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in the soft-plus-virtual-gluon approximation
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We examine the sensitivity of the total cross section and inclusive photon distributions for the reaction
p+p~ W +y+X to changes in the QCD renormalization scale, mass factorization scale, and mass
factorization scheme in O(o, , ). Based on these findings, a higher-order-a, approximation prescription is
proposed and, by readjusting the QCD mass factorization and renormalization scales, O(a, ) predictions
are obtained for the reaction cross sections and inclusive photon distributions for the CERN Super Pro-
ton Synchrotron (SppS) (&S =0.63 TeV) and Fermilab Tevatron (&S =1.8 TeV) colliders.
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I. INTRODUCTION

The calculation of many O(a, ) QCD [1] corrections to
inclusive and semi-inclusive processes have now been
completed. For some particular cases it has been possible
to extend these calculations to find exact results beyond
the lowest order of o, An example of the latter is the
quantity R defined in the reaction e++ e ~X, where X
is any hadronic state, which is now completely known up
to order a, [2]. Further, we want to mention the O(a, )

correction to the two-jet cross section for the same pro-
cess [3] and the O(a, ) correction to the Drell-Yan (DY)
K factor which has been computed in both the modified
minimal subtraction (MS) [4] and the deep-inelastic
scattering (DIS) schemes [5].

The results of these calculations show that the size of
the corrections can be rather large, a feature which in
many cases can be primarily attributed to the soft-plus-
virtual-gluon contributions. Even though the expressions
for the corrections can be very complicated, which is gen-
erally the case when the Born cross section is already of
order a, or higher, it usually turns out that the O(a, )-
corrected distributions only differ slightly in shape from
the lowest-order ones. This indicates that the theoretical
K factor is only a slowly varying function of the kinemat-
ical variables in the reaction, such as the transverse mo-
menta or rapidities. Essentially, the (differential) cross
sections for the O(a, )-corrected process are proportional
to those of the uncorrected process. Examples are direct
photon production p+p~y+X [6], heavy Aavor pro-
duction p+p —+Q+Q+X [7,8], and radiative W produc-
tion p+p~ W++y+X [9,10]. The intricacy as well as
the behavior of the O(a, ) corrections have inspired some
authors to construct approximate formulas for various
types of processes using renormalization-group methods.
In particular, this approach was very successful for the
reaction p+p ~W++y+X [10] due to its close resem-
blance to the DY reaction p+p ~8'+X. Both reactions
proceed mainly via the quark-antiquark (qq) subprocess

which is dominated by the soft-plus-virtual-gluon radia-
tion contributions at small c.m. energies. At the CERN
Super Proton Synchrotron (SppS) collider (&S =0.63
TeV) the latter contributions are sufficient to describe the
cross section and inclusive photon distributions in the re-
action p +p ~8'+ y+X. However, at larger energies
(e.g. , at the Fermilab Tevatron) the soft-plus-virtual-
gluon approximation is not so good. This is caused by
the increasing contributions from both the hard-gluon ra-
diation in the qq channel and from the parton sub-
processes g+q(q)~W+y+q(q). Even though these
pieces partially cancel each other the remainder is not
negligible. For this reason we want to give a better ap-
proximation to the O(a, ) soft-plus-virtual cross section
which compensates for the latter contributions. Note
here that one can construct analogous compensating
pieces in the soft-plus-virtual approximation to the DY
reaction where it is known that there is a partial cancella-
tion between the missing hard-gluon radiation and contri-
butions from the gluon-quark (gq ) and gluon-antiquark
(gq) subprocesses. This is accomplished by a readjust-
ment of the mass factorization and renormalization scales
in the soft-plus-virtual-gluon approximation as will be ex-
plained more fully later. In addition we want to include
the dominant O(a, ) corrections from the soft-plus-
virtual contributions at this readjusted scale in order to
give an estimate of the cross section beyond the first or-
der in o',

The reason for studying the process p+p ~8'+@+X
is due to the discovery of a zero in the amplitude of the
parton-parton subprocess q +q ~ W+ y [11]. This
phenomenon gives one hope that properties of the mag-
netic moment and quadrupole moment of the 8' boson
might be measurable [12]. A general discussion of non-
standard electromagnetic couplings of the charged 8'bo-
son has been given recently [13]. The latest experimental
results are given in [14] and [15]. In our work we assume
the validity of the standard model. The O(a, ) QCD
corrections due to final-state gluon radiation in the reac-
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tion q+q~8' +y+X including the virtual contribu-
tions have been calculated in [9]. The analogous calcula-
tion for the initial-state gluon radiation was given in [10],
where we gave complete results for the QCD corrections
to p+p~ W++y+X in the DIS mass factorization
scheme. Notice that we also included the contributions
from the gq and gq subprocesses. Here we shall primarily
concentrate on getting an estimate of the O(a, ) contribu-
tion which can be made from an approximation contain-
ing the dominant initial-state gluon radiation. The prop-
erties of the K factor mentioned above are also valid here.

Our paper will be organized as follows. In Sec. II we
will present the exact formulas for the O(a, ) corrections
to the process p+p —+W +@+Xin both the DIS and
MS mass factorization schemes, showing the explicit
dependence on the renormalization and mass factoriza-
tion scales R and M, respectively. In Sec. III we will dis-
cuss two higher-order approximations and show how to
obtain an approximate formula for the O(a, ) corrections.
Since the actual expressions for the latter are rather long
we have put them in Appendixes A and B. In Sec. IV we
will study the choice of scales and scheme at O(a, ) and,
by comparing the approximate with the exact results at
O(a, ), will justify which is the better approximation.
Then we will present our results from the O(a, ) approxi-
mation. This will be done by examining both the total
cross sections and inclusive photon differential distribu-
tions after inclusion of the modifications necessary to give
a correct definition for u, and the incorporation of the
latest parton densities.

do
s =5(s& —M~)BQED(s, t, u, M~),

dt du

where

a@ED(s, t, u, M~)

(2.4)

q(p, )+q(p2) ~W+(q )+y(k )+g(k') . (2.6)

Here we distinguish between soft (s4 (M~+5, ) and hard
(s4) M~+6) gluons so that the cross section will be
split into a soft and a hard part [10]. After adding the
two pieces all dependence upon 5 vanishes. We have also
taken into consideration the gluon (anti)quark reactions

q(p, )+g(p2)~ W+(q )+y(k )+q(k'),

g(p, )+q(p~)~ W+(q)+y(k)+q(k') .
(2.7)

(Q, u+Q2t)
CKg

~ [sM~+ —,'(u +t )] . (2.5)
ut(s —M~)

Here we have averaged over the initial quark spins and
colors and summed over the final polarization states of
the 8'boson and the photon. The radiation zero now re-
veals itself when Q& u + Qzt =0 where the differential
cross section in (2.4) vanishes.

The O(a, )-corrected cross section of reaction (2.1) is
obtained from the virtual corrections to process (2.2) and
the gluon bremsstrahlung process:

II. EXACT FIRST-ORDER CORRECTIONS
IN THE DIS AND MS SCHEMES

The reaction under consideration is given by

p+p —+ W++y+X, (2. 1)

where X denotes any final hadronic state. In lowest-order
perturbation theory the only parton subprocess contrib-
uting to the above reaction is given by the quark-
antiquark annihilation process:

q(p, )+q(pz )~ W+(q )+y(k ), (2.2)

s =2p .p, t = —2k -p u = —2k.p (2.3)

Since we work with massless quarks, the invariants are
related at the Born level by s+t+u =s4=M~. The
Born cross section for process (2.2) is given by

where the particle momenta are given in parentheses.
The three graphs which contribute to the Born amplitude
for the reaction are shown in Fig. 1 of [10], and, like the
lowest-order Drell-Yan process, do not contain the QCD
coupling constant. The charges of the quarks
q (p, ), q (p ~ ) are Q, and Q~, respectively (all in units of
the electric charge), while Q=Q& —

Q2 is the W-boson
charge. The weak-coupling constant will be denoted by
g /2&2 which can also be written as
g =2M~(&2GF)' =e/sin8~. Here GF and 0~ denote
the Fermi constant and the weak mixing angle, respec-
tively. For the kinematical variables we choose

The exact expressions for the cross sections of the pro-
cesses in (2.6) and (2.7) were given in Ref. [10]. They
were presented in the DIS scheme as well as in the DY
scheme (in Ref. [10] these schemes were called C and D,
respectively. ) In the DIS scheme the nonpole term of the
transition function is determined in such a way that the
deep-inelastic Wilson coefficient corresponding to the
deep-inelastic structure function F2(x, Q ) does not re-
ceive corrections in any order of a, . The same applies to
the DY scheme in which the DY cross section has no
corrections. Notice that the pole terms' in the transition
functions stand for the collinear divergences which have
to be removed from the renormalized (in this case only
with respect to coupling-constant renormalization) par-
ton cross section. In the literature, several parametriza-
tions for the parton densities are available. Here we
prefer to use the recent Morfsn-Tung parametrization
[16] for the parton densities since they are available in
both the DIS scheme as well as the MS scheme. Notice
that in [10]we used the DIS parametrization in [17]. The
DY scheme is a purely theoretical scheme because there
are no measured parton densities in that scheme. We
have only used the latter to facilitate the discussion fol-
lowing below. The relation between the parton cross sec-
tions determined in the DY scheme (D ) and in the DIS
scheme ( C ) is given by

The residue of the pole terms in the transition function are
represented by the Altarelli-Parisi splitting functions.
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(2.8)

(2.9)

T

d &;.(s, t, u, R,M ) i dx, i dx2 d & t ( s, t, u, x.)
dt du

where s =x,x2s, t =x, t, and u =x2u. The parameter ~ appearing in the cross section (d&& ) on the right-hand side
of (2.8) stands for the mass factorization scale. In [10]we chose it to be equal to the renormalization scale and set x =s.
The parameters R and M which appear in the transition functions I; and in the cross sections (d &;~ ) denote the re-
normalization and mass factorization scales in the C scheme, respectively.

Note that the above transition functions I
&,

can be inferred from the DY cross section, provided it is calculated in
the DIS scheme. This latter cross section can be denoted by

QO A2
~

=ro ~(Q, Mii )W(r, Q ),

where o ii, is the pointlike DY cross section for JV production, &S is the c.m. energy of the incoming hadrons, and
+Q is the invariant mass of the leptons into which the 8'boson decays. The total cross section follows from (2.9) by
using the narrow-width approximation. According to the DY mechanism the hadronic structure function W(r, Q ) can
be written as

1 1 1
W'(&, Q )= g dx~ dx2 dx35(r xix2—x3)Dp ~(x~»x2, R,M )6~(x3,Q, R,M ) . (2.10)

0 0 0

Here Dp; (x „x2,R,M ) is the usual combination of parton densities. The Wilson coefficient b, ;;(x,Q,R,M ) stands
for the QCD correction term to the zeroth order process, which is known up to O(a, ) in the MS [4] as well as the DIS
schemes [5]. The transition functions I t;, bringing us from the DY scheme to the DIS scheme, can now be derived
from

6, (x, Q,R,M )=j dx, I dx J dx 5(x —x,x x )I, (x„Q,R,M )I,. (x,Q,R,M )b, (x,Q, Q, Q ),
0 0 0

(2.1 1)

where

(x3,Q, Q, Q )=5(1—x3) . (2.12)

Mf&(x,M, Ir )=P~J~(x) y~ —1n4qr+ ln
K

(2.16)

For completeness we collect the transition functionsI, = I =,. up to O(a, ) in Appendix A.
To this order, the transition functions have the form

I-Dc(x I~2 R2 Mz)

a, (ic )=5; 5(1—x)+ [f; (x, ir, a) f, (x,M, Ir. )—],
(2.13)

Here P '(x ) denote the lowest-order Altarelli-Parisi (AP)
splitting functions. The functions f, , (x) depend on the
chosen scheme differing from the MS(8) one, which im-
plies that f; =0. For the schemes discussed in this pa-
per, i.e., C or D, they can be found in [18—20]. For com-
pleteness we give the definitions of fqq(x ) as used in [10]:
namely,

fqq(x)=f (x)

where a, (~ ) has to be replaced by

a, (R )
a, (ir )=a, (R ) 1+ Poln + .

4~ (2.14)

=CF 1+ ln(l ) g(1 x 5)
1 X X

+5(1—x)[2ln 5 —4+2/(2)] (2.17)
The constant po is the lowest-order coefficient of the p
function and equals 11C~/3 —2n&/3 with C„=X for
SU(N). Note that the 1; as well as the d&," are finite.

The functions f, can be written in any "scheme (here
f,, orf; )as

fqq(x ) =f (x )

=CF
1+x
1 —x

1 —x 3
ln

x 4

fJ(x,M, ir )=f;,(x,M, lr )+f;,(x), (2.15)

where f; (x,M, Ir ) is presented in the MS scheme (called
the 8 scheme in [10]). The latter is given by

In [10]~ was called Q .

9 5+—+—x 9(1—x —5)
4 4

+5(1—x)[ ln 5 ——', ln5 ——', —2g(2)] ',
(2.18)

with g(2)=rr /6 and 5 is a cutoff which separates the
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soft-gluon region 1 —6 &x (1 from the hard-gluon one
x & 1 —5. The relationship between the dimensionless 5
and the 5 mentioned after (2.6) has been presented in
[10]. In the gluon-quark channel, however, the expres-
sions for the f (x ) in [10] should be changed to

f s(x)=f (x)

fq (x)=f (x)

= Tf [x + (1—x ) ] ln
1 —x

+8x(1—x )
—1 (2.20)

while

=T [x +(1—x) ] ln
(1—x)

x

+ —(1—x )(1+7x )
1

2
(2.19)

if one averages over the gluon polarization in n dimen-
sions rather than four. In QCD the color factors CF and

Tf are given by 4/3 and 1/2, respectively.
From (2.8) and the above results one can determine the

O(a, ) expression for process (2.6) which is

d 2~(1)

s qq

dt du

d2~(&)

s qq

dt du K —S

a, (R )+ eg
48

CF ' I[Q, (s+t)u+Q2(M~ u)t] [u (s+t) +t (MPy u) +2sM~(M~ u)(s+t)]I

—M
X [(s+t) +(M~ —u) ] ln + ln +-s+t M2 4

——(s4 —M~)[9(s+t)+5(M~ —u )]

s4 —Mw—2

X 't '(+t) (M —
) (tM + ) (

—M ) '0
s+t

+(t~u, Q, ~Q2) '

1 a, (R )+— —CF 5(s~ —M~ )BqED (s, t, u, M~ )
2 77

21n + — ln + ln + —ln +4((2)+—+(t~u, Q&~Q2)s 1

s+t 2 M2 s+t 2 s+t 2

2
d'&qg

s
dt du

&qg
s

dt du K =S

In a similar way the expression for the quark-gluon process can be obtained and reads as

C D

(2.21)

R
ag~ '

Tf [Q, (M~~ —t)u+Qz(s+u)t] [t (s+u) +u (M~ t) +2sM~(M~— t)(s+u)]—
48

2
s4 —Mw s

X I[(s+u)' 2(M~ t)(s+u—)+2(Mg——t) ]» +», +1
s +u M

+ —(s4 —M~ )(s+ u +5t —5M~) ]

X u 't '(s+u ) (M~ —t) (M~u+st )

R
+ ag Tf Q2[(M~ —s) u +(t+u ) s +2tM~(t+u)(M~ —s)]

48

X [(t+u ) —2(M~ —s )(t+ u )+2(M~ —s ) ] ln

Xs 'u '(t+u ) (M —s) (2.22)
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Here the last term, which is proportional to Qz, is due to quark fragmentation into a photon. This part of the cross sec-
tion is always given in the MS scheme. The expression for the gluon-antiquark reaction, i.e., do. , can be obtained

qg
from (2.22) by interchanging t with u and Q& with Q2. The above cross sections can also be found in (7.17) and (7.19) of
[10] except for the mass factorization term Ins/M which we have included here. The expressions for do. are ex-
tremely long and could not be fully presented in Ref. [10] [see however Eqs. (6.19) and (6.20) for qq and (6.33) for qg].
do in these formulas must be evaluated at a mass factorization scale a=&s, and a renormalization scale p=R. The
complete expressions are in our computer program and can be obtained upon request. Since the parton densities are
also parametrized in the MS scheme (scheme B in [10]), it is appropriate to also present the cross sections for process
(2.1) in the latter scheme, which was not done in [10$. In this case we have to replace C by B in (2.8) and use the transi-
tion functions I," to change from the DY to the MS scheme. Since the DY correction term in (2.10) is also known in
the MS scheme np to O(a, ) [4] the appropriate transition functions can be inferred from (2.11) where C is replaced by
B. Therefore the O(u, ) corrected cross sections in the MS scheme are given by

qq 2 qqs
dt du dt du

a, (R )+ 0.'g
48 77

C~ I[Q, (s+t)u+Q2(M~ —u)t] [u (s+t) +t (M~ u) +2s—M~2(M~ —u)(s +t)]]

X [(s+t) +(M~ —u) ] ln
(s4 —Mw) s+ ln

(s+t )(M~ —u ) M

Xu 't '(s+t) (M~ —u) (tM~+su) (s4 —M~)

s —M 2

xg 4 W +(t~u, Q, +-+Q~)s+t

1 a, (R ) 3 s
CF ' ~(~4 ™g)BQED(&, r, u, M~ ) 2 ln + — ln +2 ln

2 s+t 2 ~2 s+t
—4+2((2)

+(t+ u, Q)~ Q2) ', (2.23)

and

2 d'&qg
s

dt du

B
2d'&qg

s
dt du

D

IC =S

a, (R )+
48 Tf [Q, (M~ t)u+Q2(s+—u)t] [t (s+u) +u (M~ t) +2sM~(M~ —t)(s+u)]—

2 2

X [(s+u) —2(M~ —t)(s +u) +2( M~ —t) ] ln + ln2 2 2 2 (s4 —M~) s
(s+ u )(M t ) M—

+ —,'(s4 —M~) [s+u +7(M~ t ) 'u 't —'(s+ u ) (M~ —t ) (M~+st )

a, (R )+ ~g 2 Tf Q2[(M~ —s) u +(t+u ) s +2tM~(t+u )(M~ —s)]

X [(t+u ) —2(M~ —s)(t+u )+2(M~ —s ) ] ln

Xs 'u '(t+u ) (M~ —s)
(2.24)

Equation (7.19) has a typographical error which is corrected here.
4Equation (6.33) contains errors. The first square brackets on p. 279 should be moved in front of the coefficient of the logarithm.

Also the argument of the logarithm should contain an extra factor of ( u + t ) (s —M~ )
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where the expression for o can be inferred from (2.24)

by the interchanges t~u, gi~gz. Regarding the term
in (2.24) proportional to Qz the same comments apply as
below (2.22).

In Sec. IV we will examine experimental predictions
for the inclusive difterential spectra and rates for the re-
action p+p —+ 8'++y+X based on these formulas.

III. HIGHER-ORDER APPROXIMATIONS

In Ref. [10] we found that the O(a, ) correction from
the do. piece in the qq channel is small relative to the
second terms in (2.21) (DIS scheme). We also checked
that the total contributions from the gq and gq channels
were small and could be neglected for the CERN SppS
collider [however we did not check the relative magni-
tude of the do. terms relative to the second terms in
(2.22)]. Therefore, the whole size of the cross section and

shape of the inclusive diA'erential distributions at low en-

ergies can be attributed to the second terms in (2.21).
The same conclusion holds for the expressions (2.23) and
(2.24) which are computed in the MS scheme. Therefore,
we can try to approximate the cross section in both the
DIS ( C ) scheme as well as in the MS (8 ) scheme by
dropping all the do. terms on the right-hand sides of
Eqs. (2.21)—(2.24). Because the second terms in these
same equations originate from the convolution of the
transition function I or I with the Born cross sec-
tion (2.4) there is a close similarity between the DY pro-
cess and the reaction (2.1). Notice that the I and I
are nothing but the Wilson coefficients of the DY cross
section in the DIS and MS schemes. Since it is extremely
difficult to compute the QCD corrections to the reaction
p+p —+ W'++@+X exactly in O(a, ) and higher we must

try to estimate them. With that in mind we propose the
first approximation formula

d o.
,
"( s, t, u, R,M )

dt du

d'e"'(s, t, u )' r„x,,s, Z', M' r . ~, ,s,~',M' s' (3.1)

where d&' ' is the Born cross section presented in (2.4).
qq

The finite transition functions I, denote the transition
from the DY (D) scheme to any other scheme, evaluated
at the scale a =&s. Since these are known up to order a,
in both the MS [4] and in the DIS [5] schemes we are able
to compute (3.1) up to order a, .

We will see in the next section that this first approxi-
mation (later called APP1) has problems. Considering
also that the O(a, ) contributions to I, are very long it is

more practical to make a second approximation (later
called APP2) to obtain our final O(a, ) correction to
do' '. The latter approximation is based, on the follow-

qq

ing considerations. For a very long time it is known (see
[18—20]) that the DY Wilson coefficient 6; in (2.10) is

dominated by soft-plus-virtual-gluon corrections which
originate from the qq process. However as is discussed
in [5] this is only true if the c.m. energy is not too large.

I

As the c.m. energy increases one cannot neglect the
hard-gluon radiation in the qq process and the total con-
tributions from the qg and qg channels anymore. The
same effect has been observed for reaction (2.1) in [10].
Notice that the above considerations only hold when the
corrections are calculated in the DIS (C) scheme. In the
MS (8 ) scheme it is the hard-gluon rather than the soft-
gluon contributions which constitute the bulk of the
corrections to the qq process. The above findings were
based on a comparison in [4,5, 10] between the exact cross
section and the "soft-plus-virtual-gluon approximation. "
In the case of process (2.1) the latter is obtained by taking
the soft-gluon limit s4~Mii, in (2.21). Dropping the first
term on the right-hand side, i.e. , do in (2.21), and tak-
ing this limit, we get our second and final approximate
O(a, ) correction (in the DIS scheme):

&
s qq

dt du

a, (R ) (s4™w) 3
2 2

s 2 —1

CF ' ln +—+2 ln (s4 —Mii, )
(s+t )(s+u ) 2 M~

+5(s4 —M~) —ln +—ln + —ln +4/(2)+—3 1

2 s+t 2 s+u 4 (s+t)(s+u) 2

3 Q2 s+ + ln ln
2 (s+t)(s+u) BgE ( Dts, u, M)ii. (3.2)

Note that we have now dropped completely the contribu-
tions from the qg and qg channels rather than only the
dcrD terms as in our first approximation. (A similar
method has been used in [21] to estimate the higher-order
corrections to heavy flavor production near threshold. )

We will show in the next section that this is actually a
better approximation than taking (3.1), and it can also be
extended to higher order as follows.

In order to obtain the O(a, ) corrections to (2.21) and
therefore to (3.2) one has first to determine I in the
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same soft-plus-virtual-gluon approximation, which is
easier than calculating the complete function. The latter
can be derived from the exact expressions in [5] and its
hard and soft-plus-virtual parts are presented in (A4) and
(A5), respectively. After the substitution of I in (3.1)
one obtains the O(a, ) soft-plus-virtual-gluon approxima-
tion for d&@ in the DIS scheme which is given in (Bl)
and (B2).

In [10] we checked that the O(a, ) soft-plus-virtual-
gluon approximation in (3.2) gives a fair descr~ition of
the exact cross section at the c.m. energy &S =0.63
TeV. However at &S =1.8 TeV the approximation gets
worse due to the neglect of both the hard-gluon radiation
effects and the competing reactions qg and qg. These
studies were done with the mass factorization and renor-
malization scales set equal to &s, the parton-parton c.m.
energy. The same effect has been observed for the DY re-
action in [5] where also the exact O(a, ) contribution has
been computed in the DIS scheme. A comparison be-
tween the latter and the corresponding O(a, ) soft-plus-
virtual-gluon approximation reveals even larger devia-
tions than those already observed at the O(a, ) level (see
Table 4 in [5]), when the scales are set equal to Mii.
Therefore, the corresponding approximation to (3.2) in
the DY reaction overestimates the exact O(a, ) as well as
the O(a, ) results at &S =0.63 TeV and V'S =1.8 TeV
on account of the large negative contributions from the
analogous missing terms. However we can remedy this
by using the property that the approximate corrections
are generally more sensitive to the choice of mass factori-
zation and renormalization scales than the exact ones.
Therefore, one can correct for the difference between the
exact and approximate expressions by readjusting the
scales in such a way that the approximate cross section
becomes equal to the exact one. This procedure has been

IV. RESULTS

In this section we will study total cross sections as well
as the inclusive differential distributions of the photon.
Here we shall limit ourselves to reaction (2.1) where a
8'+ is produced. The features of the cross sections for
the S' are the same as those observed for the 8'+ and
will therefore not be separately discussed in this paper.
The photon inclusive differential distributions can be de-
rived from the expressions for the partonic cross sections
in the following way. Denoting the hadronic reaction by

p(P, )+p(P2)~ 8'+(q)+y(k )+X,
the corresponding hadronic cross section is

(4.1)

successful~1 applied to both 8'production and Z produc-
tion at VS =0.63 TeV (see Fig. 13 in [5]). By choosing
the scales M=R =1.8M~ and M=R =1.8Mz, respec-
tively, in the soft-plus-virtual-gluon approximations, one
is able to reproduce the exact cross sections. The above
result holds both for the O(a, ) as well as the O(a, )-

corrected cross sections. This implies that the scale
choice does not depend on the order in o,', in which the
cross section is computed. We therefore assume that this
also happens for the reaction (2.1).

In the next section we will present numerical results
for the total cross sections as well as inclusive photon dis-
tributions. Up to order n, we use the exact cross sections
as represented in Eqs. (2.21)—(2.24) including their
dependence on the scales M and R. We compare these
exact results with those from approximations (3.1) and
(3.2) to check that the latter is actually better. Then we
give results for the O(a, ) soft-plus-virtual-gluon approxi-
mation using the formulas in Appendix B.

(S 'r U)
g

i dx)
pi

dx2 d [m(
2 2 2

H +(x x M )s
dT dU &1 — x) &2- x2 dt du

where the lower limits are

Mw U Mw x&T

S+T xls+U
(4.3)

respectively. Here d o.
&

denote the exact or approximate parton cross sections mentioned in the previous section,

where l corresponds to a parton from the proton in (4.1) and m to a parton from the antiproton. S, T, and U denote the

square of the hadron c.m. energy and the square of the momentum transfer between the photon and the proton and be-

tween the photon and the antiproton, respectively. They are defined by

S=(Pi+P2), T=(Pi —k), U=(P2 —k) (4 4)

The quantities x, x2 are the fractions of the momenta of the incoming hadrons which are carried by the partons l and

m, respectively. The parton kinematic variables now become

s =x&x2S, t =x& T, u =x2U .

The integration boundaries in (4.3) are derived from the conditions

0&x& &1, 0(x2(1, s4=x&x2S+x&T+x2U~M~

(4.5)

(4.6)

where s4 is defined below (2.3). Finally Hi (xi, x2, M ) are products of factorization-scale-dependent parton densities.

For the qq subprocess we have
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H (x x M )= Iud'(x, , M )d (x2 M )+ct'(x, ,M )s~(x2, M )] cos Oc

and

+ Iu (x„M )s~(x2, M )+c~(x, M )d (xz, M )) sin Oc, (4.7)

H (x&,xz, M )=Id (x&,M )u (xz, M )+s (x&,M )c (x2, M )] cos Oc

+Is~(x&,M )u"(x2, M )+d~(x& M )c~(xz, M )] sin Hc, (4.8)

where we have only assumed four flavors u, d, s, and c.
The Cabibbo angle is chosen to be sin 0& =0.05 while the
other angles and/or phases of the Kobayashi-Maskawa
matrix are set equal to zero. For q(q)g subprocesses the

wHI are given by

H (x&,xz, M )=Iu~(x„M )+c~(x„M )]g~(xz, M ),
(4.9)

H (x, , x2, M )=gt'(x„M )Id~(x2, M )+s~(x2, M )I,
(4.10)

H (x„x2,M )=Id~(x„M )+s~(x„M )]g~(xz, M ),
(4.11)

aI1d

Hg (x„x2,M )=g~(x„M )Iu~(x2, M )+c~(x2,M )] .

(4.12)

The corresponding cross sections satisfy

d ot (s, t, u, R,M ) d o. i(s, u, t,R,M )

dt du dt du
(4.13)

Since the parton cross sections have been computed in
both the DIS and the MS schemes we need the corre-
sponding quark and gluon densities. Here we will use the
Morfin-Tung (MT) I16], 82 parametrizations in either
the DIS or the MS schemes (Tables 7 and 8 in [16], re-
spectively). This parametrization provides us with a
gluon density g~(x, M ) which rises steeply as x ~0
[Lipatov Pomeron where xg~(x, M ) =x 'i ].

Renormalization of the strong-coupling constant has to
be performed for the first time when calculating the
O(a, ) contribution to the qq process as presented in Ap-
pendix B. Here we have chosen the MS scheme. For the
running coupling constant we therefore adopt expression
10 in Ref. [22] where the heavy fiavor thresholds have
been included. The number of light Aavors will be taken
equal to 5 even for &S = l. 8 TeV (Tevatron).

Using (2.4), (4.2), (4.13), and the constraint (4.6), the
Born contribution to the hadronic cross section takes the
form

~d o(S, T, U)
dTdU

dx i

M —x T
Mw —xi T

qq
x1& S+ U

& QEDM B
Xi,

x&(Mw —x&T) Mw —x&T
S,xi T, Ux]S+U x&S+ U

Mw+H + x i, , M BQED
XMAS+ U

x, (Mw —x, T) Mw —x, T
S, U, xiT

XMAS+ U x&S+ U
(4.14)

In the case of higher-order corrections one has to distin-
guish between processes with and without gluons in the
final state. If there are gluons in the final state like in the

qq subpro cess we have to distinguish between soft
(s& (M2w+6) and hard (s4) Mw+b, ) gluons, (see (4.6)
and the discussion in Sec. 7 of Ref. [10]). Here 6 is a pa-
rameter which is taken to be zero when soft-plus-virtual-
and hard-gluon contributions are added. If the soft-plus-
virtual-gluon piece in the parton cross section is denoted
by [see (3.2) and (B2)]

'S+ V

=Q(s —M )os+ (s, t, u, R,M, &),
dt du

(4.15)

then the hadronic analogue is given by (4.14) where BQED
is replaced by 0 + . The hard-gluon contribution to the
hadronic cross section can be obtained from (4.2) by re-
placing xz in (4.3) by

6+Mw —xi T

XMAS+ U
(4.16)

In reactions (2.7) there are no gluons in the final state so
one can simply use expression (4.2) with b, =0.

The total cross section for (4.1) diverges when the pho-
ton energy is soft or when the photon direction becomes
collinear with the momenta of the incoming massless par-
tons. To avoid these regions one has to impose cuts on
the energy and angle of the photon, which we have
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chosen as Er ) 10 GeV, and 0.1 rad (Or((~ —0. 1) rad.
E is the energy of the photon in the c.m. system of the
proton-antiproton collision and Oz is the angle of the
photon in the same system with respect to the proton
beam direction.

The Born cross section is dominated by the
parton subprocess u+d ~8'++@ so that the radiation
zero in d o /d cos8& (2.5) occurs at cos8
=(Qi+Q2)/(Qi —Qz)= —1/3. However, as has been
discussed in the literature (see, e.g., Refs. [10—12]), this
zero only appears on the partonic level provided one
works in the Born approximation. When higher-order
QCD corrections are included the soft-plus-virtual part
of the qq process leaves the zero intact. However, the
zero will be removed by the hard-gluon radiation in the
qq subprocess and by the contributions due to the qg and
qg subprocesses. In the case of the hadronic reaction the
zero will be already turned into a dip on the Born level
due to the convolution with the parton densities. If we
include higher-order QCD corrections in the computa-
tion of do. /d cosO& then the dip will be further filled in
by the hard-gluon bremsstrahlung and contributions
from the qg and qg subprocesses.

Before presenting our results we would like to com-
ment on how the parton cross sections do.

h
and the par-

ton densities depend on the mass factorization scale M
and the renormalization scale R. Although the anoma-
lous dimensions which determine the scale evolution of
the parton densities depend on both the renormalization
as well as mass factorization (operator renormalization)
choice one does not distinguish between R and M in the
analysis to extract the H&

+ from experimental data.
Moreover, as has been pointed out for the DY process in
Ref. [4] the cross section is much more sensitive to varia-
tions in M than to changes in R. This is very easy to un-
derstand since the Born cross section is independent of
a, (R ). The same argument applies to the process in
(4.1) and therefore we also expect only a small depen-
dence of the cross section on R, which will be seen in our
tables. Because of these observations we shall only con-
sider cross sections where R is put equal to M in the par-
ton cross section d o

&
. It is thus convenient to introduce

the single dimensionless scale quantity r =R /M~
=M/Mii, .

We begin by presenting in Table I the results for the
partial O(a, ) corrections to the cross sections for the re-
action p+p~W++y+X at v S =0.63 TeV (CERN
Spp&) in the DIS scheme as a function of r. The com-
ponents from the individual qq, qg, and qg channels, i.e.,
from (2.21) and (2.22), are listed, split up into the pieces
from the first terms (the do terms which we call o")
and the second terms (which we call cr' ') together with
their totals (which we call o''"). We see that the pieces of
the qg and qg contributions are quite small. Further from
the entries in the table we also see that the first approxi-
mations (3.1) (i.e., dropping all the der terms), which we
call 0 App ] underestimates the exact answer for all values
of r. Since o.A'ppi increases monotonically as r increases
and does not intersect o.,",,'„ there is no obvious criterion
for choosing a particular value of r. However, the ap-

TABLE I. O(a, ) corrections to the DIS scheme partial cross
sections for p+p~8'++y+X in pb, with M~=80 GeV/e
and &S =0.63 TeV.

0.50 0.56 1.0 2.0

CXg

~(a)
qq

~(b)
qq

~(1)
qq

0.146
0.55
2.38
2.93

0.143
0.53
2.43
2.96

0.129
0.44
2.65
3.09

0.116
0.37
2.81
3.18

(a)

(b)
~qg

(1)

~(a)

~(b)

~(&)

—0.07
0.07
0.00

—0.17
0.06

—0.11

—0.07
0.05

—0.02
—0.16

0.04
—0.12

—0.06
—0.03
—0.09
—0.12
—0.01
—0.13

—0.04
—0.10
—0.14
—0.09
—0.04
—0.13

qg
—0.12 —0.14 —0.21 —0.26

(1)
~exact

(1)
APP1

(1)
~APP2

2.81
2.50
2.55

2.82
2.52
2.82

2.88
2.61
3.94

2.92
2.69
4.86

proximation (3.2), denoted by o App2 is an increasing func-
tion of r which intersects o.,",,'„at r =0.56.

Results for the total hadronic cross section for the re-
action p+p ~W++y+X at &S =0.63 TeV are shown
in Table II for r taking values between 0.50 and 2.00.
The first row contains the Born cross section o.Dis com-
puted in the DIS scheme with the same parton densities
and running coupling constant given above. The second
and third rows contain the approximate cross sections,
that is the Born cross section plus the approximate O(a, )

~ ~ (o) (&) (o) (&)
O DIS+ NDIS, APP1 and o DIS+ 0 DIS App2,

also computed in the DIS scheme. The fourth row con-
tains the exact O(a, ) cross section calculated in the DIS
scheme, which is given by the Born cross section plus the
exact O(a, ) correction, i.e., o.D,'s+oD,'s,„„,. The fifth
row contains the exact O(a, ) cross section computed in
the MS scheme (using the partonic densities given by
Table I in Ref. [16]),which is given by the Born cross sec-
tion plus the exact O(a, ) correction in the MS scheme,
i.e., O.

Ms+can Ms t. We show in the sixth row of Table IIMS, exact'
the results for the approximate O(a, ) cross section,
which is given by the Born cross section plus the exact
O(a, ) correction, plus the approximate O(a, ) correction,

Dis+0 Dis, t+Dis, APP2, computed in the DIS(0) (&) (2)

scheme.
By comparing the fourth and fifth rows of Table II we

see that there is a very small dependence on the scheme
at O(a, ). The results in the MS scheme are slightly
bigger than those in the DIS scheme, and this difference
increases with increasing scale r. In the range studied,
however, the difference is never bigger than 0.5%%uo.

The scale dependences of the other (DIS scheme) cross
sections is best displayed graphically so we plot them in
Fig. 1. We see that the Born cross section, o.DI's, de-
creases by 15%%uo when the scale r increases from 0.5 to 2.0.
From Table I we conclude that the O(a, ) exact correc-
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TABLE II. Total hadronic cross section in pb for reaction p+p~8' +y+X in the DIS scheme
with M~=80 GeV/c and &S =0.63 TeV.

Cross section

(0)DIS
(0) (1)DIS+ ~DIS, APP1
(0) (1)~DIS +~DIS, APP2
(0) ~ (1)

~DIS ~DIS, exact
L00 ~ ~1
MS ' MS, exact
(0) ~ (1) ~ (2)

DIS ' ~DIS,exact+ DIS, APP2

r =0.50

7.57
10.1

10.1
10.4
10.4
11.2

r =0.56

7.47
9.99

10.3
10.3
10.3
11.3

r =1.0
6.98
9.59

10.9
9.86
9.88

11.9

r =2.0
6.46
9.15

11.3
9.38
9.42

12.5

tion, o.
D&s „„„increases about 3% when the scale r in-

creases from 0.5 to 2.0, so the net result is that the O(a, )

total cross section, o'D,'s+O. D,'s,»«, decreases by approxi-
mately 10% when r increases from 0.5 to 2.0 (it decreases
9% in the MS scheme). Although the sensitivity to the
scale is reduced in going from the Born approximation to
the first-order exact calculation, the latter still decreases
monotonically so it is not clear which scale to choose.
Hence our results correspond exactly to those observed
for the scale dependencies of the cross sections for the
DY process, where it took a complete calculation in

O(a, ) before the variation of the cross section with r be-

came flat. Then one could see for which value of r the

O(a, ) and O(a, ) soft-plus-virtual predictions (approxi-

mation 2) matched the same exact cross section. Now we

exploit the findings in the DY reaction and examine the

I

I

I I

10—

I
I

I
I

I
I

I
I

I

behavior of our O(a, ) approximate cross section,

Dps+ o Dgs ~pp2 which increases by 12% when the scale
increases from 0.5 to 2.0. It intersects the
oD&s+OD&s, »«curve at r=0. 56. At this r value the pre-
diction for the second approximation through O(a, )

matches (up to three significant digits) the exact O(a, )

cross section, both taking the value 10.3 pb. [We also see
that at this same value of r the exact O(a, ) result in the
MS scheme matches the one in the DIS scheme. ] There-
fore we should use this value in our O(a, ) results given in

(Bl) and (B2) (o'APP2) Th.e final total cross section
through O(a, ) can be read from Table II to be 11.3 pb.
The O(a, ) correction adds 10% to the exact O(a, ) total
cross section, whereas the O(a, ) correction adds 38% to
the Born approximation, thus making the perturbation
series reliable at this value of the scale r. Based on the
findings obtained in the DY process at O(a, ), we expect
that the exact value of the total cross section of the radia-
tive reaction through O(a, ) not to deviate very much
from 11.3 pb in the range of r studied here. Therefore we
note that the r dependence of the O(a, ) approximate to-
tal cross section, O.D,s+o.o,s,»«+0 Dis ~pp2 included in(0) (&) (&)

Table II has no real meaning, it is just given for com-
pleteness.

We now examine the inclusive difFerential distributions
to check whether the same constant value r =0.56 works
there too. In particular we are interested in the ratios of
the APP2 to the exact inclusive distributions (we no
longer consider the APP1). If they are not uniformly
proportional to each other we might expect to need
different rz scales, one for each distribution, labeled by
X= cosO&, X=Ez, etc. We therefore define the ratios of
the differential cross sections

d o' '/dX+ d o' " /dX
do' '/dX+ do', „",„/dX

(4.17)

6
0 .5

FICx. 1. Total O(a, ) cross sections computed in the DIS
scheme as a function of the scale r =M/M~ at &S =0.63 TeV.
oDIs+ o DIs, APP1 is plotted with a solid line o DIS+ MIDIS, APP2 with

a dashed line, o DIS+ o DIs, APP with a dotted line, and o DIS with a
dot-dashed line.

and plot them versus X for different values of the scale r.
Figure 2 shows the ratio R„,& computed for the same
four values of r appearing in Table II. The numerical er-
ror on the curves is around 2%. When the ratio is close
to 1.0 then we have a good result for the approximate dis-
tribution, but if it deviates too much from 1.0 we cannot
trust it any more. From Fig. 2 we conclude that at
r =0.56 the O(a, ) approximation for the distribution in
cos8 is in excellent agreement with the O(a, ) exact dis-
tribution, thus demonstrating that our O(a, ) prediction
is also reliable for the angular distribution as well as for
the cross section. This is not true at larger values of the
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FIG. 2. The ratios A„,q at the scales r=0.50 (dotted line),
r=0. 56 (solid line), r=1.0 (dashed line), and r=2.0 (dash-
dotted line). The c.m. energy is &S =0.63 TeV.

scale r: we can see ath t at r near 2.0 the deviation intro-
duced at the O(a, ) level reaches 25%, so we cannot trust
the O(a, ) predictions for this distribution at large va ues
of r.

F' 3 shows the actual differential cross section inigure s ow
the angular distribution of the photon, do. / cos
snowsh the Born differential cross section, i.e.,
der' '/d cosO~, the O(a, ) exact differential cross section

14
I I I I I

I

I I I I

I

I I I I

I

I I I I

I

1.3—

FIG. 3. Photon inclusive differential distributions
do. /dcosO~ in the DIS scheme with r =0.56 at &S =0.63 TeV.
The solid curve shows the Born distribution, the dashed curve
shows the exact distribution in O(a, ), and the dotted curve

2shows our prediction through O(o',

(&)
d CT exact+
cosO d cos8

and our best estimate for the O(a, ) approximate
differential cross section

d ' ' do exact d~APP2
(1) (2)

d cosO d cosO d cosa

They have been computed in the DIS scheme using the
scale r =0.56 which, as we already discussed, is the best
choice for computing the O(a, )-corrected total cross sec-
tion at &S =0.63 TeV. Note that this plot is drawn with
a semilogarithmic scale. The position of the minimum is
at cos8~ = —1/3.

The corresponding results for the inclusive distribu-
tions in the photon rapidity, g~ =

—,
' in[(1+ cosO~)/

(1—cos8~)] now follow. R„ is plotted in Fig. 4 and we
see excellent agreement for r =0.56. Figure 5 shows the
actual distributions.

Next we turn to the inclusive photon distribution in
the energy E, which was defined after (4.16). Figures 6

.8 I I I ! I f I I I I I I

-3 -2
I

0
f I I I I I

FIG. 4. The ratios R„at &S =0.63 TeV. The notation is
the same as in Fig. 2.



S. MENDOZA, J. SMITH, AND W. L. van NEERVEN

I I I t I I I I I I I I I ( I I ( ( i I I I I I I I I I I
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FIG. 5. Photon inclusive differential distributions do. /dg~ in
the DIS scheme with r =0.56 at &S =0.63 TeV. The notation
is the same as in Fig. 3 ~

and 7 show the ratio Rz and the actual distributions, re-
spectively. Remember that we have imposed a cut at
E~ =10 GeV. Because of the rapid fall off in the Ez dis-
tribution we only plotted it out to 120 GeV, while the ac-
tual maximal energy is around 310 GeV.

Finally we show the corresponding plots for the in-
clusive distribution in the transverse momentum of the
photon p, ~=E~ sinO~. R~, and do. /p, ~ are shown in
Figs. 8 and 9, respectively, again only up to 120 GeV.

The last four figures referred to above all demonstrate
that the O(a, )-corrected APP2 only behaves moderately
well for the distributions in E~ and p, z at the scale
r =0.56, resulting in deviations of about 8% in the re-
gions where the differential cross sections are large, i.e.,
for low Ez and p, z. This can be understood by noting
that the low E~ and p, z photons are correlated mainly
with the regions of phase space where the hard-gluon ra-
diation and the contributions from the qg, qg sub-
processes cannot be neglected. Therefore we cannot ex-
pect the APP2 to work so well in these regions. On the
other hand, high-energy and high-transverse-momentum
photons are produced in regions of phase space where the
additional emitted gluon becomes soft, and so we expect
that APP2 behaves better in these regions. What we ac-
tually see in Figs. 6 and 8 is that the R~ ratios become
flat at large values of E and p, for all values of the scale
r, but they do not necessarily approach the value 1.0,
mainly due to the missing contributions from the q(q)g
channels, which are dropped in this approximation. If
we wanted to make better predictions in the large E and

1.5
10

1.4—

13:

1.2—
)
C3

b

.01

9—

.8
0 20 40 60

E„[GeV]

I

80 100 120

.001
20 40

E„[GeV)
80 100 120

FICx. 6. The ratios RE at &S =0.63 TeV. The notation is
the same as in Fig. 2.

FICz. 7. Photon inclusive differential distributions do. /dE~
in the DIS scheme with r=0.56 at &S =0.63 TeV. The nota-
tion is the same as in Fig. 3.
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I
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pt [G~vl
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FIG. 8. The ratios R~, at &S =0.63 TeV. The notation is
the same as in Fig. 2.

large p, z regions using our approximation, we could in-
crease the cut in Ez increasing at the same time the value
of the scale r. For example, by cutting E~ above 40 GeV
we would obtain an excellent RE ratio choosing r =1.0.
The same would hold for R, . The cost of doing this is
that we dramatically reduce the size of the cross section.

From the previous plots we conclude that the shapes of
the Born, exact O(a, ), and approximate O(a, )

differential cross sections are reasonably similar at
&S =0.63 GeV. Hence the corresponding K factors for
the distributions are flat. The only exception is the p, dis-
tribution, which as can be seen from Fig. 9, has rapidly
decreasing K factors as the transverse momentum in-
creases.

We conclude this discussion by noting that we have
deliberately avoided making the scales in the last four
plots functions of E and/or p, since this would not al-
low us to make any connection with the choice of the
constant scale in the cross section.

We now consider the higher-energy results for the Fer-
milab Tevatron at &S = l. 8 TeV. Tables III and IV give
the corresponding partial and total cross sections. Now
we notice a dramatic increase in the size of the qg and qg
channels. Here APP1 (3.1) yields larger results than the
exact answer. Approximation (3.2) shows a monotonic
increase as the scale increases. The neglect of the hard
radiation contributions in the qq channels and the nega-
tive contributions from the qg and qg channels causes this
change in the r dependence. Since the c.m. energy is mul-
tiplied by a factor of 3, the values for the total cross sec-
tions in Table IV have increased by roughly the same
amount when compared to those in Table II. By compar-
ing the fourth and fifth rows of Table IV we see the same
qualitative dependence on the scheme at O(a, ) as we ob-
served at VS =0.63 TeV in Table II. At 1.8 TeV, how-
ever, the difference between the results in the MS and the

TABLE III. O(a, ) corrections to the DIS scheme partial
cross sections for p+p~ W++y+X in pb, with M~=80
GeV/c and &S =1.8 TeV.

C3

.01

b

.001

.0001

10
20 40 60

~. (G vl
80 100 120

~(a)
qq

~(b)
qq

~(1)
qq

(a)

(b)
~qg

(&)~w

~(a)
~(b)

~(1)

0.50

0.146

1.82
8.21

10.03

—0.64
1.29
0.65

—3.66
1.62

—2.04

—1.39

0.52

0.145

1.81
8.24

10.04

—0.64
1.21
0.57

—3.62
1.53

—2.09

—1.52

1.0

0.129

1.59
8.67

10.26

—0.55
—0.02
—0.57

—3.03
0.29

—2.74

—3.31

2.0

0.116

1.40
9.13

10.53

—0.48
—0.97
—1.45

—2.53
—0.65
—3.18

—4.63

FIG. 9. Photon inclusive differential distributions do. /dp, ~ in

the DIS scheme with r =0.56 at &S=0.63 TeV. The notation
is the same as in Fig. 3 ~

(&)
~exact

(&)
~APP1

(&)
~APP2

8.64
11.12
8.22

8.52
10.97
8.55

6.95
8.94

13.40

5.90
7.51

17.47
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TABLE IV. Total hadronic cross section in pb for reaction p+p —+ W +@+Xin the DIS scheme

with M~=80 GeV/c and &S =1.8 TeV.

Cross section

(0)
DIS
(0) (1)

MIDIS+ ~APP1
(0) (1)

O DIS+ O APP2
(0) ~ (1)

MIDIS ' MIDIS, exact

MS ' MS, exact
(0) ~ (1) m (2)
DIS ~~D IS,exact ' DIS, APP2

r =0.50

23.7
34.5
31.9
32.4

32.6
35.1

r =0.52

23.7
34.3
32.3
32.2

32.5
35.2

r =1.0
23.7
33.5
37.1

30.7

31.2
37.7

r =2.0
23.6
31.2
41.0
29.5
30.3
40.9

45
I I I I

J

I I I I
I

I I I I

]
I I I I

40—

35—

1

30—

25—

/

/
/

/

/

/
/

/

/
/

/

20 I I I I I I I I I I I I I I I

0 .5 1.5

FIG. 10. Same as Fig. 1 for &S = 1.8 TeV.

DIS scheme is 3% at a scale r =2.0, which is still small
but larger than the value of 0.5% we found at 0.63 TeV.

Figure 10 shows the plots obtained for the first four
rows of Table IV, as functions of the scale r at 1.8 TeV.
We now see clearly that the Born cross section, oD,'s,
shows negligible variation over the whole range of r. The
O(a, ) exact correction, oD,'s,„„,decreases 30% when
the scale r increases from 0.5 to 2.0, so the net result is
that the O(a, ) total cross section, o D,'s+o D,'s,„„„de-
creases 9% through the same range (it decreases 7% in
the MS scheme), which is roughly the same as we got at
0.63 TeV. The behavior of the O(a, ) approximate cross
section 0 Dys+cTDys App] has the same dependence on the(o) (&)

scale, i.e., it monotonically decreases with r, and does not
intersect the O(a, ) exact cross section. The behavior of
the O(a, ) approximate cross section oDis+o'Dis, Appz is
the opposite, as we already observed at 0.63 TeV, and
comes out to be much steeper than at 0.63 TeV: it in-
creases almost 30%%uo when the scale is increased from 0.5
to 2.0. Note that the decrease in the exact result and the

growth in the approximate result as r increases is similar
to the corresponding DY results in this energy domain.

The best value of the scale r at 1.8 TeV, obtained in the
same way as at the lower energy of 0.63 TeV, is slightly
smaller in this case. Up to two significant digits, Table
IV and Fig. 10 show that r =0.52. For this value the pre-
diction of the O(a, ) approximation gives 32.3 pb, to be
compared with the exact total cross section O(a, ) result
of 32.2 pb. At this value the exact O(a, ) result in the MS
scheme gives 32.5 pb versus 32.2 pb in the DIS scheme,
so we can still neglect any difference between the two
schemes. From Table IV our best prediction for the total
hadronic cross section through O(a, ) is therefore 35.2
pb. In other words the O(a, ) correction adds around 9%
to the O(a, ) exact result whereas the O(a, ) correction
adds 36% to the Born total cross section, so perturbation
theory seems to converge well.

We now turn to the distributions at the c.m. energy of
1.8 TeV and compare the results from (3.2) versus the ex-
act ones, using the same inputs as above. The ratio R„,z
which was defined above, is plotted for the c.m. energy of
1.8 TeV in Fig. 11. The fluctuations in the latter plot
demonstrate that our O(a, ) approximation at r =0.52 is
not so good at this c.m. energy. However choosing larger
values for r is clearly incorrect. Figure 12 shows the plot
of the inclusive differential cross section for the photon
variable cosO~. The notation is the same as used in Fig. 3
for 0.63 GeV. The ratio R„and the actual inclusive
differential distribution for q are shown in Figs. 13 and
14, respectively.

From these plots we conclude that at the c.m. energy
of 1.8 TeV our O(a, ) approximation in (3.2) with
r =0.52 is not so good in predicting these distributions
when the photon energy and angle cuts are set equal to 10
GeV and 0.1 rad, respectively. The ratios R„,& and R„
now show increases of about 10% above unity near
cosO= —1 and g= —3, respectively. The deviations are
smaller at the opposite ends of the ranges, however (see
Figs. 11 and 13 and compare them with Figs. 2 and 4). In
contrast with the situation at 0.63 TeV, we observe a big
asymmetry in R„,& and R„at 1.8 TeV for all values of
the scale r. These ratios are good at the upper ends of the
distributions, i.e., in the regions cosO&=1.0 and g~=3.0,
but they are poor at the other ends of the distributions,
i.e. in the regions cosO = —1.0 and q = —3.0. This can
be understood by noting from Table III that the qg and
qg channels become relatively more important than at
0.63 TeV. At 1.8 TeV these channels are dominated by
the reaction g+d~ W++u+y and thus the total con-



ORDER-a~ QCD CORRECTIONS TO THE REACTION. . . 3927

17 I I I I

I

I I I I
I

I I I I

I
I I I I 1.7

I I I I

]
I I I I

)
I I I I

)
I I I I

)

I I I I

I
I I I I

1.6—
/

1.5—

1.4— 1.4—

1.3—
0
O

1.2—

9—

I I I I I I I I I I I I I I I I I I I

-1 -.5 0 .5
cos 8„

.8 I I I I I

-3 -2
I I I I I I

0
I I I I I I I I I I I I I I

1 2

FIG. 11. Same as Fig. 2 for &S =1.8 TeV and r=0.50, 0.52,
1.0, and 2.0.

FIG. 13. Same as Fig. 4 for &S =1.8 TeV and r=0. 50, 0.52,
1.0, and 2.0.
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FIG. 12. Same as in Fig. 3 for &S = 1.8 TeV and r =0.52. FIG. 14. Same as Fig. 5 for &S = 1.8 TeV and r =0.52.
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tribution of these channels to the cosO~ and g~ distribu-
tions is asymmetric. This effect can be appreciated in
Fig. 15, where we have introduced the ratio R

~ ~, whiche~Pr'
represents the quotient of the contribution of the q(q )g
channels to the hadronic differential cross section divided
by the total differential cross section at O(a, ). We see a
large negative contribution near cos6&= —1 and a negli-
gible contribution near cosO =1. The plots suggest that
increasing the cut in the photon angle and appropriately
increasing r would considerably improve the performance
of the approximation.

The plots for E~ and RE, as defined above, are shown
in Figs. 16 and 17, respectively. We have cut the plot in
E at 120 GeV, while the actual maximal E occurs at
about 900 GeV. Finally we present the ratio R, and the
inclusive distribution in p, z in Figs. 18 and 19, respective-
ly. The RE and R, ratios in Figs. 16 and 18 show bigger
deviations from 1.0 than at 0.63 TeV (compare with Figs.
6 and 8, respectively) but the qualitative behavior of these
ratios remains the same. Again the plots suggest that we
could improve the approximation for these two distribu-
tions by cutting at a higher value of the energy E
(around 50 GeV in this case) and increasing the scale r
Like at &S =0.63 TeV an increase in the angle and ener-

gy cuts would considerably reduce the total cross sec-
tions.

We have also included the approximate O(a2) terms in
our predictions for the E~ and p, ~ distributions in Figs.

1.7:
1.6—

1.5—

1.4—

1.3—

1.2—

20 40
I

60
E„[GeV]

80 100 120

FIG. 16. Same as Fig. 6 for &S =1.8 TeV and r=0.50, 0.52,
1.0, and 2.0.
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FIG. 15. The ratio R
( )

of the contributions of the qg and

qg channels divided by the total photon inclusive differentia
distribution computed at O(a, ) in the DIS scheme for &S = 1.8
TeV and r =0.52.

.01
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80 100

FIG. 17. Same as Fig. 7 for &S = 1.8 TeV and r =0.52.
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FIG. 18. Same as Fig. 8 for &S = 1.8 TeV and r =0.50, 0.52,
1.0, and 2.0. FIG. 19. Same as Fig. 9 for &S = 1.8 TeV and r =0.52.

17 and 19. However as we explained above, since the Rz
ratios are not so good at 1.8 TeV thus we cannot expect
such good results at O(a, ) as found for 0.63 TeV.

From the above plots we conclude that the shapes of
the Born, exact O(a, ), and approximate O(a, ) inclusive
differential distributions are not identical at &S =1.8
TeV. A close examination shows that the corresponding
K factors for the exact O(a, ) distributions tend to in-
crease as cosO&, g~, E&, and p, z increase while those for
the O(a, ) APP2 are reasonably fiat.

To brieAy summarize our investigations we have com-
puted the O(a, ) contribution to the reaction
p +p ~8 + +y+X in the soft-plus-virtual-gluon approx-
imation (called APP2 in this paper) using a value for the
mass factorization and renormalization scale r deter-
mined from the comparison between the exact cross sec-
tion and that predicted by the O(a, ) approximated one.

From our plots of the inclusive differential distributions
we conclude that the shapes of the Born, exact O(a, ),
and approximate O(a, ) distributions are not identical at
the two energies studied. Therefore there is an error in-
volved if one tries to include these higher-order contribu-
tions by multiplying the Born distribution by a constant
factor, but this is probably a reasonable thing to do until
much more data is available.
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APPENDIX A

Here we present the functions needed for the transition from the DY scheme to the DIS scheme. Dropping the su-
perscript DC one finds, in lowest order,

r",,'(x)=5(l —x) .

CF

In order a, we obtain, from (2.9) and (2.13), (2.14),
r

(I) 2 2 2 a, (R') 1+x 1 3 1I (x, i~,R,M )= —ln(1 —x )+—+—ln
7T 1 x 2 8 2 M'

9 5————x 8(1 —x —5)
8 8

(Al)

+5(1—x ) . ln5+ — ln + —ln 5+ —ln5+ —+2/(2)-3 K 1 2 3 1

4 M2 2 4 4
(A2)
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and from (2.9) and (2.15), (2.16) one gets

I ~(x,~,R,M )= a, (R )
T Ix +(1—x) I

—ln(1 —x)+—ln + — +—(1—x)(1—5x)2 1 1 ~ 1 1

f 2 2 M' 2 4
(A3)

The O(a ) expression is split up into a hard-gluon and a soft-plus-virtual-gluon part. In the hard part we only keep
S

soft-gluon radiation terms of the type (1—x )
' ln'(1 —x ). It is given by

r(2'"(x ~2 R' M')qq' X,K,
2a(R ) 1 9

F F 2 8
C C —ln (1—x )+ —ln (1 —x )+ +—g(2) ln(1 —x )+ + —g(3)13 1 9 5

16 2 32 2

+»(1—x )+— ln + —ln (1—x }+—ln(1 —x )+ +g(2} ln
3 ' 3 9 13 K

4 M' 2 4 16 M

+Cz . — ln (1 —x)+ ——g(2) ln(1 —x)+11 2 169 1 57
8 144 2 32

+ g(2) ——g(3) — ln
11 3 11
12 4 24

] i
ln 1n

12 R M

+ — ln(1 —x )+ ——g(2) ln
11 67 1 K

6 36 2 M

11 11 M'+ — ln(1 —x ) — ln
12 16

+n —ln (1 —x )
— ln(1 —x ) — ——g(2)

1 2 11 5 1
f 4 72 16 6

+ ln +—ln ln + —ln(1 —x ) — ln
1 2 v 1 M v 1 5

12 M 6 R M 3 18 M

1 1 M+ —ln(1 —x )+— ln
6

1 8(1—x —5) . (A4)

I (2),s+ v(x ir2 R 2 M2)
qq

2
a, (R )

C C —ln 5+—ln 5+ +—g(2) ln 5+ +—g(3) ln5—1 4 3 3 13 1 2 9 5 1
F F 8 8 32 4 32 2 32

2

+3((3)+ g(2) + —ln 5+ —ln5+ ——g(2) ln
40 2 4 32 2

The soft-plus-virtual-gluon part, which is proportional to 5(1—x ), is represented by

g(2)

+ —ln 5+—ln 5+ +g(2) ln5+ +—g(3) ln
1 3 9 2 13 9 5 K

2 8 16 32 2 M2

+C - — 1n 5+11 3 169
24

1 57 11 3 215 1049
4

——g(2) ln25+ + g(2) ——g(3) ln5+ + g(2)
32 12 4 288 144

49 77 2 11 11 ~ K 11 11 M K

24 80 24 32 M 12 16 R
g(3) — g(2) + — ln5 — ln + — ln5 — ln ln

+ — ln25+ ——g(2) ln5+ ——g( 3 ) ln
11 2 67 1 193 3 K

12 36 2 96 4

11 2 11 11+ — 1n 5 — 1n5—
24 16 48

M
g(2) ln
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+n ~ ln 5 — ln 5+1 3 11
12 144

E

5 1 19——g(2) In5—
16 6 144 72 6

g(2)+ —g(3)

1 1 2K 1 1 M K 1 2 5 17+ ln5+ ln + —ln5+ — ln ln + —ln 6— ln5—
12 16 M 6 8 R M 6 18 48

+ ln 5+ —ln5+ + —g(2) ln
2

5(1—x ),1 2 1 1 1 M
12 8 24 3 R

where nf denotes the number of light Aavors.

K
ln

M

(A5)

APPENDIX B

From the O(a, ) splitting functions I in Appendix A and (3.1) we infer the O(a, ) soft-plus-virtual-gluon approxi-
mations to reaction (2.1). Like in the case of the transition functions in Appendix A we split the cross section into a
hard-gluon part where we only keep large logarithms of the type (s4 —M~) ' ln'(s4 —M~), given by

(2)

s 2dt du ~4

(R ) 1 3
& Mp 1 S4 Mp S4 Mg 3 S4 M~ s4 —M~ 3 S4 Mp

2 4 2 2 2 2 2 2

CF CF —ln +—ln ln +—ln- 1n +—ln2 s+t 2 s+t s+u 4 s+t s+u 2 s+t
r

s4 —Mw s4 —Mw+ +2/(2) ln + + —g(2)+ —g(3)+ 21n +— ln8 s+t 32 4 2 s+t 2

s+t s+u s+t 2 s+t 8 M

8 s+t 144 2 s+t 32 12 4 24
ln + ——g(2) ln + + g(2) ——g(3) — ln

11 M s

Mw2

ln
12 s+t

s —M11 s4 ™w 67 —1
g(2) 1

s
s+t 36 2

11 M
ln

16

1 2s4 Mw2

+nf ' —ln
4 s+t

s4 M 2

ln
72 s+t

5

16
1 s 1 M s——g(2)+ ln +—jn ln
6 12 M2 6

Mw2

+ —ln
3 s+t

2
5 s 1 s4 Mw 1 M

ln + —ln +— ln
18 M' 6 s+t 8

X
q 0(s4 —M~ b, )BoED(s t&u M&~)&+(t++u, ging ),1 2

s4 —Mw

and a corresponding soft-plus-virtual part proportional to 5(s4 —M~~), namely,
S+V

qq

dt du
2

a, (R )

8 s+t s+u 8 s+t 8 s+t s+u 8 s+t

(B1)

+ +g(2) ln + +—g(2)+ —g(3) ln — g(2)16 s+t 32 4 2 s+t 32

+ g (2)+ g(3)+ ln + —ln + —g(2) ln40 4 s+t 2 s+t 16
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+ —ln ln +—1n +—1n
1 2 4 6 1 g 6 9
2 s+t s+u 2 s+t 4 s+t

+ +2/(2) 1n + +—g(2)+ —g(3) 1n13 15 3 7 s

8 s+t 32 4 2 M

+ C~ — 1n + ——g(2) 1n
11 g 5 169 1

24 s+t 288 4 s+t

1049 49 77
32 12 4 s + t 288 144 24 80

+ + g(2) ——g(3) 1n + + g(2) — g(3) —
g (2)

+ — ln
11
24 s+t

11 z s 11
32 M2 12 s+t

11 M s
ln ln

16 g 2 M2

+ — 1n2 + ——g(2) ln + ——g(3) 1n
11 2 5 67 1 6 193 3 s

12 s+t 36 2 s+t 96 4 M

11
ln24', +t

11 6 11
ln

16 s+t 48
M

g(2) 1n

1
+Elf ' ln

12 s+t
11

1n + — ——g(2) ln
5 1

144 s+t 16 6 s+t

19
144

85 1 1 5 1 2 s 1 6 1 M s

72 6
g(2)+ —g(3)+ 1n + 1n + —1n + — 1n 1n

12 s+t 16 M2 6 s+t 8

+ —ln
1

s+t
5 6 17 s 1 z 6 1 6 1 1

1n — ln + 1n + —1n + +—g(2) 1n——M
18 s+t 48 M~ 12 s+t 8 s+t 24 2

5(s4 —M~)BQED(S)tt)tttyMpt)+(t~tt0 Q]~Q2 ) (82)
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