle at the Z pole,
sin Hid, (Mz ), was extracted from the data. It was further
shown that within the supersymmetric SU(5) grand
unified theory (GUT) [2]—[10] the two-loop prediction [3]
of the weak-angle agrees well with the value extracted
from the data, that the standard model couplings meet at
a point [within the ct, (Mz ) uncertainty] when extrapolat-
ed to high energy, and that the scale at which they meet
is high enough to prevent a too fast proton decay rate via
vector-boson exchange. On the other hand, when assum-
ing the ordinary SU(5) GUT the standard model cou-
plings, a„az,and a3, do not meet, and the predicted pro-
ton decay rate is much too rapid. Similar observations
were made by other groups [11]. Here and below, we
denote the coupling of the group G; by a;, where
G;=U(1)i,zz, SU(2)L, SU(3), for i =1,2, 3, respectively,
and a& is further normalized as required. All of the cou-
plings, as well as the weak angle, are defined in this paper
in the modified minimal substraction scheme (MS)
[12,13] unless otherwise specified. The MS weak angle
will be denoted below by s .

The above observations are true for a whole class of
GUT's that break to the standard model group in one
step, and which predict a "grand desert" between the
weak (low) and the grand unification (high) scales (one-
step GUT's). In particular, they hold for larger groups
such as SO(10) and E6, which have the same relative nor-
malization of the G; generators, provided there are no ad-
ditional matter (super)multiplets that are split into light
and heavy components. However, the SU(5) model has
the minimal gauge group and, in the simplest version, a
minimal matter content, and is therefore useful for illus-
tration. One should note that high-scale thresholds can

modify the predictions, and thus, in principle, distinguish
diferent one-step GUT's. If a grand desert indeed exists,
and, furthermore, supersymmetry is established and
characterized at future colliders, we may eventually be
able to use coupling-constant unification to probe the
physics near the unification and Planck scales.

We dedicate most of this paper to a more thorough dis-
cussion of one-step GUT's. Let us mention, however,
that one could also fit the data to a model in which inter-
mediate scales are introduced. In Ref. [1] left-right mod-
els [derived from nonsupersymmetric SO(10) GUT's]
[4,9, 14] were considered, and it was found that models
with an intermediate scale MR = 10' GeV for the break-
ing of the right-handed SU(2)ti are consistent with the
data. (The supersymmetric version of the model requires
that MR is close to the unification scale [1].) A more re-
cent discussion of SO(10) models is given in Ref. [15].
Models involving ad hoc new matter multiplets split into
light and superheavy components were also considered
[16]. Such models lose most of the predictive power of
the ordinary or supersymmetric grand desert theories be-
cause either the intermediate scales or the quantum num-
bers of the new multiplets are chosen to fit the data. We
will not discuss such possibilities any further in this pa-
per.

The better standing of the supersymmetric one-step
GUT's compared to the ordinary ones has been known
for some time [17—19]. However, the much more precise
coupling-constant data from the CERN e e collider
LEP [20] has shown this more strongly and motivated a
revived interest in GUT s. As we will show below, with
such precise inputs the predictions become sensitive to
small correction terms (threshold corrections and others),
which are often ignored. Recently, detailed calculations
of the supersymmetry (SUSY) new particle (sparticle)
spectrum were carried out [21—23], and constraints from
proton decay via dimension-five operators [22], and from
fine-tuning of the top mass [21,23], were again con-
sidered. The possible equivalence of threshold correc-
tions at the low and high scales was pointed out in Ref.
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[24].' It was also shown that in SUSY GUT's with large
representations, for which sterile neutrinos can have
large masses comparable to the unification scale, the light
neutrino masses predicted in seesaw models [26] are
smaller than those suggested by the solar neutrino prob-
lem for v, ~v„oscillations [27]. The possible role of
nonrenormalizable operators (NRO's) at the high scale
for generating more suitable neutrino masses has been
pointed out [28]. A more careful consideration of the
model predictions, and in a way that consistently incor-
porates different correction terms that may be significant,
individually or cumulatively, is now required.

Some of the possible correction terms were considered
recently in Refs. [29—31]. In Ref. [31] threshold correc-
tions at the high scale were discussed, while the sparticle
ones were treated naively. In Refs. . [29,30] sparticle
thresholds were discussed in detail and used to constrain
the high-scale gaugino mass parameter. The motivation
and approach here are different. We will suggest below
an alternative way to treat the sparticle thresholds. We
will elaborate on an observation of Ross and Roberts [21]
that a naive analysis, in which all sparticles and new
Higgs particles are degenerate at a scale MsUs~
[1,11,24,25,31), can be misleading, e.g. , because the aver-
age mass of the colored sparticles may be larger than that
of the uncolored ones. We give a simple parametrization
of the effects of an arbitrary sparticle spectrum and show
that an effective MsUsY can always be defined. However,
for realistic splittings MsUs~ can differ drastically from
the actual sparticle masses, and, in particular, one can
have MsUsY (Mz [as is suggested if a, (Mz) is
sufficiently large] even though the actual sparticle masses
are much larger than Mz. We will also treat the heavy
t-quark threshold corrections and the m, contribution to
the input parameter uncertainties consistently, and will
consider threshold and NRO correction terms at the high
scale. A convenient parametrization of the high-scale
threshold corrections will be suggested as well.

Below, we will use the following (updated) input values
of the low-scale parameters:

Mz =91.187+0.007 GeV

A two-parameter fit to all Z, 8' and neutral-current data
yields

s (Mz) =0.2324+0.0006 (m, free), (2)

I,=138+25+5 GeV,
where the central values assume a Higgs-boson mass

m„o=Mz. The second error in m, is from allowing m o

to vary from SO —1SO GeV, which is a reasonable range
for the light Higgs scalar in the minimal supersymmetric
extension of the standard model. [The additional Higgs
particles do not contribute significantly to the experimen-
tal determination of s (Mz). Their contributions to the
running are treated as threshold corrections. ] Most of
the uncertainty in s (Mz) is due to m, and m o. It is

convenient to use the more restrictive value

so(Mz) =0.2324+0.0003 (m, =138 GeV), (4)

a, (Mz ) =0. 120+0.010 (6)

as a reasonable estimate, for which we have assigned a
fairly conservative uncertainty.

The ability of GUT s to predict s at the unification
point (s =

—, in SU(5) and similar models [2,3]) historical-
ly led to using the prediction for s (Mz) [so(Mz) in our
case] from a(Mz) and a, (Mz) as a test of the models.
However, the large uncertainty in a, (Mz ) leads to a large
uncertainty in the predictions, and the different input
values assumed by various authors have led to some con-
fusion. We therefore find it more instructive to use

which is obtained for the fixed values m, =138 GeV,
mho=Mz The uncertainties from m, and m&o will be
treated separately.

We also have [32]

= 127.9+0.1,1

a Mz

which is valid for n, =138 GeV. Note that the values
used here for a(Mz ) and s (Mz ) correspond to the
definitions in [32]. This is not quite the canonical MS be-
cause m, is not decoupled; i.e., it contributes to the run-
ning even below m, . We will correct for this and treat
the uncertainty from m, in the threshold corrections.

The largest uncertainty in the input parameters is from
a, (Mz). Some of the more precise determinations are
shown in Table I and Fig. 1, which are adopted from a re-
cent review of Bethke and Catani [33] (see also [34]). It is
seen that there is a tendency for the lower-energy mea-
surements to yield smaller a, (Mz ) than the Z-pole deter-
minations. However, all of the determinations except R
(which still has a large statistical error) have considerable
theoretical uncertainties, which could very well be un-
derestimated, so there is no compelling evidence for a
discrepancy. We will take

'Constraints from proton decay were ignored in Ref. [24], as
discussed in Ref. [25]. The conclusion of Barbieri and Hall in
Ref. [24] is, however, a qualitative one, and still holds. In both
Refs. [24,25] the naive effective parameter MsUsv was used.
Below, we show that MsUsY &Mz is allowed when sparticle
mass splittings are included.

For rn 0 varying from 50—1000 GeV with a central value of
h

250 GeV, as is reasonable for the nonsupersymmetric standard
model, one obtains s (Mz ) =0.2325+0.0007, m, = 150+23—]7
GeV.

There is a weak correlation between the a(Mz) and so(Mz)
error bars, associated with the hadronic contribution to the run-
ning of a. The effect is numerically insignificant to the discus-
sion.

4This has even prompted the suggestion that there may be a
light gluino, which modifies the extrapolation [36].

5This is higher than the value 0. 1134+0.0035 given by the Par-
ticle Data Group [35] due to the use of resummed QCD [33] and
a more conservative estimate of theoretical uncertainties.
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R,
DIS
Y,J/Q
LEP (R)
LEP (events)
Average

0.118+0.005
0.112+0.005
0.113+0.006
0.133+0.012
0.123+0.005
0.120+0.010

TABLE I. Values of o.', (Mz ), adapted from [33]. 8, refers to
the ratio of hadronic to leptonic ~ decays, DIS to deep-inelastic
scattering, f,J/g to quarkonium decays; and LEP (R) to the
ratio of hadronic to leptonic Z decays. LEP (events) refers to
the event topology in Z~jets. This value was derived using
resummed @CD [33], in which both a, and next-to-leading loga-
rithms are used in theoretical expressions (the same data would
yield 0. 119+0.006 using the o;, expressions). We choose
a, (Mz ) =0.12+0.01 as a reasonable estimate of the average.

Source

a, (Mz) is compared with the data in Fig. 1, while the
s (Mz) prediction is shown in Fig. 2. The extrapolated
coupling constants are shown in Fig. 3. Corresponding
predictions for the unification scale and the coupling at
that scale are given in Sec. IV. In all cases, it is seen that
the MSSM (but not the SM) is in agreement with the pre-
diction of unification.

The prediction for cz, (Mz) is in good agreement with
the value observed at the Z pole, and the larger Z-pole
value for a, (Mz) predicts a smaller so(Mz), in agree-
ment with observation. The somewhat lower a, (Mz)
values suggested by low-energy experiments could be ac-
commodated by MsUs~ & Mz, I, & 138 GeV, or the in-
troduction of NRO's. Also, in the simplest SUSY SU(5)
the high-scale thresholds increase the predicted a, (Mz)
when constraints from proton decay are included. How-
ever, simple extensions, e.g. , replacing R parity with

so(Mz) as an input in order to predict a, (Mz). We will
consider both alternatives below.

In this paper we discuss in detail the SU(5) grand
unification of the standard model (with one Higgs dou-
blet) (SM), and of the minimal supersymmetric standard
model (with two Higgs doublets) (MSSM). In Sec. II we
review the predictions of these models, where we use
a, (Mz), and alternatively so(Mz), as an input. In Sec.
III we discuss in detail different correction terms that
may affect these predictions. We introduce three effective
mass parameters that conveniently sum the threshold
corrections near Mz. In Sec. IV we collect our results
and choose reasonable ranges for the different correction
terms. We then obtain (in the MSSM) the predictions

so (Mz ) = 0.2334+0.0025+0.0014

+0.0006 o'Ooo5+0. 00 16

a, (Mz ) = 0. 125+0.001+0.005

+0.002+o oo2+0. 006

where the central values are for I,= 138 GeV and
MsUsY =mho=Mz. The first uncertainty in (7) [in (8)] is

due to the a, (Mz) [so(Mz)] and a(Mz) error bars, and
the other uncertainties in both (7) and (8) are due to spar-
ticle thresholds, m, and I 0, thresholds at the high scale,
and NRO's at the high scale, respectively. The uncer-
tainties quoted here refer to our choice of ranges for the
different correction terms, and should be taken as such
(i.e., as order of magnitude estimations rather than
rigorous ranges). Note that the different theoretical un-
certainties are comparable to the a, (Mz) error bar in (6)
and to the corresponding uncertainty in (7). The com-
bined theoretical uncertainty is determined by an inter-
play among the different terms, most of which can have
either sign. [If the high-scale thresholds are not con-
strained as in the minimal model (see below), then none of
the uncertainties has a fixed sign. ] When added in quad-
rature, the above theoretical uncertainties yield a
+0.0026 —0.0023 (+0.010—0.008 ) combined uncer-
tainty in the so(Mz) [a, (Mz)] prediction. The predicted
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FIG. 1. Predictions for a, (Mz) from cx(Mz) and s (Mz) in
ordinary (SM) and SUSY (MSSM) GUT's. In the SM case the
uncertainty —+0.001 includes that from o.(Mz) and s'(Mz)
and the negligible high-scale and NRO errors. For the MSSM
the small error bars are from a(Mz) and s (Mz) (including the
I, dependence) for Msvsv =Mz and Msvsv = 1 TeV. (We dis-
cuss the choice Msvsz = 1 TeV in Sec. IV.) The larger error bar
includes the SUSY, high-scale, and NRO uncertainties added in
quadrature. Various experimental determinations along with
their nominal uncertainties are also shown. The dashed lines
are the range 0. 12+0.01.
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respectively. s (Mz) [which we replace with so(Mz)]
a(Mz ), and ry., (Mz ) are the three low-scale (MS) param-
eters defined previously, evaluated at the Z pole. By tak-
ing linear combinations of (9) one obtains explicit expres-
sions for the two high-scale parameters t and a&, and for
one low-scale parameter, in terms of the other two, the g
function one-loop coe%cients and the two-loop and
correction terms.

The two-loop terms can be rewritten using the lowest-
order solution for the couplings [39,18]:

3

8, = g ln(1+b aGt),4~. , b~

where the one-loop expressions for aG and t are to be sub-
stituted. For a given model one can then predict t, az,
and either so(Mz), which we will refer to as case (a), or
a, (Mz), which we will refer to as case (b), in terms of
a(Mz) and either a, (Mz) or so(Mz).

We list in Table II the general expressions for t, aG,
and s (Mz) [a, (Mz)], where we define a linear com-
bination of the one-loop P function coe%cients,D:56 ] +36p 863 ~ The correction term for each ex-
pression is of the same form as the one-loop term, only
with 0, replaced by —6;. Note that we have exactly the
same expressions when replacing s (Mz) with so(Mz),
except that the t quark and the Higgs particle contribu-
tions to the correction terms 5; are different. For the
two models studied in this paper, the SM and the MSSM,
the P functions can be found in Ref. [18], where the
dependence on the number of fermion families and Higgs
doublets is explicitly given. For completeness we give b;,
b, , and D for"the SM (MSSM) with our choice of three
families and one (two) Higgs doublet(s) in Table III.
Then, using Tables II and III and the input parameters,
we can calculate the two-loop terms for each case. These
are listed in Table IV, where we also compare the 0,
values calculated using the one-loop t and aG and those
calculated iteratively. For different values of the low-
scale input parameters the two-loop terms should be re-
calculated, though for a small change the difference is
negligible.

In Table V we give the predictions corresponding to
our central values of the input parameters, but not in-
cluding any correction terms. One can clearly see that
the MSSM is consistent with these values (see also Figs.
1 —3). Cases (a) and (b) in the MSSM are consistent with
each other at the two-loop order. Also the prediction of t
in that model is large enough to prevent an observed pro-

In practice we will use the full two-loop values for t and aG in

0;, solving iteratively. The difference between the two pro-
cedures is of higher order.

7We use a Taylor expansion to convert the prediction of
1/o. , (Mz ) to an expression for o,,(Mz). In Table II we give the
zeroth- (one-loop) and erst- (two-loop) order terms in the expan-
sion. This gives —99.2% accuracy. We will include the
second-order term when evaluating a, (Mz ).

ton decay via a heavy vector boson exchange [43]. The
value of t corresponds to M6-2. 5X10' GeV, so that
'T + o MG 10 —' yr, much larger than the experi-
mental lower limit [43] of 10 yr. In the SM the incon-
sistency between cases (a) and (b) implies that SM
unification is inconsistent with the present values of the
input parameters (see also Figs. 1 —3). Also, the SM pre-
diction of t is inconsistent with proton decay limits in ei-
ther case (a) or (b). For case (a) [case (b)] one predicts the
unacceptable values MG -4.6 X 10' GeV and

+ o-10 ' '
yr (8.5X10' Gev and 10 —' yr).

The above failures of the SM cannot be resolved by
adding either more light Higgs doublets or additional fer-
mion families. As is well known, additional fermion fam-
ilies represent complete GUT multiplets, which affect all
the b, 's equally. Hence, the a, (Mz), so(Mz), and t pre-
dictions are only modified at the two-loop level. (aG is
affected at one-loop. ) On the other hand, extra Higgs
families are part of partial GUT multiplets, which affect
the predictions at one loop. When adding An~ Higgs
doublets in case (a), the so(Mz) prediction increases, but
t decreases, increasing the proton decay rate. For
gn~ =6 one has ~G —4X 10 ~eV and 7- —6X 10 yr.
In case (b), a, (Mz) increases with nH, but eventually
changes sign, and adding enough Higgs doublets so that t
has an acceptable value drives a, (Mz) negative. In the
MSSM, extra Higgs supermultiplets will destroy the suc-
cessful predictions for so(Mz) and a, (Mz). For com-
pleteness we display the changes in the predictions for
additional fermion family and Higgs (super)multiplets in
Table VI.

III. A FORMAL DISCUSSION
OF THE CORRECTION TERMS

This section will be devoted to the correction terms 6;:
reconversionI

bP I M~+ g g In
boundary g

( ) boundary

+ estop+ gYukawa+
MUNROI I 1 (12)

The first term is a constant, which depends only on the
gauge group G; [44]:

C~(G; )

reconversion

12m
(13)

where C2(G;) is the quadratic casimir operator for the
adjoint representation, C2 ( G; ) =% [0] for G, =SU(K)
[U(1)]. b; ""'""" results from the need to use the
dimensional-reduction (DR) scheme in the MSSM, so

8In the SM case one has approximately 7 + o (yr)
—10"—'(MG/4. 6X10' GeV), so that ~) 10" yr corresponds
to M&) 10' GeV or t)4.8. In the MSSM the e+~ rate is
suppressed by M& but is slightly enhanced by a factor of -3
due to the larger a&.
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TABLE II. (a) t, 1/aG, and s (Mz) [or alternatively so(Mz)] predictions in terms of a(Mz), a, (Mz), and the p-function
coefficients, case (a). (b) t, 1/aG, and a, (Mz) predictions in terms of a(Mz), s (Mz) [or alternatively so(Mz)] and the P function
coefficients, case (b). The correction terms are of the same form as the two-loop terms, only with O; replaced by —5;.

aG

s (Mz)

One-loop term

1 3 8

D a(Mz) a, (Mz)

—3b3 5b1+3b2+
D a(Mz) a (Mz)

a{MZ)
3(b —b )+5(b, —b )-

D a, (Mz)

(a)
Two-loop term

( 5O1 + 3O2 8O3 )
1

( ( 5b 1 + 3b2 )O3 b3 ( 5Ol +3O2 })
1

5a(Mz)
((b2 —b3 )O1+ (b3 b1 )O2+ (b1 —b2 )O3)

3 —8S (Mz)
5(b, —b, )a(M, )

3bz [1—s'(Mz ) ] —5b, s'(Mz )

5(b2 —b1 )a(Mz )

5(b1 —b2 }a(Mz )

Ds (Mz) —3(b2 —b3)

(b)

2 1O —O

b1 —b2

b2O1 —b1O2+
b1 —b2

25(b1 b2 }a(Mz )

2 [(b~ b, )0—, +(b, b, )02—+(b, b~)0—, ][Ds'(Mz )
—3(b, b, )]'—

a;
MS

(XI.
DR

conversion
I (14)

that the algebra is kept in four dimensions [45]. Thus, we
convert the MS couplings above Mz..

one has CMs =
—,', , Cg =CMs =0 [39]. These are to be

used at the low-scale boundary, while at the other bound-
ary (using dimensional reduction' ) we have CDR

—=0
[44]. (If one converts aG back to its MS definition, then
the sum of the two conversion terms reproduces the MS
mass-independent term. )

The summation in (12) can account for a particle

For consistency we will also use DR in the SM case,
though this is not required. aG is then given in its DR
definition.

The second term sums over the one-loop threshold
corrections [39]. b,~ is the (decoupled) contribution of a
heavy field g to the p function coefficient b, between M&

and Mb,„„d„„.C ~ is a mass-independent number, which
depends on the spin J& of g and on the regularization
scheme used. In MS (using dimensional regularization)

Two-loop term OL
(a)

TL OL TL

O1

O2

O3

0.22
0.29

—0.41

0.21
0.28

—0.40

0.67
1.09
0.56

0.69
1.13
0.58

TABLE IV. (a) Two-loop terms for the case (a) calculated us-

ing one loop values for the parameters (OL), and iteratively
(TL). (b} The same as (a) except for case (b).

MSSM

SM MSSM

TABLE III. The P function coefficients [18] and their linear
combination D:—5b, +3b, —8b3. O1

O2

O3

0.16
0.21

—0.27

(b)

0.16
0.21

—0.28

0.64
1.05
0.54

0.71
1.16
0.60

b;

41
10

19
6

66
10

b;,

3.98 2.7

0.9
8.8

12

67

1.1 4.5 —26

7.96 5.4 17.6
1.8 25 24
22 9 14

60

Different regularization conventions give C ~Ms
= —in&2

[38,39].
When using dimensional reduction the loop integrals are

analytically continued away from d =4 (as for dimensional reg-
ularization). On the other hand, the algebra of the fields is not
continued and is kept in d =4 (i.e., g" g„=4).Therefore, no
constants arise when taking the limit d ~4 [44].
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threshold as long as two-loop terms between this thresh-
old and the boundary are negligible, i.e.,

M
b;a;(Mb, „„d„~)ln

boundary
«277 . (15)

This allows a split of more than 3 orders of magnitude for
all relevant cases. Thus (12) can correctly account for a
reasonable sparticle spectrum.

At the low-scale boundary we have to consider the top,
Higgs, and sparticle thresholds. The SU(2)I symmetry is
broken by the top quark mass in the range Mz —m„
questioning the validity of accounting for the top in the
above threshold summation. Furthermore, the values of
the input parameters and m, are correlated in a compli-
cated way. Similar considerations apply to the SM Higgs
boson. We therefore omit these two thresholds from the
summation and discuss them separately below. In the
MSSM we assume a light SM Higgs boson (m~p Mz)
and a heavy decoupled doublet, which is included with
the sparticles. Using tree-level sum rules [46] one can
show that in such a limit SU(2)I breaking is negligible in
the Higgs sector. (This conclusion is still valid when ra-
diative corrections to the Higgs-boson masses [47,48] are
considered. ) We will further assume a good symmetry in
the sparticle sector (i.e., SU(2)1 -breaking effects are typi-
cally ((m, /m, , „„k)and are negligible for our pur-
poses).

In the SM we can then omit the low-scale boundary
from the summation in (12), while in the MSSM we are
left with the sparticles and the heavy Higgs doublet. The

b MssM bsM M
ln

2m Mz
for i =1,2, 3,

(16)

TABLE VI. (a) The two-loop predictions of the SM and
MSSM in case (a) for AF=1 additional fermion family and
AnH =1 or 2 additional light Higgs (super)multiplets. Input pa-
rameters are indicated by brackets. No correction terms are in-
cluded. (b) The same as (a) except in case (b). Note that for a
negative a, (Mz ) the Taylor expansion is not valid.

sparticle and Higgs-boson masses can be calculated given
a small number of high-scale parameters —i.e., a univer-
sal gaugino mass M&&2, a universal scalar mass mo,' the
Higgs mixing parameter p;„;„,a universal trilinear cou-
pling A; and the top Yukawa coupling h, (we omit all
other Yukawa couplings) —by solving a set of coupled
renormalization-group equations (RGE's) [49,50]." Oth-
er mass parameters, such as the universal bilinear cou-
pling 8, are related to the parameters above by boundary
conditions and the constraint setting the weak breaking
scale [46]. One can then solve the one-loop RGE's for a
given set of parameters, and predict a specific sparticle
spectrum [21—23). Substituting in (12) gives the desired
correction. However, this is a lengthy and not very en-
lightening procedure for our purpose of estimating small
correction terms. We use instead a parametrization in
terms of three low-energy effective parameters defined by

TABLE V. (a) Numerical predictions of t, 1/aG, and so(Mz)
in case (a). (b) Numerical predictions of t, 1/aG, and a, (Mz) in

case (b). Input parameters are indicated by parentheses. No
correction terms are included. The near equality of cases (a)
and (b) for the MSSM is a reAection of the success of the cou-
pling constant unification.

4.69

34.83

SM
hnH =1

(a)

4.58

40.83

5.32 4.76

11.52 22.09

MSSM
AF =1 AnH=2

SM
One loop Two loop

(a)

MSSM
One loop Two loop 1

~(Mz)
(127.9)

4.73

41.46

4.65

41.32

5.28

24.18

5.25

23.49

so(Mz)
a, (Mz)

0.2099 0.2141

(b)

(0.120)
0.2345 0.2562

1

~(Mz)
so(Mz)
a, (Mz)

0.2070

(127.9)

0.2100 0.2304
(0.120)

(b)

0.2335

1

a(M )

4.05

36.70

4.06

41.67

5.41

10.69

(127.9)

5.78

15.82

4.01

42.44 42.45

5.21

24.51 23.28

so(Mz)
~, (Mz) 0.072

(0.2324)
0.077 0.130 Negative

1

a(Mz )

so(Mz )

a, (Mz) 0.070 0.072

(127.9)

(0.2324)
0.113 0.125

~~Our notation follows that of Ref. [49], aside from self-
explanatory subscripts.
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TABLE VII. The MSSM low-energy parameters calculated for the spectra of Ref. [21]. An SU(2)I
doublet is identified with its heavier member. Masses are in GeV.

High-scale parameters Low-scale parameters

M&/2
140
230

mo
190
120

190
—120

A

0
0

B
0
0

m
160
100

M]
261
282

M2
207
245

M3
352
527

where the summation is over the sparticles and the heavy
Higgs doublet. The low-scale sparticle spectrum can be
crudely parametrized in terms of the high-scale parame-
ters' (with a reasonable assumption about the Higgs
mass) [6,8,29], in order to learn about the relationship be-
tween the high-scale parameters and M;. One finds that
the case M, &2))me=a;„;„s=Mz(mo=P;„;„s&)Mi&2
=Mz) corresponds to M3 »Mi M2 (Mi »M2, M3). '

The parameters can be split by a factor of a few. As will
become clear below, it is important to note that we do
not expect to have M2 &)M, and/or M2 »M, . We have
also calculated M; for the realistic spectra' given in Ref.
[21] (see Table VII). The parameters M, can be calculat-
ed exactly in any other model using (16), and once calcu-
lated, all correction terms are given below.

The discussion so far has only assumed a SM gauge
group, S =SU(3),cgtSU(2)1U(l)r&2 (with the proper
normalization of a, ) in the desert, and has been indepen-
dent of the GUT gauge group. The high-scale correc-
tions do depend on the group. For definiteness we first
assume that this is SU(5), for both the SM and the
MSSM. A minimal choice of massive (super)multiplets at
the high scale is then (listing S quantum numbers)
(3,2, —,')ec.c. massive vector (super)multiplets (8, 1,0),
(1,3,0),(1,1,0) massive real Higgs (Majorana

In the limit h, ~0 this parametrization can be made exact.
Constraints derived from proton decay favor mo»M»,

[22]. However, we then may have p;„;„g(mo. If so, M, and

Ml become closer.
'4MG and aG of Ref. [21] differ slightly from ours due to

different values of input parameters and a different calculational
procedure. The procedure there incorporates the sparticle
effects iteratively, and thus the e, (Mz) prediction is automati-
cally corrected for sparticle thresholds. Also, o., (MZ) &0.118
and a fine-tuning constraint were imposed, and m, was assigned
so the constraint setting the weak breaking scale is satisfied.
However, constraints on the spectrum parameters derived from
proton decay limits [22] were not considered. (The proton de-

cay and fine-tuning constraints do not agree. ) We use the spec-
tra given in Ref. [21] for illustration only, and ignore minor in-

consistencies. When small SU(2)L breaking occurs, we identify
a doublet threshold with that of the heavier member. Our re-
sults and conclusions do not depend on any specific choice of
spectrum.

t5Supermultiplets are defined as in Ref. [18]. A massive vector
supermultiplet consists of a real massive vector, a Dirac spinor,
and a real scalar. A Dirac (Majorana or chiral) supermultiplet
consists of a Dirac (Majorana or Weyl) spinor and two (one)

complex scalars.

estopa

estopas

8 m,
ln

9m 138 GeV

1 138 GeV 1
ln + ln

3~ Mz 3

m,

138 GeV

(17)

(18)

Similarly, the m, threshold corrections are already in-

cluded in the s (Mz) definition of Ref. [32]. However,
the input value of s (Mz) extracted from the data de-

pends both quadratically and logarithmically on m, . In
particular, the value s o (Mz ) =0.2324+0.0003 in (4) is for
the best fit value m, =m, 0=138 GeV. For other m, the
corresponding s (Mz ) is

2
2 —2 + 2 O 2 2s =so — 2so [(m, ) —(m, o) ],

8 2m 1 —2so
(19)

where Gz is the Fermi coupling, and we have neglected

super)multiplets [embedded in a 24 of SU(5)]; and a
(3, 1, ——,

'
) complex Higgs (Dirac super)multiplet [embed-

ded in a 5 of SU(5)] [4,9]. We thus introduce three mass
parameters M~, M24, and M5 for the vector, real-Higgs
(Majorana), and complex-Higgs (Dirac) (super)multiplet
thresholds, respectively, and we assume mass degeneracy
within each of these (super)multiplet classes. (We show
how to generalize this in Sec. V.) We then identify
MG =max(M&, M24, M~ ), so that SU(5) is complete above
M&. In the MSSM, proton decay via dimension-five
operators constrains M5 ~ 10' GeV, and the validity of
perturbation theory in the Higgs sector constrains
M5~3Mv [22]. This suggests MG=M~ in the MSSM.
Though we shall not impose this (allowing other solutions
to the proton decay problem [37]), one has to bear in
mind the possible need to carefully adjust M5 in the
MSSM, and the general dependence between these pa-
rameters, determined by the details of the Higgs sector
Lagrangian.

We now discuss the heavy top threshold. We must
consider both the effect on the running and on the experi-
mental determination of the couplings at Mz. In the MS
scheme to account for m, & Mz one can define threshold
corrections [39] to a(Mz ) and a, (Mz ), i.e.,
(b&' /2m)ln(m, /M. z) and (b3'~/2m. )ln(m, /Mz), respec-
tively, where b&'" and b3'" are the top contributions to
the relevant one-loop P function slope. The first of these
corrections is equivalent to the slightly nonstandard
a(Mz) definition of Ref. [32], which we use. Thus, for
our central value of m, = 138 GeV, our value of a(Mz )

already includes the top threshold correction, and we
need to further correct a(Mz ) only for different values of

Thus
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logarithmic dependences on m, . We then have
s (Mz )(m, ) =so (Mz ) + b, '~P, where

b'~/= —1.03X10 GeV [(m, )2 —(m, o)2] . (20)

We take the reference value of so(Mz ) in (4) as our input
value for both case (a) and case (b). That is, so(Mz) can
be viewed as a convenient parametrization of the precise-
ly known Mz. The m, dependence of the "true" s (Mz)
in 6'2p will be included together with the threshold
corrections in 6," . Thus

8[1—s (Mz)] m,
ln

15m 138 GeV
(21)

5 a(Mz)

estop2

8s (M ) mZ s

9~ 138 GeV a(Mz )

1 m,6" =0.04+ 1
3m. 138 GeV

(23)

The SM Higgs boson has 5" =6 =0 and 6"2 «6"2p.
We therefore neglect possible contributions to 6, from
the SM Higgs boson, and so(Mz) =0.2324 is consistent
with m„o=MZ. We account then for different values of
m&o as a part of the 0.0003 error bar.

When evaluating 6," it is convenient to use
s (Mz)=so(Mz)=0. 2324 rather than the one-loop pre-
diction (as we could choose to do in case (a) [39)). This
induces a weak dependence of the so(Mz) prediction on
the so(Mz) input value via the first terms in (21) and (22),
but in practice the effect is negligible. As a matter of
fact, all the logarithmic contributions to b, ' p (and not
just the ones that appear in 6'2p) are negligible in com-

parison to the quadratic ones, and will be omitted later.
Table VIII lists the different contributions to b, ,

""(which
are the same in the SM and the MSSM).

Another issue that is related to the heavy top is the
contribution of the top Yukawa coupling h, to the two-
loop P function [42,51—53). If h, =1, we need to reintro-
duce the relevant term (that was neglected above) in the P
function (10), i.e.,

h,
g Yukawa bi;top

16m
(25)

or 6; " '"' 'h, =0.17,0.20, 0. 13, for i =1,2, 3, respective-
ly. One can see from Table IX that taking h, =1=h figed

is a reasonable approximation (h„„,d is the fixed point of
the one-loop top Yukawa RGE [55,49,53,56]).

Lastly, we consider contributions from nonrenormaliz-
able operators at the high scale, which may be induced by
the physics between MG and Mpl k 1.22&10 GeV
[57,58]. We consider only dimension-five operators,

b; 2
3 b,, 2 h, o'2~, , 8~ ' 16~ 2~X, l ~J —

I;tOp

where b;.„canbe calculated using, for example, Refs.
[42,52] and are of the order of magnitude of unity. In the
SM, h,„.=

—,"„—,', 2 for i =1,2, 3, respectively [42,51]. In
the MSSM there are (to this order) two additional Yu-
kawa terms in which a Higgsino is coupled to a top
squark and a top quark. One then has [53] b; „=.—", , 6, 4
for i =1,2, 3. h, is running and is coupled to a; at the
one-loop order. 5, ""' ' are functions of the couplings h,
and a& at the unification point, and of the unification
point parameter t, and have to be calculated numerically.

Let us consider only the MSSM, where the effect is
relevant. A heavy top can then also imply a large Yu-
kawa coupling for the b quark hb, i.e.,
m, hb lmbh, =tanP, where tang is the ratio of the vacuum
expectation values of the two Higgs doublets [46]. For a
large enough tanf3 one could have hb =h, [54]. However,
such a situation is not very likely. Proton decay via
dimension-five operators constrains tanP (i.e., tanP ~ 4.7
for m, =-125 GeV, assuming a, (Mz)=0. 113+0.005)
[22]. We will keep neglecting h&. (One should note that
the requirement sinP ( 1 places a lower bound on h, for a
fixed m, .) We calculate the Yukawa correction by solv-
ing numerically the coupled RGE's [53]. The results are
given in Table IX in terms of the corrections to the pre-
dictions, H 2, H, H„and H, &, rather then in terms of6
g Yukawa

I

Instead of the full two-loop numerical calculation one
could use an approximation in which h, is constant.
Then the new term in (24) is realized as a negative correc-
tion to b, , and

TABLE VIII. The top correction terms 6' . (These are
common for the SM and the MSSM. )

1 Tr(F„@F"'),
~Planck

Constant
term

—0.15

+0.25

+0.04

Logarithmic
term

+0.13 1n
138 GeV

+0.065 1n
138 GeV

+0.105 1n
138 GeV

Quadratic
term

m,

138 GeV

m—025
138 GeV

2

where g is a dimensionless parameter and F is the field
strength tensor. In the SU(5) model &5 is the 24 real-
Higgs (Majorana super)multiplet. (Contributions from
higher-dimension operators are suppressed by powers of
Mpi,'„,„.) When 4 acquires an expectation value the
effect is to renormalize the gauge fields, which can be ab-
sorbed into a redefinition of the couplings. It is shown in
Refs. [57,58] that the running couplings at MG are relat-
ed to the underlying gauge coupling a„,(Mr, ) by
I/a;(MG)=(1+@;)/aG, where e,. =gk, +r/maG(Mi /
Mpi,„,i, ). In the SU(5) model r =

—,', and k, =
—,', —', , —1 for
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TABLE IX. The corrections to the predictions in the MSSM due to different values of the top Yukawa coupling h, at the

unification point. tanP is calculated using m, = 138 GeV and is not required to obey any limits. sinf3( 1 gives a lower bound on h, .
The corrections are denoted by H, with self-explanatory subscripts.

h, (MG )

0.300
0.400
0.600
0.800
1.000
1.200
1.400
1.600

h, (M )

0.794
0.903
1.015
1.067
1.095
1.111
1.122
1.129

tanP

17.13
1.84
1.25
1.11
1.05
1.02
1.00
0.98

H2

—0.000 08
—0.000 12
—0.000 19
—0.000 24
—0.000 29
—0.000 33
—0.000 37
—0.000 40

Case (a)
H,

+0.002
+0.003
+0.004
+0.005
+0.006
+0.007
+0.008
+0.009

H 'j /rr G

+0.04
+0.06
+0.09
+0.12
+0.15
+0.17
+0.18
+0.20

H

—0.0003
—0.0004
—0.0006
—0.0008
—0.0010
—0.0012
—0.0013
—0.0014

Case (b)
Hr

—0.001
—0.002
—0.003
—0.004
—0.004
—0.005
—0.005
—0.006

H 1/a G

+0.05
+0.08
+0.12
+0.16
+0.19
+0.22
+0.25
+0.27

i =1,2, 3, respectively. We treat these operators pertur-
batively (i.e., for

~ g ~
( 10), by defining

MUNRO
I I 3

VraG

G

MPlanck
(26)

where it is su%cient to use the one-loop expressions for
aG and MG=Mze '. (26) is valid in the MSSM as well

[57], and different normalizations and scales can be ab-
sorbed in q.

Like 0;, 5; and 6; ""' ' depend on the input param-
eters through t and aG. We use the full two-loop values
for t and aG when estimating these correction terms (con-
sistent with solving for 8; iteratively). At the price of a
minor technical inconsistency, we always use the two-
loop values of t and aG given in Table V(a).

The different contributions to 6, , in the SM and the

MSSM, are listed in Tables VIII —X. From Tables X(b)
and VIII we learn that different contributions to 6; in the
MSSM are a priori comparable, and a comparison with
Table X(a) suggests that they are more significant, by
number and magnitude, than in the SM. These points
were stressed recently in Ref. [24].

At this point one is able to write explicit expressions
for 1/aG, t, and s&(Mz) [1/aG, t, and a, (Mz)]. We give
below those for so(Mz), a, (Mz), t(a, so), and aG(a, so)
in the MSSM, which are the main results of this section.
We hereafter neglect all logarithmic contributions to

. Constant correction terms are included in the func-
tions 5;, which are normalized such that the conversion
term is unity. Our best guesses for the values of the func-
tions H are H 2= —0 0003+ H = —0.0010+0 0004,

S

Ht = 0.004+0'002 H ] /'
= +0. 19+0' ~4 corresponding

to h, = 1 at the unification point and the range given in
Table IX.

I

TABLE X. (a) The different correction terms 6; in the [minimal SU(5)] SM. (b) The different correction terms 6; in the [minimal

SU(5)] MSSM.

conversion
t

1

6m

1

4n.

gv

35 Mv
ln

4m Mg

Mv
ln

4n Mg

Mv
ln

2m Mg

5——ln
7T

3——ln
'IT

v

Mg

Mv

Mg

2 Mv——ln
Mg

g24
t

Mz4+ ln
&T G

Mp4+ ln
7T g

1 M24+—ln
7T g

3 Mz4+ ln
2m Mg

(a)

(b)

1 Mq+ ln
30m MG

M5+ ln
12~ Mg

M5+ ln
5~ Mg

Mq+ ln
2n Mg

gSUSY

M)+ ln
4m Mz

25+ ln
12m Mz

+—ln
Mz

gNR)
t

—0.00871

—0.002471

+0.0016'

—0.0159

—0.04271

+0.02871
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a(Mz )
s()(Mz) = 0.2+

15 a, (Mz)
(1+5 +5 )

a(Mz )
+0.0031+H p+ (5, +5~),

60~
7a(Mz )

a, (Mz)= (1+5 +5 2)
15sD(Mz )

—3

(27)

The third term in (27), and the second terms in (28), (29),
and (30) are two-loop terms. These, as well as 52, 55, 56,
and the functions H, depend weakly on the values of in-
put parameters used. All the other expressions can be
similarly constructed. Implications of these results are
considered in the following section, where we also esti-
mate the values of the correction terms and their uncer-
tainties (see Table XI).

28a(Mz )
+0.012+H + (5, +52),

[60s()(Mz )
—12] ~ IV. THE CORRECTION TERMS IN THE MSSM

3 —8s() (Mz )
(1+5 +0.25 ~)

28a(Mz) s

(28)
We are now equipped to discuss the correction terms in

the MSSM (where their contribution is significant) more
quantitatively. From (31) we can realize the meaning of
the naive parameter MsUs~ mentioned above, i.e.,

+0.08+H, + (5~+5~+55),5

168~

3 —36s()(Mz )
(1+5 +0.25 ~),

28a(Mz

—1.23+H, i — (5~+ —", 5~+56),
168

(29)

(30)

M,
25 ln

z

M2
+56 ln

= —19 ln

—100 ln
z Mz

MsUsv

Mz
(40)

where'

M~
6&= 1 —121n

G

M)
+25 ln

z

M24 Mq—61n +18 ln
MG G

M2 M~—100 ln +561ni' Mz
2

(31)

62=+3.9+47.4
138 GeV

—1 +8.00', (32)

M~ 6 M5 15 Mi
5~ = —30 ln +—ln + ln

MG 2 Mz
(33)

M~
5,= i+18 ln

MG

M24—61n
MG

'2

M2
ln

2 Mz
(34)

55=+7.6

5,=+34.2

138 GeV

138 GeV

—1 +0.53',
2

—1 +5.01'

(35)

(36)

and

5 =a(Mz)5 1

a Mz
(37)

52=

5(a, (Mz))

, (M )

5(s() (Mz ) )

so(Mz) 0.2

(38)

(39)

Neghgible snconssstencges between (31)—(36) and Tables
VIII —X may exist due to roundoK

That is, the effect of an arbitrary sparticle spectrum on
the sz(Mz) and a, (Mz) predictions can always be
parametrized in terms of the (same) parameter MsUsv.
On the other hand, the 1/aG and t uncertainties have
different dependences on the M;. It is important to note
that the coefficient on the right-hand side (RHS) of (40) is
small due to cancellations, while those on the LHS are
large. In the case M2 &)M, and/or M2))M~ mentioned
above, the LHS of (40) (and therefore 5, ) can grow
significantly, and MsUsz can then be large. However, ex-
cluding such a case implies that MsUs~=1 TeV can be
achieved only by some adjustment of the parameters. It
is not enough to have large M, in order to have a large
MsUsY. For example, (M, =M&=1 TeV, M~=2 TeV)
correspond to MsUs&=130 GeV and (Mi =850 GeV,
M2 = 840 GeV, Mi =1 TeV) correspond to MsUsv =495
GeV. On the other hand, a small MsUs~ does not imply a
low spectrum. For example, (Mi ——550 GeV, M2 =540
GeV, M& =980 GeV) or (Mi =600 GeV, M2=M& =266
GeV) both correspond to MsUsY=Mz. One can even
have MsUsv ((Mz (a large positive contribution to 5, ).
For example, for the two spectra of Ref. [21] given in
Table VII we have MsUsY =32 GeV and 21 GeV, respec-
tively. Thus, MsUs~ does not teach one about the actual
spectrum, and the widely chosen range of Mz
&MsUs~ & 1 TeV does not represent the possible sparti-
cle spectra properly, as was emphasized in Ref. [21].

For M5=MG, as is suggested by proton decay con-
straints, the high-scale threshold contribution to 5, is al-
ways positive. This was emphasized recently in Ref. [29].
If one combines the two observations, a positive 6, is like-
ly. Such a situation is not favored in the MSSM, as the
predictions for so(Mz) and a, (Mz) are already slightly
higher than the central input values of these parameters.
(It could even signal the model failure if the a, (Mz)
value is determined to be near the lower end of the
0. 120+0.010 range, as was also emphasized in Ref. [29].)
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TABLE XI. The di6'erent contributions to the theoretical uncertainties of the so(Mz), a, (Mz),
t(a, s~), and (1/az)(n, so) predictions in the MSSM. The ranges of the parameters and the corre-
sponding uncertainties serve as an order of magnitude estimate only, and in some cases are chosen to be
smaller than those displayed in the figures.

Input value
Error bar
One-loop prediction
Two-loop correction
Yukawa correction (H)
Constant correction
o,,(Mz ) error bar
so(Mz ) error bar
M i

=4Mz M~ =M3 =Mz
Ml =M2 —M3 =6Mz
m, =159 GeV
m, =113 GeV
My=0. 3MG, M/4=0. 05MG7 M5 =MG
Mv =Mq4 =MG) M5 =0.5MG
g=+5

0.2324
+0.0003

0.2304
+0.0031
—0.0003
+0.0002
+0.0025

+0.0014
—0.0014
+0.0006
—0.0006
+0.0013
—0.0005
+0.0016

0.120
+0.010

0.113
+0.012
—0.001
+0.001

+0.001
+0.005
—0.005
+0.002
—0.002
+0.005
—0.002
+0.006

t (o.,so)

5.21
+0.08
—0.004
+0.01

+0.01
+0.10
—0.08
+0.02
—0.02
+0.31
—0.01
+0.025

1 (a, so)
CXG

24.51
—1.23
+0.19
—0.06

+0.04
—0.10
+ 1.27
—0.10
+0.10
—0.11
+0.01
+0.23

Requiring a negative 6] —1 can then severely constrain
the spectrum parameters. However, until the M; are
known in detail it is not clear to us that there is really a
problem, and at the present time we do not find much
point in elaborating on the 6, —1 sign. Furthermore, the
above situation can be compensated by a negative 52, i.e.,
if either g &0 or m, & 138 GeV, or a combination of the
two. Theoretical knowledge of 5; is thus important
for a more quantitative discussion, especially once
a, (Mz) is more accurately known and the top is found.
The discussion above stresses once again a major weak-
ness of the MSSM-proton decay via dimension-five opera-
tors. If MG is not strongly constrained, 6, —1 can be
made negative without any constraints on the sparticle
spectrum. This is the situation in a simple extension of
the MSSM in which the discrete Z2 R parity is replaced
by a discrete Z3 baryon parity, and the dimension-five
operators that are responsible for the proton decay are
forbidden [37]. (Though the phenomenology of such a
model is very different, it does not directly affect the dis-
cussion in this paper. ) Similarly, superstring-derived
models, which are not true GUT's, may not have any
problems with proton decay. Finally, more (split)
(super)multiplets at the high-scale boundary, within
SU(5) or in a model with a larger GUT gauge group, can
change the above situation as well. We discuss such a
possibility in the following section.

A similar discussion applies to 53+64+6~, but here the
sparticle contribution can easily pick any sign; e.g. ,
M2 M& will give a negative contribution, and thus a
lower MG. M, »Mz is thus favored by proton decay
(which implies MsusY «1 TeV). One should also note
that t will be corrected for MsUsv Mz.

For a more quantitative discussion, one has to choose
reasonable ranges for the different parameters. We sug-
gest the following.

(i) m, &M, & 1 TeV, and further constrain the splitting

to be less than a factor of 4. M2 »M
&

and/or Mz »M3
are excluded (and proton decay may exclude M3 )M, ).

(ii) 10 XMG M~, M24, M5 MG and constrain Mz4
and M5 to be smaller than a few times M~ (and proton
decay may further constrain Ms ).

(iii) 0 &
~q~

& 10. For larger values the treatment is not
perturbative. Note that 5; becomes negligible for

~ g ~
& 1. For example, large-radius Calabi- Yau com-

pactification, which yield interesting neutrino masses pre-
dict ~q~ &&1 [28].

(iv) 113 GeV & m, & 159 GeV from precision elec-
troweak data.

For these ranges we present the different contributions
to so(Mz), a, (Mz) —(5&+5~)—and to t (a,so) —(53
+54+5&)—in Figs. 4—6. We also display in each figure
the two-loop correction, the corresponding input error
bar, and for so(Mz) the prediction uncertainty from the

a, (Mz) input value error bar. [The so(Mz) error bar in-

duces much smaller uncertainties, and those induced by
the a(Mz ) error bar are negligible. ]

The observations made above become clear if we exam-
ine once again the spectra given in Ref. [21]. The sparti-
cle and m, contributions to 6, +52 can be offset by
g= —4. 5 and —0.7 for the two cases. Also the M; and

m, contributions are comparable and in the second case
come with opposite signs (which explains the small ~g~

required in this case). If constraints from proton decay
are ignored (see the footnote above), we can also use

Ms =0. 1MG and 0.75MG. (The second value corre-
sponds to Ms=2X10' GeV. ) Thus, we see that for a
combination of MsUsz &Mz, m, &138 GeV, and a M~
just below the unification scale, we can still have

5, +6~~ 1.
Finally, we estimate the theoretical uncertainties for

the so(Mz), a, (Mz), t(a, so), and (I/aG)(a, so) predic-
tions. We present these in Table XI. [The prediction for
so(Mz ) is to be compared with the value in (4), for which
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m, does not contribute to the error bar. ] For our choices
of values for the different correction parameters, we ob-
tain theoretical uncertainties to so(Mz) comparable with
the one induced by the a, (Mz) error bar, and in the
a, (Mz) case comparable with its error bar. They may
add to or may offset each other. In order to have a more
decisive observation, a better determination of a, (Mz)
and elimination of some of these uncertainties are re-

quired. We also obtain MG ~ 1.3 X 10' GeV, where
different corrections were added in quadrature. This is
well above the limit ( —10' GeV) from proton decay via
vector boson exchange [43]. Let us emphasize again that
though we arbitrarily chose the different correction pa-
rameter values, our choices serve as reasonable order of
magnitude estimations.
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FIG. 4. Contributions of individual correction terms —the SUSY eft'ective mass parameters M; (a), the heavy thresholds at the
high scale (b), the top (c), and NRO's at the high scale (d)—to the so(Mz) prediction [via the last term of (27)j. The NRO term
changes sign for g (0. The error bar on sp(Mz ) (dashed line), the uncertainty induced by the error bar on a, (Mz ) (dash-dotted line),
and the two-loop contribution to the sp(Mz ) prediction (dotted line) are given for comparison.
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V. A GENERAL TREATMENT
QI' THRESHOLD CQRRECTION

AT THE HIGH-SCALE X2 '" g matter
i

Mg 2~
ln

MG
for i =1,2, 3 .

Above, we assigned explicit mass parameters to the
difterent (super)multiplet classes at the high scale,
M~, M&4, M~, while at the low-scale boundary we
parametrized the threshold corrections using three
eS'ective mass parameters M „M2,M3, which can be com-
puted in any model. Similar ejective parameters can also
be defined at the high scale, i.e.,

(41)

For definiteness we identify M]I =MG, where Mz here is
the mass of the vector (super)fields, which we assume are
degenerate. [(41) can be easily generalized to include
nondegenerate vector masses. ] The summation is then
over all massive matter, scalar and fermion (Majorana,
chiral, and Dirac), (super)fields at the high-scale bound-
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FIG. 5. Contributions of individual correction terms —the SUSY efFective mass parameters M; (a), the heavy thresholds at the
high scale (b), the top (c), and NRO's at the high scale (d)—to the a, (Mz) prediction [via the last term of (2I))]. The error bar on
a, (Mz ) (dashed line) and the two-loop contribution to the a, (Mz ) prediction (dotted line) are given for comparison.
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ary. b;
""' is the (decoupled) contribution of these

(super) fields to b; . By using the M, we lose some sensi-
tivity to the fine details of the heavy spectrum but are
able to examine models in which there are more and
larger supermultiplets. (We will limit ourselves, however,
to consideration of simple extensions in which additional
supermultiplets are decoupled at the high-scale bound-
ary. )

Assuming the heavy supermultiplets of the minimal
(SUSY) SU(5) model,

M) ) M)
ln + ln + ~ ~ ~

4+ Mz 5~ MG

ln +—ln + ~ ~ ~

12~ Mz & MG

M',
6 =—ln3 +—ln + ~ ~ ~

)
Mz

(42)

(43)

(44)

SUSY
'( b)

Q
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Q

a .

Q Q

Q
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FIG. 6. Contributions of individual correction terms —the SUSY effective mass parameters M; (a), the heavy thresholds at the
high scale (b), the top (c), and NRO's at the high scale (d)—to the prediction of the scale parameter t [via the last term of (29)]. The
two-loop contribution to t (dotted line) is given for comparison.
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where we wrote explicitly only the M; and M contribu-
tions. 6, can then be rewritten as

M)
(15n io+5 n~+4)ln

MG

M2—(36n &o+ 12n
&
+48)ln

MG

M)
5, = &+4ln

G

M)
+25 ln

z

M2 M3—48 ln +56 ln
MG MG

M2—100 ln +56 ln
Mz Mz

(45)

M3+ (21n &o +7n
&
+56)ln

MG
=121n

M heavy

MG

(48)

3

w, ln(M, '/MG )
i=1 —= ln

M heavy

MG
(46)

We can further define a new effective parameter Mh„,
(in analogy with MsUsv ):

Mhezpy & MG is now possible if the split is such that
M 1(M3 ) M2 MG ol Ml, M3 &M2 MG Note that
now 5&

—1 can easily pick either a negative or a positive
sign. For example, Mheavy 0. 1MG and MsUsv =0.25Mz
would imply 5& =0.

M)
41n

MG
—48 ln

M2

MG

M3+56 ln
G:—12 ln

G
(47)

While ln(M, /Mz) are always positive, ln(M /MG) can
have either sign. If indeed M~ =3Mv, then ln(M', /MG)
is positive, in(Mz/MG) is more probably negative, and
ln(M3/MG) )—,'ln(M2/MG), which is a restatement of
the high-scale threshold positive contribution to 5& dis-
cussed above. If we introduce more matter supermulti-
plets in (41), this situation may change. Let us assume
n, o (n5) additional 10 (5) of SU(5) chiral supermulti-
plets. ' Each 10 (5) consists of (3, 1,—', )(3, 2, 6)e(1, 1, 1)
[(3,1, ——,')e(1,2, —,')] S superfields, and we further allow
an arbitrary split among the different S thresholds intro-
duced here. For illustration, we will also assume that the
new superAuids are not constrained by proton decay lim-
its. In practice, the extent to which they are constrained
is determined by their couplings to the MSSM
superfields, and by discrete symmetries (e.g. , R parity)
and their quantum number assignments. Then,

Such a situation can arise in models in which all matter is
embedded in 27 supermultiplets of E6 at some scale p, p ~ MG.
Our assumptions imply that additional massive vector
superfields are irrelevant, and that there will be no additional
Majorana massive superfields. If the E6 model is derived from
the string, then usually there are no adjoint representations, and
therefore no Majorana supermultiplets.

where w;= —', pj k, ,'ep„(—b) . bk)b; "—"', and where E,)j,
is the Levi-Civita symbol, and the factor of —, is intro-
duced for consistency with (31).

In the minimal (SUSY) SU(5) model this gives

VI. CONCLUSIONS

In this paper we considered various correction terms.
We introduced the effective parameters M; (which sum
the low-scale threshold corrections), realized the naive
parameter MsUsz in terms of the M;, and pointed out
that MsUs~ can differ significantly from the actual sparti-
cle masses. We then introduced similar parameters M at
the high scale, and a different and more explicit set of
high-scale parameters when we considered the minimal
SU(5) model, in which the colored-triplet Higgs superfield
threshold is strongly constrained. The parameters M,
and M can be used to conveniently compare threshold
correction terms in different models.

The central predictions of the MSSM are slightly high,
but lie well within the experimental error bars. Z-pole
determinations of a, (Mz) favor no correction or a posi-
tive correction to the a, (Mz) prediction, while low-
energy determinations favor a negative correction. How-
ever, we showed that the magnitude and sign of the
corrections to the two-loop predictions are determined by
an interplay among various comparable terms. Of these
terms, only one has a fixed sign: the contribution from
the high-scale thresholds in the minimal SUSY-SU(5)
model is positive when proton decay constraints are im-
posed. We pointed out that once simple extensions are
considered, i.e., more heavy supermultiplets or replacing
R parity with baryon parity, the above sign is no longer
fixed. The sparticle contribution can be either positive
(as for the two spectra of Ref. [21]) or negative, and so
are the contributions from m, and NRO's. Therefore we
concluded that elaboration on the sign of any of these
correction terms cannot be well justified at the present.

The MSSM then agrees well with experiment, and a
theoretical uncertainty of —+0.0026 —0.0023
(+0.010—0.008 ) has to be assigned to the so (Mz )

la, (Mz)] prediction of the model. This is not the case
when the SM is considered. Neither perturbative correc-
tion terms nor additional Higgs doublets can reverse the
failure of coupling constant unification in this model.
For example, the equivalent theoretical uncertainties in
the SM are roughly —+0.0007 and —+0.001, respec-
tively. The correction terms discussed, though negligible
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in the SM, may play an important role in the MSSM once
more precise data is available.

Finally, we would like to mention once again that we
have used an alternative definition of the MS weak angle
[32], which di6'ers slightly from the canonical one in the
way the t quark is treated.
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