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Semileptonic decays B = pl v and D:pl v and the heavy-quark symmetry
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We determine the first correction in inverse powers of heavy-quark masses to the ratio of the
differential decay rates of B~pev and D~pev at the kinematical point of zero hadronic recoil (max-
imum q ) within the quark model. In this particular case of heavy-to-light meson transitions, the
heavy-quark limit gives a definite prediction, and theoretical uncertainties should be minimal. This re-
sult is potentially important for the extraction of the Kobayashi-Maskawa element V„b from future mea-
surements.

PACS number(s): 13.20.Jf, 11.30.Hv, 12.15.Ff, 13.20.Fc

I. INTRODUCTION

Experimental measurements of charmless semileptonic
B decays [1] constitute a subject of great interest in phys-
ics of electroweak interactions, as these may help deter-
mine precise values of V„b, the Kobayashi-Maskawa ele-
ment that mixes the first and third families of quarks [2].
However, because of the smallness of the branching ra-
tios associated with these decays, precise measurements
require very large statistical samples of B decays, hope-
fully to be obtained in the next generation of accelerators
[3]. On the other hand, theoretical calculations of the
rates [4,5] are hindered by the nonperturbative character
of strong interactions. Here one may resort to a model,
but that introduces uncertainties that are inherent to the
model itself, and thus hard to estimate. It is desirable to
have a prediction that, at least to some degree, is model
independent. In this work we make use of the heavy-
quark symmetry [6] to determine a ratio of B~pev to
D —+pev differential rates which is model independent to
leading order in inverse powers of large masses, and esti-
mate each first-order correction to that result by means
of a constituent quark model. As such, model uncertain-
ties enter only at the level of the first corrections, and not
at leading order.

The recently developed heavy-quark symmetry (HQS)
provides a systematic expansion in inverse powers of the
heavy-quark masses m& and m„ in which short-distance
QCD effects can be included explicitly by the construc-
tion of a heavy-quark effective theory [7] (HQET). This
approach has been particularly useful in treating heavy-
to-heavy transitions [8]. For instance, in B~D ev, with
the use of the HQS one can find an estimate of the rate
[9] which is model independent up to corrections of order

(1/m, ) . For this process, the HQS features three impor-
tant virtues: first, the four general form factors that enter
the hadronic matrix element of the weak current reduce
to a single one in the limit m&~ ~ (Q standing for the
heavy quark, Q =b, c); second, this single form factor has
a known normalization at the kinematical point of no
recoil (i.e., the point in phase space where the initial and
final hadrons have equal velocity); and, finally, at this
same kinematical point the corrections of first order in
1/m& vanish.

In this work, however, we consider b ~u and c ~d,
that is, heavy-to-light transitions. Unfortunately, here
none of the above-mentioned virtues apply, and thus the
HQS loses some predictive power as compared to b~c
transitions. Indeed, it is not possible to find a model-
independent prediction for the rate of B~pe v at any or-
der in 1/m&. However, it is possible to find a prediction
for the ratio of B~pev to D —+pev differential rates at
the point of no recoil that is model independent in lead-
ing order in 1/I&. First corrections to this simple limit,
however, do not vanish, as they do in 6 ~c.

The paper is organized as follows: in Sec. II, we define
the problem and the quantities to be determined; Sec. III
contains the calculation of the 1/m& corrections at the
tree level in the HQET, with the use of a constituent
quark model; Sec. IV incorporates the leading a, correc-
tions that originate at one loop in the HQET; finally, our
numerical results and discussion are found in Sec. V.

II. OUTLINE OF THE PROBLEM

Consider the hadronic matrix element of the weak
current entering the decay of a heavy meson
M(M=B, D) into pev:

(p(v')~J (0)~M(v)) =+4mMm {ifv™(y)e ~ v vse f~™(y)e f~( (y)(e u—)u —f—( )( )(e v)v' ]I 2 3
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f [M](y) —f(0)(y)+ f (1)( )+1

mg
(2)

with U and m~ the four-velocity and mass of the heavy
meson, and U' and e the four velocity and polarization of
the p meson, respectively. We have expressed this ampli-
tude in terms of the velocities of the mesons instead of
their momenta, and extracted a factor +4m~m to take
into account the usual normalization of the meson states,
thus ensuring that the form factors are dimensionless and
at the same time remain finite in the limit m&~~
(Q=b, c). fP] is the form factor of the vector current,
and f~[ ], fz™,and fz™are those of the axial-vector
current. Notice that the form factors are also chosen to
depend on the kinematical variable. y =u. u' (i.e., the en-
ergy of the p meson in the center-of-momentum frame in
units of its mass). This quantity ranges from 1 to approx-
imately mM/(2m ), the upper limit assuming negligible
lepton masses. In general, the form factors for B and D
decays, i.e., f [ ]'s and f [ ]'s are diFerent functions of y,
and, moreover, y varies over a different range, since
mbWm, . However, in the limit of mb and m, infinitely
larger than the hadronization scale, these form factors
should be equal for equal (and near unity) values of y. In
this limit, and from the viewpoint of strong interactions,
the heavy quark of the initial state is a static, Aavor in-
dependent, color source; the actual value of the heavy
mass determines the size of the final phase space, but the
strong interaction dynamics is determined only by the
relative motion of the final hadron with respect to the ini-
tial one, that is, by y. We therefore assume an expansion
of the form factors in powers of I/m& as

for M=B,D and Q=6, c, respectively. Here f"'(y) is a
dimensionful quantity of order AQco( ((mg ).

We want to estimate the ratio between the differential
rates of B~pe v and D —+pe v, so that the leading term in
a 1/m& expansion is model independent. Clearly this
would be the case if there were only one form factor
entering Eq. (1). In that case, the sought ratio would be
of the form

d I (B~pev)/dy
d I (D —+pe v) /dy

2

1+2 f"'(y) +. . .
m, f' '(y)

However, since there are actually four form factors, this
ratio generally contains unknown terms of the form
f,' '/f ' ', introducing model dependence even at leading
order.

One way to select a single form factor in Eq. (1) is to
extract the vector part of the current, thus having only
f), in the ratio (3). The determination of

I V„& / V,d I

would then require experimentally an angular analysis of
the decays, and theoretically the prediction of the full
shape of the form factor.

Another way to select a single form factor is to consid-
er the full decay, but only at the kinematical point of zero
recoil, y=1, where only the axial form factor f~ con-

tributes to the decay amplitude. However, from the ex-
pression of the differential rate for M ~pev,

dl (M~pev) 6
I
V

I
m m (y —1)' (y+1)

48 3 ~g

X 2(1+r —2ry) f& + fv + f& +(y —1)(rfz +f& )
(y+1)~ ) y+1 y+1

2

(4)

with r =m /mM, one can see that it still vanishes due to
phase space:

d I (B—+pev)/dy
d I (D ~pev)/dy y

d I'(M —+pe v)
2

2 f [B](1)
ub Al

fg, ](1)
mg

mL, —rn

GF'
I Vqg I'

I.f~™(1)](mM —m ) m Ip I (5)
4~ 1

Here, Ip I
is the magnitude of the (vanishing) momentum

of the p meson. Since the rates vanish at this point, ex-
perimentally one should access the region nearby and ex-
trapolate to the point of y =1, somewhat affecting the
statistics. The ratio of the differential rates at y ~1 is

In this paper we address this latter approach. Thus, the
core of the calculation consists in determining
fz~ ](1)/fz~ ](1). Here the constituent quark model

seems particularly appropriate because it works best
where the relative motion of the constituents is as nonre-
lativistic as possible and where the overlap of wave func-
tions is maximal, both conditions occurring precisely at
the point of no recoil y = 1.
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III. TREE-LEVEL CALCULATION

In the constituent quark model, the state of a meson X
is given in terms of the wave function for a bound state of
a (constituent) quark and antiquark. For an s wave with
total angular momentum j in a radial excitation n, the
meson state is

the factor +2m+ keeps the normalization of the meson
state consistent with that of Eq. (1). The quarks three-
momenta are simply decomposed as pi 2=m v+k,

i

where v —=P/mz is the velocity of the meson. For a
heavy meson, one of the quarks is taken as infinitely
heavy (corrections to this limit are taken perturbatively,
in accordance to the HQET), while for the p meson both
quarks are taken as light constituents. Although the use
of a constituent quark model for the p meson, a system
far from being nonrelativistic, is a strong assumption, it
works reasonably well in meson spectroscopy, and in the
same way it should work well in this treatment, where the
results are only sensible to the overall integrated wave
function of p, and not to particular details of its shape.

In this calculation we employ the model of Ref.
I 5], for

which the ground state and first radial excitation wave
functions are

R3/2() t Prl2
3/4

1/2

( )
P (p2r2 3)e —

/3 ~ l2
2S 3 3/4

7T

(8)

with pM and pp determined variationally in a potential
V(r)= —a/r+br+c. Adjusting the potential to fit the
spectroscopy of mesons, the authors of Ref. I5] find
a =067, b =018 GeV, and c= —084 GeV, and then
PM=0. 42 GeV for the heavy meson (i.e., m&~ oo ), and
P =0 31 GeV for the. p meson.

In the I/m& expansion given by the HQET I 10] there
is one leading contribution that enters f ~[', while several

O(1/m(2 ) contributions enter fz". namely, the I /m&
1

correction to the weak current (which is the modification
of the current due to the motion of the heavy quark) and
the 1/mt, corrections of the effective Lagrangian (which
correspond to the modification of the heavy meson wave
function due to the kinetic energy and color magnetic
moment of the heavy quark).

lx(I ))=&2 f q[ '(k) -C(Jd k

&qi(pi, ~i )q2(p2, ~2)lo&,

where P[„](k) is the Fourier transform of the wave func-
tion, e the polarization (irrelevant for j=0),
C(j,m, s i, s2 ) the Clebsch-Gordan coefficient for the
combination of the two spin —, into spin j, and q, and q2
the creation operators for the quark and antiquark, re-
spectively. Using wave functions g normalized to unity
and constituent quark states normalized as

&q(k, s)lq (k', s')) =(2') 6 (k —k')6

(10)

where IM„) on the right-hand side (RHS) is the state of
a pseudoscalar meson containing one infinitely heavy
quark,

A' '(x)=q(x)y, y,h„(x),

A',"(x)=q(x)y ) ~ h, (x)
2m&

(12)

are the leading term and O(1/m&) correction to the
current, respectively, expressed in terms of the light
quark field q(x) and the effective heavy-quark field h, (x)
of the HQET, while 7 '" and 7 'g, which are given by
expressions such as

7,'"(x)=i f d x'TA', '(x)X"'"(x'), etc. , (13)

are the corrections due to the O(1/m&) pieces of the
HQET efFective Lagrangian density:

D 2
X"'"(x)= —h, (x) h, (x),

2m'

g, o-„6"
's(x) = —h, (x) " h, (x),

4m'

(14)

(15)

namely, a kinetic energy and a color magnetic moment
interaction of the heavy quark.

We can now calculate the ratio f [ ](1)/f [ ](1) of Eq.
(6) in terms of the parameters of the model. Since at
y =1 only the axial form factor f„survives, all the
terms in Eq. (10) are proportional to the polarization e
For the first two terms of the expansion (10) we obtain

&pl~'."(0)IM„&,=, =V'4m m, I,e, ,

&pl~'."(0)IM„&,=, =&4m m,
1

mg

where Io and I& stand for the overlap integrals:
' 3!2

I —&q[p]lq[M]) M P

p' +p'

(16)

(18)

z =
4m

3 pMpp

8 m PM+Pp

5/2

(19)

The right-hand side of these equations displays the values
of Io and I, for the specific wave functions of Eq. (8), m
being the constituent mass of the light quark (u or d).

The last two terms of expansion (10) can be easily cal-
culated in the model by realizing that these terms are

The expansion to order 1/m & of the axial-vector
current matrix element at the tree level in the HQET is
then of the form

& pl &.(0)IM &
= &pl &'."«)IM. &+ & pl &',"(0)IM

+ & pl V.'"(0) IM &+ & pl m"(0) IM
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& pl N'"(0) IM„&=
& p I w. (0) IM"'" &,„„„.„, (20)

corrections to the wave function of the heavy meson, that
is, the matrix elements involving V"'" and V ' are

fM]&

PM+P

3/2 '
p2 p2M p

PM+P,', (27)

(and similarly for N'"}, where lM"'"& and lM '
& are

the first corrections to the state of the heavy meson due
to the perturbations (14) and (15). Using time-
independent perturbation theory one can expand lM"'"

&

and lM 's
& in terms of all the bound-state excitations or-

thogonal to lM &. For an 1=0 meson, and to the order
of approximation of this work, it suffices to expand up to
the first radial excitation 2s & (in this spectroscopic nota-
tion,

l
ls &

—lM „&). lM"'"
& is then

&2slH" gkin
lM""

&
= l2s & „, „", —= l2s &+2m, (21)

Mmg '

where H"'", given below, is in direct correspondence with
X"'", E'"' are the energy eigenvalues of the states ln &,

and b,"'" is a quantity of order AocD. lM 'g& is given by
an analogous expression.

The coefficients 5"'" and 6 ' can be calculated within
the quark model using the perturbation Hamiltonian that
corresponds to Eqs. (14) and (15) in the HQET:

g2H"(~+H~~s= — + S S g (x)
2mg 2mgmq

(22)

gkin
1/2

3

2 (E(2s) E(ls))m&
(23}

gmag
' 3/2

3
2

PM mgEmg
(E(2s) E(ls)

) p2mg M
(24)

In the second (i.e., "magnetic") term, the constant g must
be chosen to fit the B*—B mass difference Am&, thus
getting g /(2mb m ) =b IB /l gB (0) l

. In addition, the
energy difference E'"'—E' ' that enters the definition of
6 can be easily calculated within the quark model in
terms of the parameters of the potential
V(r)= —a/r+br+c One thus . finds b,"'" and b, 's to be
given respectively by

Consequently, to order 1/m& and at tree level in the
HQET one finds

f[B](1 )

=1+f [D)(1)
1 1

m

Ii
I25"'" I26

X + +
Io Io Io

(28)

The I/m& terms in Eq. (28) are then decomposed into
three contributions: the contribution from the correction
to the current, A "', that due to the "kinetic-energy" La-
grangian X™,and that due to the "magnetic moment"
Lagrangian X 's, respectively.

IV. LOOP CORRECTIONS IN THE HQET

A( '= q(x)y, y~h„(x) .
mg

(29)

The previous calculation is done at tree level in the
HQET. As such, it takes strong interactions into account
only at the level of hadronization by means of the quark
model, and neglects QCD effects at higher energies.
However, although gluons of high invariant mass are not
crucial in the bound-state formation, they do modify the
short-distance behavior of the decay process. The pertur-
bative treatment of short-distance QCD within the
HQET can be found elsewhere [1lj, the net result being
the appearance of additional effective operators in the ex-
pansion of the current, and of coefficients containing
lnm&, thus breaking the purely analytic behavior of the
expansion in 1/m&. In a general Lorentz frame, Falk
and Grinstein [11] find 12 effective local operators of or-
der 1/m& in the expansion of the vector current, and a
similar set in the expansion of the axial-vector current.
One of these operators, namely, A '" of Eq. (12), is found
at tree level, while the other 11 operators appear at order
a, . However, only one of the latter has a nonvanishing
matrix element at y = 1:

with

E (2s) E (ls) pM m 3 i /2 ~2 1 /2
(25)

The matrix element of the axial current at. y =1, to or-
der I /m& and including short-distance QCD, can then be
expanded as

Notice that there appears a factor of the large mass m& in
the numerator of Eq. (24). Nevertheless, the full expres-
sion is still of order 1/m& because Am~ is a quantity of
order AgcD /m b

2

Accordingly, at y =1 the term in Eq. (10) involving
7 '" becomes

&pl w. lM &=cj (1 )& a'."&+c,™"](p)&w'„" &

+C[M](p)& g(2) &+ IM]( )& ~in&

+c™](p)&~"&, (30)

which resembles Eq. (10), except for the additional opera-
tor A ', ' and the coefficients c;(p )™

gkin
&Pl&'"(0)lM &,=+4mMm I2e

pm@
(26) CO(p) Ck; (p)=w (31)

and similarly for the term involving Y ' . In both cases,
I2 is the overlap integral:

c,s((M) = w

c ((L(, )= —"——'w +—"w —4w lnw

(32)

(33}
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(34)

I(~) (1)

f' (1)
c {)"(p)

I 1+RJ +RJ +Rk,„+R
c D)(p) 1 2

(35)

where

c I
) (p)/cP (p) cI )(p)/cp)(p) I,

Io
(36)

cp)(p)/cp(p) cp)(p)/cp)(p)
mb

(37)

Rk;„=
cP„)(p)/co(') (p) cI.;„(p)/cp (p)

R mag

X
Io

c {;),(p)/c j"(p)
fPz b

gmag
X

c(.), (p)/cp) (p)

(38)

(39)

are the corrections due to A',", 3' ', V"'", and 7 ', re-
spectively. Second, these same coefficients introduce the
artificial low-energy scale p, which should properly can-
cel in Eq. (30) by a corresponding p dependence in the
matrix elements. Actually, in the ratio of Eq. (35), the
leading term is already p independent, as

co( )(p)/cp)(p)=[a, (m, )/a, (mb)] /

is p independent; however, the terms of order O(1/m&)
are not. The exact cancellation of the p dependence can
only be done by solving the theory to all orders, a task we
cannot yet accomplish. By estimating the matrix ele-

Here, to =[a,(p)/a, (m, )]' for M=D, and

u~ = [a,(p)/a, (m, )]' [a,(m, )/a, (mb )]'

for M =B. These coefficients take into account the
renormalization-group-improved leading logarithmic
corrections. Two remarks are now in order concerning
Eq. (30). First, the coefficients c;™(p),as indicated, de-
pend on the heavy-quark content of the decaying meson
as lnm&, thus destroying the simple analytical expansion
of Eq. (28); instead, one finds

ments with the use of a model, we can only hope to
choose a scale p suKciently low as to be close to the re-
gime at which the quark model is valid, and sufficiently
high as to be in the perturbative regime. These two re-
quirements are somewhat opposite, and so there will
remain an uncertainty in our results, due to our inability
to fix p at an exact value.

V. RESULTS AND DISCUSSION

In order to obtain numerical results, we use the values
indicated in Sec. III for the parameters of the quark mod-
el. For the quark potential, we use a =0.67, b=0. 18
GeV, and c = —0.84 GeV, and for the light constituent
mass I =0.33 GeV. With these values one determines
variationally the meson wave-function sizes P~=0.42
GeV and /3 =0.31 GeV. One also finds E' ' E")—
=0.83 GeV [Eq. (25)], which is the splitting between the
ground state and first radial excitation in a Qq system.
There are no experimental data to compare this result;
however, in the same model one finds the splitting be-
tween the p and its first radial excitation to be 0.66 GeV,
which is remarkably close to the experimental value of
681+8 MeV [12]. In addition, we take b,ms=46 MeV
[12] for the 8* Bmass d—ifference as input to determine
the "magnetic" correction [Eq. (24)].

For the heavy-quark masses we use I& =5.0 GeV and
m, =1.5 GeV as central values. Uncertainties are con-
sidered by varying m, (the most significant source of er-
ror among the two masses) up to 1.8 GeV [13].

To define a, we use AQcD in the range 100—250 MeV,
with a fiducial value of 150 MeV. Finally, we take the
low-energy scale p at 350+100 MeV. We take these
values for p because, although naively p should be the
mass of the light quark entering the weak current (mq in
our model), in our problem such a quark is lighter than
the Bohr momentum of the bound state (-P in our mod-

P
el), and clearly the scaling behavior used in the deter-
mination of the coefficients c;(p) is not valid below that
point. We thus use p in a range near )33, namely,
)33 (p &PM. We take this error as inherent to our model,
and further improvements would require the treatment of
hadronization more systematically within the theory of
QCD.

The numerical results are shown in Tables I and II.
Table I displays the dependence on AQcD for p fixed at
350 MeV. From this table one notices that the inclusion
of short-distance QCD tends to decrease the dominant

TABLE I. The four 1/m& corrections to the ratio f( )(1)/f'„)(1) [cf. Eq. (35)], the leading log
I 1

correction, and the resulting value of the ratio as a function of a, (parametrized in terms of A&cD), for
fixed p =350 MeV.

(MeV)

No QCD
100
150
250

RJ
1

0.066
0.054
0.050
0.039

RJ

0.
—0.014
—0.018
—0.030

Rk;„

—0.022
—0.022
—0.022
—0.022

R mag

0.043
0.035
0.033
0.026

cj') (p)
cP){p)

1.09
1.10
1.12

j'{ ](1)/I{ )(1)

1.09
1.14
1.15
1 ~ 14
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~ (MeV) Rk;„RJ

TABLE II. The four I/m& corrections to the ratio f( j(1)/f( ~(I ) [cf. Eq. (35)], the leading log
1

correction, and the resulting value of the ratio as a function of p, for fixed AQCD 150 MeV.

RJ
1 c '(p)

300
350
400

0.047
0.050
0.053

—0.022
—0.018
—0.015

—0.022
—0.022
—0.022

0.030
0.033
0.034

1.10
1.10
1.10

1.14
1.15
1.16

1/m& corrections (RJ and R, ), inducing a partial can
1

cellation of the overall 1/m& correction, and at the same
time generating a correction cP (p)/co( ) (p) to the lead-
ing term that, as a net effect, increases the ratio
f ( ) (I )/f ( ) (I ). This result shows that in these heavy-

to-light processes the logarithmic corrections are as im-
portant as, or more than, 1/m& corrections, as the run-
ning occurs over a large range of scales.

Table II, on the other hand, displays the p dependence,
for AQCD fixed at 150 MeV. As p is one of the most un-
certain parameters of the model, it is fortunate that it
affects only some of the 1/m& terms, but not the leading
QCD correction co( ) /co( ), and consequently the result-
ing ratio f ( )(I)/fz( )(1) is not as sensitive to p as it

would be otherwise. Indeed, the form factors f ~(
) (1) and

f~( )(1) are separately much more sensitive to p than

their ratio. Nevertheless, we found that, in addition to
m„p is the parameter that causes the largest uncertainty
on f~( )(I)/f( )(1). For instance, a (rather large) varia-

tion on P, the momentum spread in the p meson, be-
tween 260 and 360 MeV induces an error of only -0.6%
on f ~~

) (1)/f z~
) (1). We thus take the error in

p=350+50 MeV as representative of the overall accura-
cy of this model.

Still the most significant uncertainty arises from the
value of m, . Taking the value of f( )(1)/fz( )(1) with

the error induced by p as indicated above, we find

for m, —1.3 GeV, f ~(
) (1 ) /f z(

) ( 1)= 1.18+0.01,
1 I

for m, =1.5 GeV, f~( )(I)/f~( )(1)=1.15+0.01, (40)
1 I

for m, =1.8 GeV, f( )(I)/f~~ )(1)=l.11+0.01,
l 1

that is, the 20% uncertainty on m, shown above induces
an uncertainty of the same magnitude on the 1/m&
corrections to f~( )(I)/f~( )(1), but this translates into

only an —3% error on the value of fz( )( I)/f ( )(I) it-
1 1

self, a rather remarkable result.
From Eq. (6) and the values (40), one finds the ratio of

differential rates at y =1
~ For example, taking the full

range of values of Eq. (40) dominated by the uncertainty
on m, indicated, we get

dI (B pev)/dy
dI (D ~pev)/dy

2

(22+1) . (41)
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Over all we have considered ratios of B and D decaying
either both into charged p's or both into neutral p's; oth-
erwise, one must include an extra factor of —,

' in the rate
into a neutral p because of isospin symmetry.

Finally, we should estimate the fraction of phase space
that must be measured in order to experimentally deter-
mine the ratio of the B and D differential rates at y =1.
Since these rates vanish at y = 1, actual measurements are
done at y ) 1, from which one must extrapolate to y ~1.
Also, since all four form factors affect the rate as y in-
creases from unity, y should be close enough to unity as
to ensure that the main contribution to the rate is due to
the form factor f~ alone.

I

Given the full expression of the differential rate in Eq.
(4), and assuming that all form factors are of the same
size and shape, one can see that by taking y ~1.1 the
terms in Eq. (4) due to f„are at least 10 times larger

I

than those due to other form factors. In D~pev, more
than one-third of the total rate originates from the region
y ~ 1.1, while in B~pev, the fraction of the rate for
y ~ 1. 1 is about 0. 1~1 % of the total rate (the uncertain-
ty is due to our ignorance on the shape of the form fac-
tors as a function of y). Therefore, the main experimental
limitation arises from the B decay measurements. Never-
theless, assuming a branching fraction B(B~pev)
—10, a sample of the order of 10 B's should provide a
few tens of events with y ~ 1.1, in principle, a task
achievable in a B factory.
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