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Resonance decays and partial coherence in Bose-Einstein correlations
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We investigate the infIuence of resonances on Bose-Einstein correlations (BEC s) in the presence of
coherence of the pion field. For this purpose a realistic description of resonance production via hydro-

dynamics is attempted by constraining the initial and freeze-out conditions so that the single inclusive

rapidity and transverse momentum distributions are correctly reproduced. We find that even a totally

coherent source of "direct" pions leads to an appreciable apparent chaoticity because of the important
role played by resonances in distorting the correlation function. On the other hand, kaons, being much

less a6'ected by resonance decays, seem to be ideal candidates for the experimental investigation of
coherence in BEC's. Quantitative predictions of BEC's in S +S reactions at 2003 CxeV are made.

PACS number(s): 13.85.Hd, 05.30.Jp, 12.40.Ee, 25.75.+r

I. INTRODUCTION

The majority of secondaries produced in high-energy
collisions are pions. A large fraction (between 40% and
80%) of these pions arise from resonances [1]. Since the
resonances have finite lifetimes and momenta, their decay
products are created in general outside the production re-
gion of the "direct" pions (i.e., pions produced directly
from the source) and resonances. As a consequence, the
two-particle correlation function of pions rejects not
only the geometry of the (primary) source but also the
momentum spectra and lifetimes of resonances [2].
Kaons are much less affected by this circumstance [3];
however, correlation experiments with kaons are much
more difIicult because of the low statistics.

The distortion of the two-particle correlation function
due to resonance decay was studied, among other things,
in Refs. [4—12]. Two obvious effects emerge: (a) The
effective radius of the source increases; i.e., the width of
the correlation function decreases. (b) Because of the
finite experimental resolution in the momentum
difference, the presence of very-long-lived resonances
leads to an apparent decrease of the intercept of the
correlation function to values below 2. Effect (b) is par-
ticularly important if one wants to draw conclusions from
the intercept about a possible contribution of a coherent
component in multiparticle production.

In the present paper, we continue the investigation of
the inhuence of resonances on the two-particle correla-
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tion function by studying for the first time this problem
within a realistic hydrodynamical approach and in the
presence of a coherent pion field. The hydrodynamial ap-
proach appears for several reasons to be a good candidate
for this problem: (i) Only through hydrodynamics, infor-
mation about initial conditions, freeze-out, and the equa-
tion of state can be obtained; (ii) it provides also the sin-

gle inclusive distributions which are intimately connected
with higher-order distributions; (iii) it provides both the
weights as well as the space-time and momentum distri-
butions of resonances.

A comparison of pion and kaon Bose-Einstein correla-
tions (BEC's) in heavy-ion reactions was made so far only
in [3] and even there only for chaotic sources. On the
other hand, in [3] a superposition of noninteracting
strings is assumed which can be considered as a bare-
bone model of nuclear collisions in which collective nu-
clear effects are absent. The presence of collective nu-
clear effects, however, appears almost inavoidable [13],
and to take this into account in the string model scenario
would necessitate the introduction of an interaction be-
tween strings [14]. Furthermore, some cross sections for
resonance productions, which are used in the Lund mod-
el and which enter in the string model, are apparently in
disagreement with data [15] and it is unclear how this
affects the conclusion of Ref. [3].

In particular, we discuss the behavior of the correla-
tion at small momentum differences. All the relevant
effects are taken into account: resonance decay, longitu-
dinal as well as transverse expansion, and modifications
due to the presence of partial coherence and particle
misidentification. For illustration, we apply the formal-
ism to a full three-dimensional solution of the relativistic
hydrodynamic equations, which describes the experimen-
tally observed rapidity and transverse momentum distri-
butions of mesons and protons, and compute the two-
particle correlation functions for S +S at 2004 GeV.

In Sec. II we present the basic formalism and show
how the experimentally observed intercept of the correla-
tion function is inAuenced by the interplay between con-
tributions from the decay of long-lived resonances and
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partial coherence. Section III contains the results of the
numerical calculations for the concrete case of a relativis-
tic nucleus-nucleus collision. The efT'ects of resonance de-
cays are illustrated through the comparison of pion and
kaon interferometry, and the e6'ects of the contribution of
long-lived resonances as well as partial coherence on the
apparent intercept of the correlation function are demon-
strated. Finally, a summary of the main results and con-
clusions are presented in Sec. IV.

II. GENERAL FORMALISM

A. Contribution of resonance decays
to Bose-Einstein correlations

For the case of a purely chaotic source, the formalism
to take into account the effects of resonance decays on
the Bose-Einstein correlation function can be found, e.g. ,
in [7,9,10]. Below, we present a straightforward exten-
sion of the approach employed in [16] which is based on
the Wigner function formulation of Ref. [17].

The correlation function of two identical particles of
momenta p& and p2 can be written as

A )~ A2(
C2(p& P2) = 1+ (1)~ 11 22

where the matrix elements 2, are given in terms of
source functions g (x, k) as

A, . =QE,E (at(p;)a(p. )) = f d xg(x„,k")e

(2)
I

g (x„,p")=g~"(x„,p")+
res=p, co, g,

g„, „(x„,p"),

where the labels dir and res~+ refer to direct pions and
to pions which are produced through the decay of reso-
nances (such as p, co, g, etc.), respectively. The contribu-
tion from a resonance decay g„, (x,p") can be ex-
pressed in terms of the source function of that resonance
itself, g„",(x„*,p'"), as follows (from here on, quantities
related to a resonance will be labeled with a superscript
star). Consider a resonance of width I, which is created
at a space-time point x „' and after a proper time ~ decays
into n+X at x"=x*"+(r/m*)p*~. As the fluctuations
of the decay time ~ are described by the probability distri-
bution I exp( —I r), one obtains

Here, a (p) and a(p) are the creation operator and the
annihilation operator of a particle of momentum p, and
the four-momenta k"= ,'(p—/'+pg) and q"=p/' p—~" are
the average momentum and the relative momentum of
the particle pair, respectively. The interpretation of the
source function g (x„,p") as the quantum analogue of the
mean number of particles of momentum p" at the space-
time point x„enables us to decompose g with respect to
the origin of the produced hadrons. For instance, if the
particles under consideration are two identical pions (e.g. ,
two m ), one has

d3
g„, (x,p~)= f f d x*f dr I exp( —I r)5 x"— x*"+ p*~ 4„, (p*",p")g„",(x„*,p*"),

0 m* (4)

+,.. .(p*"p")=
4mP0

ppp
0

m

where b is the branching ratio, and

where &5„, (p*",p") describes the probability for a res-
onance of momentum p "to produce a pion of momen-
turn p".

%'e shall assume that the decay is governed by phase
space. For an isotropic two-body decay, this implies

E = (m*+m —m )
1

m

po= Q[m* —(m +mx) ][m* —(m„—mx) ] .1

2m

Three-body decays are treated in an analogous way [18].
Equations (1)—(6) allow us to calculate the two-particle

correlation function provided the source distributions for
the direct production of pions and resonances are known.
In a hydrodynamic approach, these are [16]

exp

p "do.„(x„' ) 6 (x„—x„' )

p "u„(x„' ) Bp~(x„' ) —Sps(x ' )—
+1

T~(x„' )

(6)

where do." is the di8'erential volume element and the in-
tegration is performed over the freeze-out hypersurface
X. u "(x) and T& are the four-velocity of the fiuid element
at point x and the freeze-out temperature, respectively. B
and 5 are the baryon number and the strangeness of the

particle species labeled a, respectively, and pz and pz are
the corresponding chemical potentials. J is the spin of
the particle. An evaluation of the integrals in Eqs. (2)
and (4) is performed in Appendix A.
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B. Partial coherence

3; =3;~+ g res
ij (7)

res=p, co, g, . . .

where we have used the obvious notation

A;, = J d x g "(x„,k")e

d xg„, x„,k~ e

and define the coherent and the chaotic parts as

and

A, „=(1—pd;, )QA, , A (10)

In the previous subsection, it has been assumed that
the particle source is completely chaotic [indeed, Eqs. (1)
and (2) would imply that the intercept of the Bose-
Einstein correlation function C2(p, p) must always be
equal to 2]. However, a more general quantum statistical
treatment also has to take into account the possibility of
the contribution of a coherent component to the mul-
tiparticle production process.

In this section, we will consider the effects of introduc-
ing an additional coherent (nonfluctuating) field com-
ponent into the formalism described above. We shall re-
strict ourselves to the case of additive coherence, i.e., of a
superposition of a chaotic and a coherent component in
the pion field. This approach is based on general rules of
quantum statistics. For other treatments of coherence,
cf. e.g. , [19—21]. We are not concerned here with an ex-
planation of the origin of partial coherence. Rather, we
shall assume that a fraction of the secondaries is emitted
coherently, and study the resultant behavior of the two-
particle correlation function.

At this point, the question arises of whether or not
pions which are created via resonance decays can exhibit
partial coherence —a question which cannot be decided
in the absence of a definite model. In the following, it
will be assumed that only the directly produced pions
contain a coherent component. This assumption is con-
servative since it underestimates the amount of coher-
ence. In this case the fraction of directly produced pions
which is emitted chaotically, i.e., pd;„ is the "true" chao-
ticity (0(pd;„(1). In general [22], both the chaoticity
parameter and the phase of the coherent field component
will depend on the momentum of a particle, the momen-
tum dependence depending on the particular model un-
der consideration. Below, for the sake of simplicity, this
momentum dependence will be neglected; i.e., it will be
assumed that the chaoticity and the phase of the coherent
component are approximately constant over the momen-
tum region defined by the range of the Bose-Einstein
correlations (that is to say, a momentum range character-
ized by the width of the correlation function).

To be specific, we decompose the matrix element 3;
into a direct and a resonance contribution [cf. Eq. (3)]:

takes the form

lA», ,hl'+2«(A12, hV Ali,
C2(P»P2) + ~ 11 22

(12)

We introduce the notation

d12 = +A 11,ch A 22, ch

(13)

C2(P1 P2) 1+2p ff(1 p ff)Red12 p ffld12 l
(14)

which leads, e.g. , to two exponentials in C2, related in a
definite way, if one chooses for d, 2 an exponential param-
etrization (cf. also [22]).

The sensitivity of the correlation function on the chao-
ticity parameter pd;, will be illustrated in Sec. III D
below, where the case of a high-energy nucleus-nucleus
collision is considered.

C. Intercept of the correlation function

When discussing the intercept of the correlation func-
tion, one has to bear in mind that all experiments have a
finite resolution in the momentum difference q. Conse-
quently, any value of the "intercept" extracted from data
is the result of an extrapolation to the point q =0. This
value depends not only on the resolution in that particu-
lar experiment, but also on the functional form that is
used to extrapolate (e.g. , Gaussian versus exponential).
In the remainder of this paper, when we refer to the in-
tercept of the correlation function it is understood that
we mean the result of an extrapolation as described
above.

In general, each of the following phenomena can
influence the intercept: (a) partial coherence, (b) the pres-
ence of long-lived resonances, (c) final-state interactions,
and (d) particle misidentification. In this section, we will
not be concerned with point (c). Usually, the experimen-
tal data that are published have already been corrected
for Coulomb interactions, and at least part of the strong
final-state interactions are taken into account in the treat-
ment of resonance decays.

Let us first consider the effect of partial coherence.
One may write the intercept of the Bose-Einstein correla-
tion function [cf. Eq. (14)]

Io =C2(P P) = 1+2p.ff (1&)

Defining the fractions of pions produced directly (chaoti-
cally and coherently) and from resonances,

Pdir iiA . (1 —p )AP dir ii
ch g & co

77 ii

(we do not consider the explicit momentum dependence
of p, ff). The index eff refers to the fact that the chaoticity
arises as a consequence both of the intrinsic chaoticity of
direct pions and of resonances [cf. Eq. (17) below]. One
then obtains

A;-,h=Pd;, A; +
res=p, co, g,

g res
ij

respectively. The Bose-Einstein correlation function then f res res =P, co,
g res

77
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with

nadir +nadir +pres —
1

the effective chaoticity p,z is related to the true chaoticity
parameter pd;, as

In Fig. 1 the intercept of the correlation function is
shown as a function of pd;, and f"'. In order to read off
the fraction of direct chaotically produced particles, pd;„
from the intercept of the correlation function, one has to
extract the effective chaoticity p, s- according to Eq. (15)
and then correct for the fraction of pions from resonance
decays. Note that p,~ &pd;, . In particular, if a large frac-
tion of pions arise from resonance decays, p,&~1 and it
will take very precise measurements of the two-particle
correlation function at small q to determine the true
chaoticity, pd;, .

A further complication arises if a fraction of particles
is the decay product of long-lived resonances. As the
latter decay at large distances from the source, they con-
tribute to the interference peak only at small momentum
differences which may be not accessible due to the finite
experimental resolution.

Let us introduce the fractions of pions produced by the
decay of "short"- and "long"-lived resonances f,"' and

fi"", respectively, with f'"=f,""+fi"". Here, the
definition of "long lifetime" refers to the resolution of the

nadir +g res+pres (19)

Finally, consider the effect of particle misidentification.
For simplicity, we restrict ourselves to the case of two
particle species, pions and kaons; the generalization to
more than two particle species is straightforward.

In the laboratory frame a certain, momentum-
dependent fraction of E,g'(p), will be misidentified as

The observed single inclusion distribution of pions
(including the effects of misidentification) is

1 dO 1 dO 1 do~+g(p)—
dp o dp o dp

(20)

where the superscripts vr and K in the terms on the right-
hand side (RHS) refer to the "true" single inclusive distri-
butions of pions and kaons, respectively. Similarly the
observed m 7r correlation function (including the effects
of misidentification) becomes

detector in a given experiment. To be specific, let us as-
sume that the detector can resolve momentum differences
q & q, . If the resonances are taken to travel at the speed
of light, this would imply that only the contribution of
the decays of resonances with widths I & q, to the in-
terference peak can be experimentally resolved in that
particular experiment. Extrapolation to q =0 then leads
to the effective intercept

IO=C2(p, p) = I+2VAp, ir(1 —p, ir)+Ap, ir

where

2
C3

0
C)

(D
V

1.8
C

c (p)=

1 do.

d p
1 do

~( )1 do.

dp o dp

C2 "(pi,p2)= 1+c (pi)c (pz)[Cz (pi, p2) —1]

+cx(pi)cx(pz)[C2 (pi, p2) —1],
where

(21)

(22)

1.6

1.4

1.2

and cx(p)=1 —c (p). The above results are written for
the laboratory frame, where pions and kaons of the same
three-momentum p are misidentified. The transforma-
tion to arbitrary frames is straightforward.

All three effects (partial coherence, decay of long-lived
resonances, and particle misidentification) are illustrated
in Sec. III below, where the formalism is applied to the
description of particle production in ultrarelativistic nu-
clear collisions.

III. APPLICATION TO ULTRARKLATIVISTIC
NUCLEUS-NUCLEUS COLLISIONS

1
0 0.2 0.4 0.6 0.8

fraction f" of pions from resonances

FIG. l. Intercept of the two-particle correlation function in
the presence of coherence and resonances.

In this section, the formalism presented in the preced-
ing section is applied to describe Bose-Einstein correla-
tions of pions and kaons produced in nuclear collisions at
energies reached at the CERN Super Proton Synchrotron
(SPS) in the framework of relativistic hydrodynamics. To
be specific, we shall consider the reaction S+S at 200M
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TABLE I. Initial fireball quantities describing the experi-
mental S+Sdata.

Free parameters of the model

C,
1.8

1.6

thermal pions

+P ~77
+p, CO, AM]t

+p, m, h, rima

Fraction KL of thermal energy in Landau volume
Longitudinal extension b of Landau volume
Rapidity y& at edge of Landau volume
Parameter y of initial baryon y distribution
Parameter o. of initial baryon y distribution

42.6%
0.6 fm
0.9
0.82
0.4

1.4

1.2

0 0.05
I i i I i I i i I

0.1 0.15
I t » I I

0.2 0.25 0.3

gg IGev/c]

GeV. The principal reason for this choice is that infor-
mation on baryonic rapidity and transverse momentum
distributions is necessary in order to constrain the initial
conditions of the hydrodynamic system, and these distri-
butions have so far only been measured for S+S (see
Table I).

2
C,

1.8

1.6

1.4

1.2

thermal pions

+P M7T

+P, M, 4~7t
+ p, 0), 5, T) ~ 7t

A. Hydrodynamical model
I

0 0.25 0.30.05 0.1 0.15 0.2
I i I i i I » i i I i i i i I i i i i I

We consider a hydrodynamic scenario which has been
proposed in Ref. [23]. That is to say, we determine the
source distribution g(x, k) from a full three-dimensional
solution of the relativistic hydrodynamic equations which
describes the coupled longitudinal and transverse expan-
sion of the hot and dense matter. The equation of state
we use is based on a parametrization of lattice data and
exhibits a first-order phase transition. The initial condi-
tions are somewhere between the assumptions of Landau
[24] and Bjorken [25]: While about half of the thermal
energy is concentrated in a central region of width hz —1

fm, the Quid is described by an initial longitudinal veloci-
ty field, and the initial baryon number distribution peaks
at rapidities y —+0.8. In the present paper we introduce
a minor modification of the formalism of [23] by assum-
ing a more realistic shape for the energy and baryon
number initial distribution. This leads to slight changes
of the parameters (for details, cf. Appendix B).

B. Bose-Einstein correlation functions

For central collisions, azimuthal symmetry implies that
the two-particle correlation function depends only on five
variables: kII, k~, qII, q„d„and q,„„where the labels

~~

and l refer to the components of q and k parallel and
transverse to the beam direction, and out and side denote
the components of q~ parallel and orthogonal to k~, re-
spectively.

For simplicity, let us begin by assuming a completely

q, IGeV/c]

FICx. 2. Bose-Einstein correlation functions of negatively
charged pions, in the longitudinal and transverse directions.
The separate contributions from resonance are successively add-
ed to the correlation function of direct (thermal) ~ (dotted
line). The solid line describes the correlation function of all ~

chaotic source; the effects of partial coherence will be dis-
cussed in Sec. III D below. The resonances which con-
tribute significantly to the production of pions and kaons,
and their dominant decay modes, are listed in Table II.
Figure 2 illustrates the effect of successively adding the
contributions from p, co, 6, and g decays to the BEC
functions of directly produced (thermal) ~ (dotted
lines), in longitudinal and in transverse directions. The
width of the correlation progressively decreases as the de-
cays of resonances with longer lifetimes are taken into ac-
count, and the correlation loses its Gaussian shape. An
interesting effect occurs when the g decays are included
(solid lines). As a result of the small width of the II of
—10 MeV, the contribution of q decays to the ~
interference peak cannot be observed experimentally due
to the limited detector resolution in the momentum
difference q. Thus, one finds an apparent drop of the in-
tercept of the correlation function to a value below 2 [of
course, the "true" intercept remains equal to 2; cf. Eq.
(2)].

TABLE II. Resonance decays included in the calculation of Bose-Einstein correlation functions (ex-
cept E*).
Name m (MeV)

548
770
783
892
1232

I (Me V)

1.2X 10
151
8.4
50
115

~ (fm/c)

1.64X10'
1.3

23.4
3.94
1.21

Decays

3~ (56%), 2y (39%), 1T+m y (5%)
277

3' (90%), n y (8.5%), m+m (1.5%)
Km
N~
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sible difference in freeze-out geometries of pions and
kaons by comparing the widths of ~~ and KI| correlation
functions, one has to restrict oneself to a region in
momentum space where resonances do not contribute
(unless one is able to identify thermally produced pions).
Our results indicate that only at very large transverse
momenta k~ +0.8 GeV/c the contributions from reso-
nance decays can be neglected (cf. Fig. 5).

In Ref. [16], where the effect of transverse liow on the
Bose-Einstein correlations of thermally produced pions
was studied, we observed that the effective longitudinal
radii agreed remarkably well with an approximate analyt-
ic expression which was derived for a one-dimensional
(purely longitudinal) expansion in Refs. [29,30] (cf. also
[31]):

C,

C,

1.8

1.6
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1.8

1,6
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p = 1.00
dir

p = 0.66
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p =033
dir

p = 0.00

I I I & i I I

0.24 0.28

q„ IGeV/cl

p = 1.00
dir

p =066
dir

p =033
dir

p = 0.00
dir

1/2
f 7 o

cosh(yk )
(24) 1.2

where mi =(mi, +miz )/2 is the average transverse mass
of the two particles, Tf is the freeze-out temperature, and
ro=(r)uII /r)z) ' is the inverse gradient of the longitudinal
component of the four-velocity in the center (at z =0).
As was argued in [16],for large freeze-out times the solu-
tion at z =0 is close to the scaling solution, and conse-
quently, for a one-dimensional expansion ro=tf(z =0),
where tf (z) is the freeze-out time at longitudinal position
z. For a three-dimensional expansion, tf =tf(z, ri), and
one has ro- (tf(z =—O, ri) ), where the average is taken
over the radial coordinate.

We have checked that this result remains valid for the
K K correlations in the more realistic scenario con-
sidered here. The symbols Q' in Fig. 5 were obtained by
substituting the value ( tf (z =0, ri ) ) =2 fm/c for the
average lifetime of the system (calculated directly from
hydrodynamics by averaging over the hypersurface) into
Eq. (24), with Tf =0.139 GeV. The good agreement sug-
gests that it is possible to determine the lifetime of the
source from a measurement of the kaon correlation func-
tions in the longitudinal direction.

A comprehensive analysis of Bose-Einstein correlations
of both pions and kaons will be necessary to obtain infor-
mation about the space-time aspects of multiparticle pro-
duction in high-energy nuclear collisions. In particular,
data ought to be taken in different rapidity and transverse
momentum bins of the pair. An interesting issue which
has not been discussed here concerns a possible separa-
tion of strange and anti-strange matter [28,32,33], which
can be investigated by comparing correlations of K+K+,
K K, and KsKs pairs (see Ref. [34] and references
therein).

I i i i & I i &» I i » i I i i i i I

0.05 0.1 0.15 0.2 0.25 0.3

q, IGeV/cl

FIG. 6. ~ ~ Bose-Einstein correlation functions in the
presence of partial coherence.

1
C2 (pi, p2) = I +Ap, sexp ——g (qR )

2

+&A2p, tr(1 —p,tr)exp ——g (qR )

E. Particle misidentification

Finally, let us consider the effects of particle
misidentification on the two-particle correlation function.
As in Sec. II C, for illustration we shall take into account
the misidentification of K as a in the laboratory
frame. In order to estimate the maximum effect, we as-
sume that all K are identified as rr, g(p) = 1. In Fig. 7,
the resultant correlation function (dashed line) in the c.m.
frame is compared to the true ~ m correlation function
(solid line). Clearly, for this case the effect on the shape
of the correlation function is negligible.

(25)

The effective radii obtained by fitting our results with Eq.
(25) are listed in Table III.

D. Partial coherence
TABLE III. p,z, A, , intercept I0, and effective radii as a func-

tion ofpd;, in Fig. 6.

Figure 6 shows the ~ m correlation functions in the
presence of partial coherence. In order to extract
effective radii from Bose-Einstein correlation functions in
the presence of partial coherence, Eq. (23) must be re-
placed by the more general form

pair

1.00
0.66
0.33
0.00

petr

1.00
0.82
0.63
0.45

0.82
0.79
0.73
0.63

I0

1.82
1.79
1.69
1.52

R~I (fm)

4.60
5.08
6.61

11.01

R~ (fm)

4.51
4.61
4.91
5.89
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C,
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including K misidentification

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

cept is more reliable. The hydrodynamical treatment
provides a consistent description of single inclusive and
double inclusive cross sections for secondaries. Predic-
tions for BEC's in S +S reactions made in the present pa-
per if compared with experimental data (unavailable so
far) could constitute a sensitive test of the eouation of
state and the source formalism for Bose-Einstein correla-
tions.
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FIG. 7. m m correlation functions, with (dashed lines) and
without (solid lines) the effect of misidentification of kaons for
pions.

IV. CONCLUSIONS

In a consistent treatment of single and double inclusive
cross sections for identical pions via a realistic hydro-
dynamical model, resonances play a major role leading to
an increase of effective radii of sources. Effective longitu-
dinal radii are more sensitive to the presence of reso-
nances than transverse ones.

The contribution from the decay of long-lived reso-
nances also affects strongly the intercept of the correla-
tion function C2(q) at q =0. Particle misidentification
has similar effects; however, the contribution. from
misidentification of kaons as pions has been shown to be
small. These effects affect any conclusions about the
presence of coherence, based on the value of the inter-
cept. This is much less the case for the two-exponential
structure of the correlation function which is a specific
consequence of partial coherence [cf. Eq. (14)].

For kaons the effect of resonances is much less impor-
tant. The effective radii obtained from kaon inter-
ferometry are therefore much smaller than those of pions
and information about coherence derived from the inter-

APPENDIX A: EVALUATION OF THE
CORRELATOR INTEGRALS

For directly produced pions we get immediately, from
insertion of Eq. (6) into Eq. (8),

exp

kiddo. „(x„')
k "u„(x„')

T~(x' )

iq1"x '

e (A 1)

Especially for the single inclusive we obtain

7T— 1

(2~)' fx
exp

pt'do„(x„')
pt'u„(x„')

TI(x„')

7
Xg„,",(x„',p*")exp iq~ x„*+ p„*m* (A3)

With

f

dic
I exp( —I r)exp i p*q"

0 m*
.p
m*r

(A4)

and insertion of Eqs. (6) and (S) into Eq. (A3), one ob-
tains, after integration over x * in the case of two-particle
resonance decay,

For the A ."we can perform several integrations. Inser-
tion of Eq. (4) into Eq. (9) and integration over x gives

d3
A "= f d x'drl exp( —I r)&b„, „(p*",k")

3 Qk p
res b d p & E p
J 4~p

exp(iq "x„' )
X

3(2m ) & p*~q
1+i m*r

Using the definitions

exp

p*"do„(x„')
p*"u„(x„')—Bp~( ')xSp,s(x„')—

+1
T~(x' )

(AS)



47 RESONANCE DECAYS AND PARTIAL COHERENCE IN BOSE-. . . 3869

p *"= ( m ~ coshy *, m j' sinhy *,p ~ cosy~, p ~~ sing" ),
k"=(m~kcoshyk, mzksinhyk, kJ cos+k kJ sin&pk ),

d '
1=—dy *dp *2dy*,E~ 2

one finally gets, after eliminating the 5 function by integrating Eq. (A5) with respect to q&,

bm * ~(+) dp i dp
1J

Q(p ~ k~ )
—[Eom *—m ~1, m ~ cosh(yk —y

"
) ]

where

n=1

2J+1 exP lg x

(2m') & p *~q
1+i m'1

exp

p*"do„(x„')

p ""u„(x„' ) Bps (—x „' ) —Sps(x &
)

Tf (x„') +n

(A6)

cp1
=gp +arccos [mimii, cosh(yk y*)—Eom

2
=2m—

g2(+) g2(+)
pz —m~ —m

m Eom J /cosh(y„—y
' )+k,V E,' +k f —m', „cosh'(y„—y

*
) ]g(+)

m~kcosh (yk —y*)—kj

y(*+) =y&+ln
QEO+k~ +po

m lk

For the contribution to the single inclusive we obtain the well-known result
g2(+ )

bm ' ~(+)

dpi'

11 4~» ~&-& ~i Q(p~pj, ) —[Eom* —m~, m f cosh(y; —y*)]

exp

p *"dcr„(x„' )

p'"u„(x„')—Bp~(x„')—Sps(x„')
+1

Tf(x„')

(A7)

The expressions in the case of three-body decays can be
reduced to those corresponding to two-particle decay
[18].

APPENDIX B:
SHAPE OF THE INITIAL ENERGY DENSITY
AND BARYON NUMBER DISTRIBUTIONS

14

E
12

C3
10

d profile

rofile

In [23], it was assumed that the initial energy density
and baryon number distributions e(z, rj ) and n~(z, r~)
have sharp surfaces in the transverse direction; i.e., they
were taken to be proportional to O(R rj ) (whe—re z and
rL are the coordinates in the longitudinal and transverse
directions). Here, we generalize these initial conditions
of Ref. [23] by taking into account the smearing out of in-
itial distributions in the transverse direction as follows.
Let p(r) denote the nuclear density distribution
(r =rz+z ). The energy and —baryon number deposited
at coordinates (rz, P) is proportional to

0 I I ~ I

6 7

r, tfm]

FICx. 8. Energy density profile in the radial (transverse) direc-
tion.
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j dz p(Qz +rt )

P(r&)—:
d r dzp z+r

(B1)

Thus, we write

e.(z, rt ) —e(z)P(rt ),
n~(z, rt)-n~(z)p(rt),

(B2)

where e(z) and ntt(z) are parametrized as in [23]. For the

density distribution of the sulfur nucleus, we take a
Woods-Saxon parametrization (cf. for example, [35]).
The parameters of the initial energy density, baryon num-
ber, and velocity distribution were obtained by fitting the
experimentally observed [36] rapidity and transverse
momentum distributions both of negative particles and of
protons; their values are listed in Table I. The resultant
profile of the initial energy density distribution at z =0 in
the transverse direction is plotted in Fig. 8. For compar-
ison, we have also included the boxlike profile which was
assumed in Ref. [23].
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