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Measuring the Wess-Zumino anomaly in v decays
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We propose to measure the Wess-Zumino anomaly contribution by considering angular distributions
in the decays ~~v, rtvr rr, r~v+ vr K, and ~~v~ ~ tr+ Ra. dial excitations of the K*, which
cannot be seen in e++e, should be observed in the E m+~ decay channel.

PACS number(s): 13.35.+s, 11.40.Fy, 14.60.Jj

I. INTRODUCTION

With the experimental progress in ~ decays, an ideal
tool for studying strong-interaction physics has been
developed. In this paper we show that several decays can
be used to test the Wess-Zumino anomaly [1]. It appears
that the anomaly violates the rule that the weak axial-
vector and vector currents produce an odd and an even
number of pseudoscalars, respectively. From its struc-
ture it can be seen that the anomaly contributes possibly
to ~ decays into v, + n mesons (with n ~ 3). Of course the
golden-plated decay is ~—+v gm ~ which has a vanish-
ing contribution from the axial-vector current [2—4].
Therefore a detected g~ m. final state implies a nonvan-
ishing anomaly. A recent measurement of its width [5]
confirms the CVC (conserved vector current) predictions
[3,4]. In this paper we will present the most general an-
gular distribution of the gm vr system in terms of the
vector current form factor for this channel. Further-
more, we demonstrate that also other decay modes in
three pseudoscalars can be used to confirm (not only
qualitatively) the presence of the Wess-Zumino anomaly.
However, the most prominent decay channel into three
pseudoscalars, i.e., m m ~+, cannot be used since G par-
ity forbids the anomaly to contribute. Other than the

channel, interesting candidates are the decay
channels K ~ L+ and E ~ m . Recently, the corre-
sponding branching ratios have been considered [4] and it
appears that the branching ratios alone are not suf5cient
to determine the presence of the anomaly. In the course
of this paper we will show that a detailed study of angu-
lar distributions, as defined in [6,7], is well suited to ex-
tract the contribution of the anomaly. Our paper is or-
ganized as follows.

In Sec. II we introduce the kinematical parameters
which are adapted to the present experimental situation
where the direction of Aight of the ~ lepton cannot be
reconstructed and only the hadrons are detected. Then
we present, following [6,7], the most general angular dis-
tribution of the three hadrons in terms of hadronic struc-
ture functions. The dependence of the ~ polarization is
included. By considering adequate moments in Sec. III
we show that all of the hadronic structure functions can
be measured without reconstructing the ~ rest frame.
Section IV is devoted to the hadronic model [4] encoded
in the structure functions. We present explicit parame-

trizations of the form factors for the decays into gm
K ~ K+, and K m m+. The different parameters of
the model have been moved to the Appendix.

Finally, numerical results for the hadronic structure
functions of the considered channels are presented in Sec.
V, proving that an experimental determination of the
anomaly is feasible. We anticipate our results and urge
experimentalists to analyze the K m. ~+ channel which
could contain radial excitations of the E* which cannot
be obtained in e+e experiments.

II. LEPTON TENSOR AND ANGULAR DISTRIBUTION

Let us consider the ~ decay

r(l, s)~v(l', s')+hi(qi mi )+he(qz m2)+hi(q3, m3)

where h;(q;, m;) are pseudoscalar mesons. The matrix
element reads as

r

cosOC
M„J"sin8, (2)

with 6 the Fermi coupling constant. The cosine and the
sine of the Cabibbo angle (Oc) in (2) have to be used for
Cabibbo-allowed AS =0 and Cabibbo-suppressed
~h.S~ =1 decays, respectively. The leptonic (M„) and ha-
dronic (J")currents are given by

M„=u (l', s')y„(1—y5)u (l,s) (3)

where V" and A" are the vector and axial-vector quark
currents, respectively. The most general ansatz for the
matrix element of the quark current J" in (4) is character-
ized by four form factors [4,7]:

J"(q„q2,q3 ) = V",Fi + V2F2 +i V3F3 + V4F4,

with

(5)

J"(qi,q2, q3 ) = (h i(qi )h2(qz)h3(q3) ~
V"(0)—2 "(0)~0),

(4)
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n„

the axial-vector current. Together they correspond to a
spin-1 hadronic final state while the F4 term is due to the
spin-0 part of the axial-vector current. As it has been
shown in [4], the spin-0 contributions are extremely small
and we neglect them in the rest of this paper; i.e., F4 is
set equal to 0.

The differential decay rate is obtained from
2cos Oc

dI (r v,3h)= .
g IL„H" ]dS' ',

2~, 2 sin

(7)

FIG. l. Definition of the polar angle P and the azimuthal an-
gle y. P denotes the angle between ni and nL. y denotes the an-
gle between the (nL, ni ) plane and the (ni, q3 ) plane.

whereL„=M„(M, ) andH" =J"(J ) .
Reaction (1) is most easily analyzed in the hadronic

rest frame q, +q2+q3=0. The orientation of the hadron-
ic system is characterized by three Euler angles (a, p, and
y) introduced in [6,7]. In current e++e [~r+r
(~v,3 mesons)] experiments, two out of three Euler an-

gles are measurable. The measurable ones are defined by

COSP=lll 'lip,

Q(qi —qs)P'P =qP —qP —QP

Q(ql —q3)
&2 =q2 —qs —Q"

V~q=e" ~~q, q2pq3

PIJ =qP +qV +qP =QP

The Wess-Zumino anomaly which is of main interest in
the present paper gives rise to the term proportional to
F3. The terms proportional to F& and F2 originate from

I

cosy =—

where (a denotes a unit three-vector) nI = —n&, with n&
the direction of the hadrons in the laboratory frame,
n~=q& X q2, the normal to the plane defined by the mo-
menta of particles 1 and 2. Note that the angle y defines
a rotation around a~ and determines the orientation of
the three hadrons within their production plane. The
definition of the angles P and y is shown in Fig. 1.

Performing the integration over the unobservable neu-
trino and the unobservable Euler angle a we obtain the
differential decay width for a polarized r [6,7]:

2g

2m, sin 9~ x
' (2~)s 64 ml Q2 2rr 2 2

(9)

In (9) we have defined the invariant masses in the Dalitz
plot s;=(q +qk) (where i. ,j,k=1,2, 3; iWjAk) and the
square of the invariant mass of the hadron system
Q:—(q, +q2+q3) . The angle 8 is related to the hadron-
ic energy in the laboratory frame Eh by [6—8]

I

dronic current J" is 0 [F4=0 in (5)], gx L~ Wx is given
by a sum of nine terms I.~ 8'~ with
XH [ A, B,C,D, E,F, G, H, I] corresponding to nine densi-
ty matrix elements of the hadronic system in a spin-1
state. One has [7]

2xm, —m, —QcosO=
(m, —Q )Ql —4m, /s

with

E„
x =2,—, s =4Eb~s

Another quantity depending on this energy EI, is

x(m, +Q )
—2Q

cosg=
(m, —Q )+x —4Q /s

(12)

L„=—', K, +K2+ —,'K, (3 cos P—1)/2,

L~ =
—,'K, +%2 ——,'X, (3 cos P—1)/2,

LC = —
—,'K, sin P cos2y,

LD =
—,'E, sin P sin2y,

LF =XscosP,

LF =
—,'K, sin2P cosy,

LG = —K&sinP siny,

(13)

which will be of some interest in the subsequent discus-
sion. Finally, in the case where the spin-0 part of the ha-

LH = —
—,
' K, sin2P siny,

LI = —J &sinP cosy,
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where

K, = 1 P—coso —( m, /Q )( 1+P cos8),

Kz=(m, /Q )(1+Pcos8),

E3 = 1 —P cost9,

K, =K, (3 cos g —1)/2 —
—,'K4sin2$,

Kz =Kzcosg+K4sing,

K3 K3 cost)j —Kissing

K4 =Qm, /Q P sin8,

K~='1/ m, /g P sin8 .

(14)

K=m /Q= K2

cosP

E3
K3 —1—

cosP

(15)

Note that the full dependence on the ~ polarization P,
the hadron energy (through 0 and g), and the angles I3
and y are given in Eqs. (13)—(15).

The hadronic functions 8'z contain the dynamics of
the hadronic decay and depend in general on sl, s2, and

I

In (14), P denotes the polarization of the ~ in the labora-
tory frame while 9 and g are defined in Eqs. (10) and (12).
For physics of the CERN e+e collider LEP (Z decay) P
is given by P = —2u, a, /(u, +a, ), with u, = —1

+4sin 0~ and a = —1, while for lower energies P van-
ishes. In this case (for ARGUS, CLEO) Eq. (14)
simplifies to

2%i
K, =1—m, /Q =

3cos g —1

Q . Let us recall that we are working in the hadronic
rest frame with the z and x axes aligned along n~ and q3,
respectively (see Fig. 1). The hadronic tensor
H" =J"(J ) [with JI' given in (5)] is calculated in this
frame and the hadronic structure functions 8'z are linear
combinations of density matrix elements which are ob-
tained from

H =e„(o )H" e,*(o'), .

where

(16)

e„(+)= —(0;+1,—i, 0), e„(0)=(0;0,0, 1)
1

2

O' =H =H
r

W = (H+ +—H +)=H" H-
W =E(H+ —H +)=H"+H",

= —i(H"—H" ) (18)

W = —(H+ +H + H H— )/v'—2=H' +H ',
Wo =i(H+ H+ H— +H —)/3/2= —i(H' H'), —

WH =i(H+' —H'++H-' —H'-)/3/2=Hz3+H",

WI=(H+ +H ++H +H )/V'2= —i(H —H )

The right-hand sides of Eqs. (18) refer to the Cartesian
components of H" . The structure functions can thus be
expressed in terms of the form factors FI as [7]

are the polarization vectors for a hadronic system in a
spin-1 state defined with respect to the normal on the
three meson plane in the hadronic rest frame. The pure
spin-1 structure functions are

O' =H+++H =H" +H

W„=(x, +x3) F, I +(xz+x3)IFzI +2(x,xz —X3)Re(FIFz ),
W, =x4'IF, I',
Wc=(x& —X3)IF) I'+(xz X3)IFzI'+2«, xz+X3)Re(F/Fz ),
WD 2[x IX31FI I xzx31Fz I +X3(xz xg )Re(FIFz )]

Wg 2x3(xl +xz )Im(F&Fz )

WF =2X4[x &
Im(FIF3 )+xzIm(FzF3 )]

Wo = —2x4[x, Re(F, F3 )+xzRe(FzF3 )],
WH =2x,x4[Im(F, F3 ) —.Im(FzF3 )],
WI= —2X3X4[Re(F&F3 ) —Re(FzF3 )],

where x; are functions of the Dalitz plot variables and Q . One has

X( —q) q3

X2 =q2

X3 =q~l = —q~2,

x, =&g'x, q, .

(20)
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Here E; and q,. refers to the components of the hadron
momenta in the hadronic rest frame with

Q —s;+m;
2+Q2

(1)~=R,(Q )(2K, +3K2)(w~+wii),

((3cos P—I)/2) =R,(Q )—,'K, (w„—2w ),

( cos2y )~ = —R,(Q )—,'K, wc,
q, =QE,' —m', ,

q" =(2E E —s, +m +m 3 )/(2q3 ),
q i

= ( 2E i E3 —s 2 +m i +m 3 ) /( 2q 3 ),
q~p = —QE2 —(q", ) —m',

q f = '1/ E i
—( q ', )

—m, = —
q ~2 .

(21)

(sin2y )~ =R,(Q') —,'K, wD,

(cosP)z =R,(Q )K3wE,

( sin2p cosy )z =R,—', K, w~,

(24)

Note that the structure functions 8'~ F G H I are related
to the anomaly form factor F3. In the following we will
consider these structure functions in more detail.

(sinpsiny )„=—R,(Q2)K3wG,

(sin2P siny )~ = —R,(Q )—', K, wH,

III. DEFINITION OF MOMENTS (sinPcosy)z = R,(Q —)K3wI,

Equation (9) provides the full description of the angu-
lar distribution of the decay products from a single polar-
ized ~. They reveal that the measurement of the structure
functions 8', and therefore the measurements of the
anomaly form factor F3, is possible in currently ongoing
high statistics experiments. In the following we will con-
centrate on the s „sz integrated structure functions:

2 G cos 6c 1
R,(Q )=

sin Oc (4~)

(m2 Q2)2

QQ2

where the function R,(Q ) has been defined by

(25)

w;(Q )=f ds&ds2 W(g, s&, s2) . (22)

A possible strategy to isolate the various structure func-
tions in (9) is to take suitable moments on the differential
decay distribution [7]. Let us define'

8~+Q dl (r~v 3h) d cosp dy
dQ d cos9 d y d cosP

(23)

which yields

1 1 1
p, (Q ) =— (w„+wii )

6 (4~)' g'
and we obtain the standard form for the total width

(26)

Some comments are in order here.
First note that after integration over the angles P and y

the preceding expressions are still dependent on P and EI,
(through 8 and P), while the hadronic structure functions
wx are functions of Q .

The sum wz +mz is closely related to the spin-1 part
of the spectral function

6 cos OcI (r~v, 3h)= . 2 f dQ (m, —Q ) 1+ p, (Q )
Sam sin 0& m,

dg2 m, +2Q
Rc 2 W~ +My

g2 Q2
(27)

In our figures in Sec. V we will present the functions R,(Q )wx (Q ) as well as numerical results for the hadronic struc-
S

ture functions wz(Q ) itself.
In the next section we present an explicit parametrization of the form factors which are used in our numerical simu-

lations in order to test whether the anomaly can be measured experimentally.

IV. FORM FACTORS

In a recent paper [4] we have given an explicit parametrization of the form factors and compared them successfully
with measured widths. The physical idea behind the model for the form factors can be resummed to the following.

Note that these moments differ from the moments defined in (7) by the factor R, defined in (25).
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In the chiral limit the form factors are normalized to the U(3)I XU(3)it chiral model.
Meson-vertices are independent of momentum.
The full momentum dependence is given by Breit-Wigner propagators of the resonances occurring in the different

channels. Resonances occur either in Q, which are then three-body resonances, or in s; which are two-body reso-
nances. Now we present our parametrization for the form factors F; defined in (5) which fulfill all these requirements.

First we present the form factors induced by the anomaly

F'" '(s, g )= — T' '[g ]T"'[s ],2&6~'f' p 1 (28)

F(K K )(s s g2) — T(2) [Qz]T ( g ~)
2 2~'f'. ' (29)

+ 1
F3 (s),s2, Q )= T" '[Q ]T ~(s),s2, a) .

2 2~'f'. ~ (30)

The pararnetrization of the g~ m. channel is obtained
from e++e data via CVC [3,4]. It is given as a product
of two functions describing the resonances in Q and s;.
The same Q dependence (T' '[Q ]) can be used for the
K m K+ channel. Of course, the two-body channels
have to be modified since they involve a p and a X* as
well; we have included these contributions in
T ~(sz, si, a) [4]. The same function T ~ also enters

pK
in the E ~ vr channel. Unfortunately, nothing is
known experimentally on the three-body resonances in
this channel. In [4] only the IC* resonance (T „) has
been included. In our numerical results we will also use a
different parametrization including more AS =1 vector
resonances.

Second, the axial-vector current induces two form fac-
tors F, and I'2 for the K ~ K+ and K ~ ~+ channels
with the parametrization

4. 0 x10

3.0-

2.5-

2.0-

1.0-

0.5-

0.0 I I I I I

1.0
I

( I

1.5

(a)-

I
I I I I ) I I I I

I
I

2. 0 2. 5 3.0

G tGeV ]

)(S,Q )= pB [Q ]T( )[S ] (31)
ii4~fGe'V ] 1000 I I I I I I I I I I I I I I I ( ~ I I ) I

F(x 'l7 )(~ Q )
— P w[Q ]T [~ ]

and

(32)
800-

F(K m m+)(& g2) pBw[Q2]T( )
[& ]

1 K
(33) 600—

F(K m vr ) (& g2) pBw [g2]T(1)[& ]2 ) I 3f IC( p I (34)
400-

Note that G parity forbids the axial-vector current to
contribute to the gm m. channel. In the axial-vector
channel we assume the dominance of a resonance in each
channel, i.e., the A i and the K& in the hS =0 and AS =1
channels, respectively. The two-body channels are again
parametrized by the functions T"' and T, We have
moved explicit expressions of these functions and all nu-
merical parameters (taken from [4]) to the Appendix.

200-

~ I (» I I
(

' I I0 I

2. 01.0 1.5
~ I

(
I I I ~

2. 5 3.0
Q (GeV'j

FIG. 2. (a) g dependence of wi(.Rc for the decay channel
(b) Q dependence of wi( for the decay channel re rr
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V. NUMERICAL RESULTS

In this section we will present numerical results for
R,(Q )wz(Q ) [defined in (22) and (25)] as well as for the

S

hadronic structure functions wz(Q ) separately for the
different decay channels. We prefer to present both R,w&

S

and wz in order to show the effect of the phase space (in-
cluded in the function R,) while the hadronic physics is

S

more visible in the plots for wz alone. Although by in-
tegrating over s, and s 2 we have lost information on the
resonances in the two-body decays we observe still in-
teresting structures.

Let us start with the Cabibbo-allowed decay
~~v +gm m . As mentioned before, this channel has a
vanishing contribution from the axial-vector current (6

parity) which implies that only wz is different from zero.
A comparison of the data and our prediction for Rc m~
and wrI in Figs. 2(a) and 2(b) would be highly interesting,
especially as a confirmation of higher-lying p resonances
in T' '(Q ) [the shoulder at Q =3 GeV in Figs. 2(a) and
2(b) j.

The next process is the Cabibbo-allowed decay
'r~v+ m K which has contributions from both the
axial-vector and vector currents. Therefore all nine
structure functions are different from zero. In Fig. 3(a)
we present the structure function combinations obtained
from the ( I ) rt and ( ( 3 cos 13—I ) /2) ) rt moment. Note
that a measurement of the differential decay width (pro-
portional to ( 1)„)is not enough to separate w„and wry.
We observe a sizable effect of wz which makes a deter-
mination of F3 possible. Note this sizable effect is due to
heavy p' resonances in the anomaly channel, the existence

2. 0 x10 I I I I I I I I I I I I I

K K+
[GeV']

800-

1.5-
600-

1.0-
400—

0.5- 200—

0. 0

-0.5- -200-

- 1.0 I I I I I I I I I I I I I I I

1.6 1.8 2. 0 2. 2 2. 4 2. 6 2. 8 3.0 3.2

Q [GeV ]

-400 I I I I I I I I I I I I I I I I

1 6 1 8 2 0 2 2 2 4 2 6 2 8 3 0 3 2
Q' [GeV ]

0 10 15 I I I I I I I I I I I I

K vv K

I I I I

(c)
2x10 I I I I

K m K+ (d):

0.5- mc Rc

0.0

-0 5-

-1 0- 0-

- 1.5 I I I, I I I I I I I I I I I I I

1.6 1.8 2. 0 2. 2 2. 4 2. 6 2. 8 3.0 3.2

Q [GeV ]

I I I I I I I I I I I I I I I I

1.6 1.8 2. 0 2. 2 2. 4 2. 6 2. 8 3.0 3.2

Q [GeV ]

FIG. 3. (a) Q dePendence of (w„+wrI).Rc» (w~ —2wD) Rc» w~ Rc» and wa'Rc for the decay channel K ~ K+. (b) Q~ depen-
(wz+ wry), (wq —2wrI), wz, and wrI for the decay channel K rr K+. (c) Q' dePendence of w„.Rc, wG. Rc, w

wr'Rc for th'e decay channel K Ir K+. (d) Q' dependence of wc Rc» wD'Rc, and wz. Rc for the decay channel K rr K+.
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of which is predicted from the description of
e+e ~q~~. In order to get a feeling of the effects of
the phase space in this channel we present the combina-
tions wz+wz and w~ —2uz, as well as the structure
functions w~ and wz in Fig. 3(b). The moments which
measure the interference of the axial-vector and vector
currents are presented in Fig. 3(c). The size of these mo-
ments is comparable to those in Fig. 3(a), and the very
peculiar shape would make them measurable too. For
completeness we present the remaining moments in Fig.
3(d).

Finally we discuss the Cabibbo-suppressed decay
r~v+ vr m. in Figs. 4(a) —4(d) for the parametrization
with T, in (30). Note that although this decay is Cabib-(&) .

bo suppressed, the moments are comparable in size to the
K vr+K+ case (suppression due to the mass of the sup-
plementary kaon in the phase space is comparable to the

Cabibbo suppression). All moments of Figs. 4(a) —4(d)
have a shape which shows the strong presence of the K,
resonance in the axial channel. A measurement of the
structure functions related to the anomaly seems very
hard since F3 is very small in this parametrization. Of
course this unfavorable result could have been deduced
since the contribution of the anomaly to the rate, as corn-
puted in [4], was of the order of 1%. However, we
should note that our parametrization of the anomaly
form factor [4] includes only a K*, which can never be on
mass shell, and therefore produces no strong enhance-
ment. On the other hand, in this channel we have no
CVC prediction which could tell us if heavier resonances
are present in this channel. In order to get a feeling for
possible effects of heavier K* resonances we propose the
following parametrization which is p-channel inspired
[see Eq. (A6)]:

10.0 x10

8.0-

4[GeV ) 30000
K vv 77+

25000—

6.0-
20000-

15000—

10000—

2.0-
5000-

0-

1.0 1.5 2. 0 2. 5 3.0
G' [GeV )

1.5 2. 0 2. 5 3.0

Q [GeV )

1.0 x10
(c):

10 0 10 15 I I I ~ I I ~ I I I I I I I I I

K vv 77+ (cI )

0.5- 8.0-

ml Rs

0.0

4.0-

-0.5-
2.0-

1.0-
0 ~ 0

I

3.0

G [GeV )

1.. 5 I ~ l
i I f I I i I I I I i I I I

10 15 20 25 1.0
i ~ ~ ~ ~ I I ~ I I I ~ I ~ I

15 20 25 30
Q [GeV )

FICr. 4. (a) Q dependence of (w„+w~) R~, (w„—2w~) Rz, and wa Rz for the decay channel K vr m+ with the parametrization
T ~ in (42). (b) Q dependence of (w„+wa), (w„—2wa), and wa for the decay channel K ~ ~+ with the parametrization T „ in

K K
(42). (c) Q dependence of wF.Rz, wG. Rz, wH. Rz, and wr. Rz for the decay channel X vr vr with the parametrization T ~ in (A7).

K

(d) Q dependence of w~.Rz, wD Rz, and wz Rz for the decay channel E n m with the parametrization T ~ in (A7).2 + ~ ~ (1)
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10 px10

8.0-

(a)
[GeV j 3ppp0 I I I I I I

Km vs+

25000-

6.0-
20000—

4.0-
15000-

10000—

2.0-
5000-

0.0- 0-

1.0 15 20 25 30
Q [GeV']

1.0
I i I ~ I ~ I ~ I I ~ I ~ ~ ~ I I

1.5 2. 0 2. 5 3.0
Q' [GeV l

1.Px1P"
K vv vs+ (c)

0.0

. 5-1. I ~ I I i
I I I I j I I I I i I I I I

10 15 20 25 30
Q [GeV 1

FIG. 5. (a) —(c) same as Fig. 4 with the parametrization T ~ in (35).

5= —26, m + =0 892 GeV, I =0 050 GeV,

P=65, m ~, . . .=1412 GeV, I ~, . . .=0227 GeV, m ~„,=1714 GeV, I +„,=0323 GeV .

(35)

Channel (abc)

rc-~-z+
K
K

0.0108
0.0061
0.0316
0.0325

100%
39.3%

1.1% with T gc

4.2% with T

With this parametrization we obtain the results in Figs.
5(a) —5(c). Note that Fig. 4(d) is not changed.

For completeness we present the results of the total de-

cay width I",I,and I' ' normalized
to the electronic width I, ( I, /I"„,= 18%). One has

p(abc)
Contribution from F3 in %r,

I

In view of this result we urge our experimental colleagues
to study carefully this Cabibbo-suppressed channel.

VI. CONCLUSIONS

In this paper we have proposed to measure moments
[Eq. (23)] which allows us to determine quantitatively the
contribution of the Wess-Zumino anomaly to ~ decays
into three mesons. We have considered the channels

vr, K m K, and K ~ m . We have shown that
measuring the unique moment of the qm. m channel al-
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lows us to verify the CVC prediction, especially the pres-
ence of heavy p excitations observed in e++e data [9].
In the K m K+ channel we can define many more mo-
ments because of the interference of the anomaly with the
axial-vector contributions. In our prediction (Fig. 3) the
effect of the heavier p is again clearly seen.

The interest of the analysis of the K ~ ~+ is twofold:
we learn something about resonances, first in the axial-
vector channel and second in the vector channel. We
noted that in contradistinction to the Cabibbo-allowed
decays the vector channel for Cabibbo-suppressed decays
cannot be predicted through CVC from e++e data.

APPENDIX: PARAMETERS USED IN THE FORM FACTORS

As stated in Sec. IV the form factors are dominated by. resonances. The effects of these resonances are described by
functions Pp (Q ), which are normalized [PP (0)=1] Breit-Wigner propagators. We will use two kinds of Breit-

%'igner propagators.
(i) Energy-dependent width:

—I
(A 1)

s —M~~+t&s I ~(s)

The energy-dependent width [I'z (s) ] is computed from its usual definition:

I z(s)= ~Mg f ~

d&&5 Q
—gp;, I (s)1 (A2)

(ii) Constant width:

Bw Mz +'M
pBW[

s —M~+)&~I ~
(A3)

First we define the parameters which arise in the axial-vector three-body channel: In the Breit-Wigner propagator of
the A& weuse

m„=1.251 GeV, I „=0.599 GeV, v's I „(s)=m~ I „ g (s)
1 'g(m )A)

where the function g (s) has been calculated in [10]:

(A4)

g(~)=
4. 1(s —9m ) [1—3.3(s —9m )+5.8(s —9m ) ], if s ((m +m )

10.38 9.32 0.64
s s s

In this equation all masses and Vs are expressed in GeV.
In the case of the E, resonance we use a constant width Breit-Wigner propagator P~ [s] with

1

mz =1.402 GeV, I z =0.174 GeV .
1 1

This is because the decay of the K, is experimentally not well known.
The Cabibbo-allowed vector form factor is obtained from CVC and yields [9]

T' '[s]= P - [s]+13P ~ [s]+5P [s]1 (A6)

5= —26, m =0.773 GeV, I =0.145 GeV,

P=6.5, m ~ =1.500 GeV, I .=0.220 GeV, m -=1.750 GeV, I -=0.120 GeV .

For its b.S= 1 we propose (no experimental data) either

T ~[s]=P ~ [s], m v, =0.892 GeV, I ~=0.051 GeV,

or the function T' + [s] defined in (35).

Finally we define the functions describing the resonances in the two-body channel [10]:

(A7)
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T&"[s]= .P& [s)+pP [s] . , m =0.773 GeV, I =0.145 GeV,1

P= —0. 145, m ~ =1.370 GeV, 1 .=0.510 GeV .

The function T, [s] has been defined in (A7). Last but not least we define the function which enters the anomaly two-
K

body channel:

T"'[s,]+aT,[s~]
T z~(s&, s~, a)=

pg 7 1+cz

where T'" is given in (AS) and a = —0.2 [4].

(A9)
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