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We describe a rearrangement of the standard expansion of the symmetry-breaking part of the
@CD effective Lagrangian that includes into each order additional terms which in the standard
chiral perturbation theory (yPT) are relegated to higher orders. The new expansion represents a
systematic and unambiguous generalization of the standard yPT, and is more likely to converge
rapidly. It provides a consistent framework for a measurement of the importance of additional
"higher order" terms whose smallness is usually assumed but has never been checked. A method of
measuring, among other quantities, the @CD parameters m(qq) and the quark mass ratio m, /m is
elaborated in detail. The method is illustrated using various sets of available data. Both of these
parameters might be considerably smaller than their respective leading-order standard gPT values.
The importance of new, more accurate, experimental information on low-energy vr-~ scattering is
stressed.

PACS number(s): 11.30.Rd, 11.40.Fy, 13.75.Lb

I. INTRODUCTION

Owing to quark conBnement, the connection between
QCD correlation functions and hadronic observables is
far from being straightforward. In the low-energy do-
main, such a connection is described by chiral perturba-
tion theory (yPT) [1—3]. The latter provides a complete
parametrization (in terms of an effective Lagrangian) of
low-energy off-shell correlation functions of quark bilin-
ears, which should take into account (i) the normal and
anomalous Ward identities of chiral symmetry, explic-
itly broken by quark masses; (ii) spontaneous break-
down of chiral symmetry; and (iii) analyticity, unitar-
ity, and crossing symmetry. On the other hand, such
a parametrization (effective Lagrangian) should be suf-

ficiently general, and should not introduce any addi-
tional dynamical assumptions beyond those listed above
that could be hard to identify as emerging from QCD.
The specificity of QCD then resides in numerical val-
ues of low-energy constants, which characterize the above
parametrization. The theoretical challenge is to calculate
these low-energy parameters from the fundamental QCD
Lagrangian. While such a calculation is awaited, these
parameters can be subjected to experimental investiga-
tion. Chiral symmetry guarantees that the same param-
eters that are introduced through the low-energy expan-
sion of QCD correlation functions also define the low-

energy expansion of hadronic observables —pseudoscalar
meson masses, transition and scattering amplitudes.

In this paper, a new method will be elaborated that
allows a detailed measurement of certain low-energy pa-
rarneters, using the vr-vr elastic scattering data [2,4]. In-
stead of concentrating on a particular set of scattering
lengths and effective ranges [2] whose extraction from

experimental data is neither easy nor accurate, emphasis
will be put on a detailed fit of the scattering amplitude
in a whole low-energy domain of the Mandelstam plane,
including the unphysical region. In this way it is possible
~o obtain some experimenta/ insight on the low-energy
parameter 2mBp, where m is the average of the up and
down quark masses, Bp is the condensate

B, = —,(OIGulO) = —,(OlddlO) = —,(Olss[O),
1 — 1 — 1

and [0) and Fe stand for the ground state and pion de-
cay constant, respectively, at m„= mp = m, = 0.
It is usually assumed that the parameter 2mBp differs
from the pion mass squared by not more than 1 —2%%

[3], and the standard chiral perturbation theory could
hardly tolerate an important violation of this assumption
[5]. On the other hand, this assumption has never been
confronted with experiment otherwise than indirectly—
through the Cell-Mann —Okubo formula for pseudoscalar
meson masses [5]. However, even the latter represents at
best a consistency argument rather than a proof: The
Gell-Mann —Okubo formula can hold quite independently
of the relation between 2mBo and M2 [6]. An indepen-
dent measurement of 2mBo is not only possible (as shown
in the present work) but, for several reasons, it appears
to be desirable.

(i) The effective Lagrangian Z, tr contains, in princi-
ple, an infinite number of low-energy constants, which
are all related to (gauge-invariant) correlation functions
of massless QCD. Among them, Be plays a favored role:
The order of magnitude of all low-energy constants other
than Bo can be estimated using sum-rule techniques [7],
which naturally bring in the scale A 1 GeV charac-
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teristic of massive bound states. The expected order
of magnitude of a low-energy constant related to a con-
nected N-point (N ) 1) function of quark bilinears ql'q,
which is not suppressed by the Zweig rule or by a sym-
metry, is Fo A multiplied by a dimensionless constant
of order 1. If quarks were not confined [8], a similar
estimate would relate Bo and the mass of asymptotic
fermion states with quark quantum numbers. However,
in a confining theory, no similar relation between Bo and
the spectrum of massive bound states can be derived: qq
is an irreducible color singlet and there is no complete
set of intermediate states that could be inserted into the
matrix element (OiqqiO). Bo could be as large as A 1
GeV or as small as the fundamental order parameter of
chiral symmetry breaking, Fo 90 MeV. A priori, there
is no way to decide in favor of one of these scales, at least
before the nonperturbative sector of @CD is controlled
analytically or by reliable numerical methods, using, for
instance, sufficiently large lattices. In this paper, we sug-
gest how the question of the scale of Bo can be addressed
experimentally.

(ii) To the extent that 2mBo and (m, +m) Bo are close
to M and M~, respectively, the ratio of quark masses

T mg m (1.2)

If g is set equal to 1, one recovers the leading O(p2) order
of the standard gPT. The new expansion can therefore
be formally viewed as a generatization of the standard
scheme and, in this sense, it will be referred to as im-
proved yPT, since it aims to improve the convergence of
the standard perturbation theory. Demonstrating that
such an improvement is irrelevant, by measuring, for in-
stance, the ratio (1.3) and finding it close to unity, would
be an important experimental argument in favor of the

must approach 2M~/M~ —1 = 25.9 [5,9]. There ex-
ists an independent measurement of the ratio r in terms
of observed deviations from the Goldberger-Treiman re-
lation [10) in nonstrange and strange baryon channels.
This model-independent measurement indicates a consid-
erably lower value for r than 25.9, unless the pion-nucleon
coupling constant turns out to be below the value given
by Koch and Pietarinen [11] by at least 4—5 standard
deviations [12].

(iii) A reformulation of yPT, which allows 2mBo to be
considerably lower than Ms, has been given in Ref. [6]. It
is as systematic and unambiguous as the standard yPT
itself and is particularly suitable in the case where Bo is
as small as F . It is based on a different expansion of
the same effective Lagrangian, with the same infinity of
independent terms. To all orders, the two perturbative
schemes are identical, but, in each finite order, they can
(but need not) substantially difFer. For each given order,
the new scheme contains more parameters than the stan-
dard yPT, the latter being reproduced for special values
of these additional parameters. Already at the leading
order O(p ), the new scheme contains one additional free
parameter:

2mBo
M2

standard yPT.
(iv) In some cases, the convergence of standard yPT

actually appears to be rather slow. Most of the indica-
tions in this direction can be traced back to the fact that
the leading O(p ) order of the standard yPT underesti-
mates the Goldstone boson interaction and, in particu-
lar, the ~-vr scattering amplitude. This manifests itself
through virtual processes and/or final-state interactions,
as in pp ~ vrovro [13], rt —3vr [14], etc. It might even be
that although the next order O(p ) improves the situa-
tion, it fails to reach the precision we may rightly expect
from it. For example, the I = 0 8-wave vr-vr scattering
length, which is aoo——0.16 in leading order [15], gets
shifted to ao ——0.20 by O(p ) corrections [2], while the
"experimental value" [16—18] is aoo——0.26 +0.05. (In this
paper it will be argued that scattering lengths are not
the best quantities to look at. A more detailed ampli-
tude analysis will reveal a possible amplification of the
discrepancy, which exceeds one standard deviation. )

(v) yPT should be merely viewed as a theoretical
framework for a precise measurement of low-energy @CD
correlation functions. Its predictive power rapidly de-
creases with increasing order in the chiral expansion:
More new parameters enter at each order and more ex-
perimental data have to be included to pin them down.
For this reason, a slow convergence rate might sometimes
lead to a qualitatively wrong conclusion with respect to
a measurement based only on the first few orders. This
might concern, in particular, the measurement of the ra-
tio rl (1.3) within the standard yPT. In the corresponding
leading order, q is fixed to be 1, independently of any ex-
perimental data. This property of standard yPT could
bias the measurement of g if g turned out to be consid-
erably different from 1: One would presumably have to
go to a rather high order and include a large set of data
to discover the truth. In this case, the improved yPT
would be a more suitable framework to measure q faith-
fully. The reason is that in the improved yPT, il is a
free parameter from the start: It defines the leading or
der x-~ amplitude. Neglecting, for simplicity, Zweig-rule
violation (cf. Ref. [6] and Sec. IVA), the latter reads

A(situ) = 2(s —ilM ). (1.4)

Using in this formula the value of a&
——0.26 + 0.05, one

concludes that q = 0.4 + 0.4 already at the leading or-
der. The measurement then has more chances to saturate
rapidly, say, at the one-loop level, provided g is much
closer to 0.4 +0.4 than to 1. The same remark applies to
measurements of the quark mass ratio r = m, /m, which,
incidentally, is closely related to rl [10]: A slow conver-
gence of the standard yPT could lower the leading-order
result r = 25.9 by considerably more than the usually
quoted 10 —20% [3,19].

(vi) The question of the actual value of g and/or of
r = m, /m has to be settled experimentally. None of the
known properties of @CD, nor the fact that light quark
masses are tiny compared with the hadronic scale A 1
GeV, imply that il should be close to 1 and that r should
be close to 25.9. The proof of this negative statement is
provided by the existence of a mathematically consistent
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generalization of the standard yPT that does not contra-
dict any known fundamental property of @CD and allows
for any value of i1 between 0 and 1 (and for any value of
r between 6.3 and 25.9) [6]. Only in the special case of rI

and r close to 1 and 25.9, respectively, can the standard
yPT claim a decent rate of convergence.

In Sec. II, the precise mathematical definition of the
improved yPT, in terms of the effective Lagrangian, is
brieHy summarized. It is not a purpose of this paper
to present a full formal development of this theory; in-
cidentally, most of it can be read ofF from existing cal-
culations [3] after rather minor extensions (which will be
presented elsewhere). Here, we will mainly concentrate
on phenornenological aspects of the problem in connec-
tion with low-energy x-x scattering. The content of Sec.
III is independent of any particular yPT scheme. In that
section, a new low-energy representation of the vr-vr scat-
tering amplitude is given that provides the most general
solution of analyticity, crossing symmetry, and unitar-
ity up to and including the chiral order O(ps). (Partial
wave projections of this representation coincide with a
particular truncation of the well-known Roy equations
[20].) Subsequently, this representation is used both to
constrain the experimental data and to perform a com-
parison with theoretical amplitudes as predicted by the
two versions of yPT. For the case of the improved yPT,
the one-loop amplitude is worked out in Sec. IV. Finally,
a method permitting a detailed fit of the experimental
amplitude in a whole low-energy domain of the Mandel-
stam plane is developed in Sec. V. This method is then
applied to various sets of existing data.

II. FORMULATION OF IMPROVED yPT

U(z) = exp —) A'y (z) (2.4)

Leaving aside anomaly contributions described by
the Wess-Zumino action, the effective Lagrangian
Z,g(U, vi', a",X) is merely restricted by the usual space-
time symmetries and by the requirement of invariance
under local chiral transformations [AL R eSU(3)],

U(z) ~ AR(z)U(z)OtL(z), X(z) ~ AR(z)X(z)AtL(z),

(2.5)

compensated by the inhomogeneous transformation of
the sources v" and a":

v~+ a" ~ AR(v" + a" + iB~)AR~,

(2.6)
v" —a" ~ AL(v" —a" + iO")ALt

(This gauge invariance of the nonanomalous part of Z
is necessary and sufficient to reproduce all SU(3) x SU(3)
Ward identities. ) Otherwise, the effective Lagrangian re-
mains unrestricted.

Z,g can be written as an infinite series of local terms:

The scalar-pseudosealar source y and the quark mass ma-
trix Mq are closely tied together by chiral symmetry.
(Notice that our source X differs from the X defined in
Ref. [3] by a factor of 2Bp.)

Instead of calculating Z, the effective theory
parametrizes it by means of an effective Lagrangian,
which depends on the sources and on eight Goldstone
boson fields

8

&eir =).&" &~m, (2.7)
Following rather closely the off-shell formalism that

was elaborated some time ago by Gasser and Leutwyler

[3], we consider the generating functional Z(v~, ai', X) of
connected Green's functions made up from SU(3) x SU(3)
vector and axial-vector currents as well as from scalar and
pseudoscalar quark densities, as defined in @CD with
three massless Bavors. The sources v", a", and y are
specified through the Lagrangian

A)m

where Z„~ denotes an invariant under the transforrna-
tions (2.5) and (2.6) that contains the nth power of the
covariant derivatives D& and the mth power of the scalar-
pseudoscalar source y. The sum over independent in-
variants that belong to the same pair of indices (n, m) is
understood. The eovariant derivatives are defined as

~ = ~QcD + a(g+ g&s)e —CRXQL QLX QR (2.1)
D„U = B„U —i(v~ + a„)U+ iU(v„—a~), (2.8)

Q=S+2P (2.2)

which defines the vacuum-to-vacuum amplitude exp(iZ).
Here, qL R = 2i(1 ~ ps)q stand for the light quark fields

u, d, s, and ZQcD is invariant under global SU(3) x SU(3)
transformations of ql. and q~. v" and a" are traceless and
Hermitian, whereas

and likewise for D&X. The expansion coefficients E"™rep-
resent properly subtracted linear combinations of mass-
less @CD correlation functions that involve n vector
and/or axial-vector currents and m scalar and/or pseu-
doscalar densities, all taken at vanishing external mo-
menta. The first two terms in the sum (2.7), for instance,
read (n is even)

is a general 3 x 3 complex matrix (s and p are Hermitian).
Explicit ehiral symmetry breaking by quark masses is
accounted for by expanding Z around the point

&"&pi = Fp ~p(U'X+ X'U—)2 '

82p = Fp (D"UtD„U). —
0

(2.9)

v" = t2,"= 0 ) mq i . (2.3)
m. )

Everything said so far is rather general and independent
of any particular perturbative scheme.
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Chiral perturbation theory is an attempt to reorder
the infinite sum (2.7) as

) g(&)

d

where 2(") collects all terms that in the limit

(2.10)

p~0, M —+0, p /M fixed (2.11)

d„=n+ md(mq). (2.12)

For infinitesimally small quark masses, one should have

behave as O(p ) (p stands for external momenta). In or-
der to relate the expansions (2.10) and (2.7), one needs to
know the effective infrared dimension d(mq) of the quark
mass. The invariant Z„~ then contributes as O(p"" ),
where

reflecting their smallness compared to the scale A. This
does not contradict mathematical statements such as
(2.14). It only means that, although for physical val-
ues of quark masses the ratio in Eq. (2.14) remains on
the order of 1, it is allowed to differ from 1 considerably.

To summarize, in the improved yPT each insertion
of the quark mass matrix Mq and/or of the scalar-
pseudoscalar source y counts as a single power of external
momentum (pion mass) and so does the parameter Bp.
This leads to a new expansion of the effective Lagrangian

&eir =) (2.18)

where each 2" contains more terms l:„~ than does the
corresponding term 2 in the case of the standard count-
ing. The improved yPT is a simultaneous expansion in
p/A, mq/A, and Bp/A around the limit

d(mq) = 2, rnq ~ 0. (2.13) (p, mq, Bp) ~ 0, p /Mp, and mqBp/MI, fixed.

This follows from the mathematical fact that, in @CD,

(m, + m, )Bp
lcm

M. (2.14)

(Here, i, j = u, d, s and Mp is the mass of the pseu-
doscalar meson Kj, i g j.) The assumption that in the
real world, i.e. , for physical values of quark masses, the
efFective dimension of the quark mass is 2, underlies the
standard yPT. It amounts to the well-known rule that as-
serts that each insertion of the quark mass matrix and/or
of the scalar-pseudoscalar source y counts as two powers
of external momenta. Equivalently, the standard yPT
can be viewed as an expansion around the limit

(p, mq) ~ 0, p2/M~2 fixed. (2.15)

Since, by definition, the low-energy constants E" are
independent of quark masses, they are of order 1 in the
limit (2.15).

It is easy to see that the convergence of the standard
yPT could be seriously disturbed if Bp (( A 1 GeV,
say if Bp 100 MeV [6,10]. The expansion of M& reads
(i, j = u, d, s; i p j)

M' = (;+,)Bo+(;+,)'A + (2.16)

where the dots stand for nonanalytic terms and for
higher-order terms. Ap can be expressed in terms of two-
point functions of scalar and pseudoscalar quark densi-
ties divided by Fp [10]. It satisfies a superconvergent
dispersion relation, whose saturation leads to the order
of magnitude estimate Ap 1 —5. For Bp as small as
100 MeV, the first- and second-order terms in Eq. (2.16)
then become comparable for quark masses as small as
(10—50) MeV. In order to accommodate this possibility,
the improved yPT attributes to the quark mass and to
the vacuum condensate parameter Bp the efFective di-
mension 1,

III. RECONSTRUCTION OF THE LOW-ENERGY
m-vr SCATTERING AMPLITUDE
NEGLECTING O(p ) EFFECTS

The analysis of low-energy vr-vr scattering, tradition-
ally based on analyticity, crossing symmetry, and unitar-
ity [22,16,20], considerably simplifies if, in addition, one
takes into account the Goldstone character of the pion.
First, in the chiral limit (2.11), higher (E ) 2) partial
waves are suppressed. The reason stems from the fact
that in the limit (2.11) the whole amplitude behaves as
O(p2), and, furthermore, it does not contain light dip-
ion bound-state poles. Unitarity then implies that the
scattering amplitude is dominantly real, since its imag-
inary part behaves as O(p ). Analyticity then forces
the leading O(p ) part of the amplitude A(situ) to be
a polynomial in the Mandelstam variables. Furthermore,
higher-than-first-order polynomials are excluded: They
would be O(p ) only provided their coefficients blew up
as M2 ~ 0, which would contradict the finiteness of the S
matrix in the limit m, ~ ~ 0 with the external momenta
kept fixed at a nonexceptional value. Finally, crossing
symmetry allows one to express the O(p2) part of the
scattering amplitude A(situ) as

A&,.&(s ~tu) =,M.'+, (3s —4M.'), (3.1)

(2.19)

This is just another way to realize the chiral limit (2.11).
The fact that, in the efFective theory, we treat Bp as an
arbitrary expansion parameter does not contradict the
general belief that, within @CD, this parameter is fixed
and, hopefully, calculable. After all, quantum electrody-
namics is also based on an expansion in n, in spite of the
general belief that there might exist a more fundamental
theory in which the value of n is fixed and calculable [21].

d(mq) = d(Bp) = 1, (2.17)
where n, P are two dimensionless constants that are of or-
der 1 in the chiral limit. The linear amplitude (3.1) does
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not contribute to 8 & 2 partial waves. Consequently,
the latter behave in the chiral limit as O(p4) and, ow-

ing to unitarity, the absorptive parts of E & 2 waves are
suppressed at least to O(ps). This conclusion holds inde-
pendently of more quantitative predictions of yPT, which
in the actual case merely concern the values of the two
parameters n and P in Eq. (3.1).

The second simplification resides in the suppression of
inelasticities arising from intermediate states that con-
sist of more than two Goldstone bosons. The behavior of
n-pion invariant phase space in the chiral limit (2.11) is
given by its dimension: It scales like p~" 4. Amplitudes
with an arbitrary number of external pion legs are dom-
inantly O(p ). Consequently, the contribution of multi-
pion (n ) 2) intermediate states to the absorptive part
of the elastic vr-vr amplitude is suppressed in the chiral
limit at least to O(ps).

The smallness of higher partial waves and of inelas-
ticities are of course well-known phenomenological facts
[16). It is important that these "remarkable accidents"
(see p. 53 of [16])can be put under the rigorous control of
chiral power counting: The previous discussion suggests
that a rather simple amplitude analysis of low-energy ~-
a scattering can be performed up to and including O(ps)
contributions. In the following we confirm and elaborate
this expectation in detail. It will be shown in particular
that, neglecting O(ps) contributions, the whole scatter-
ing amplitude can be expressed in terms of low-energy s
and p wave phase shifts and six (subtraction) constants.
(The latter are related to the experimental phase shifts
via unitarity. ) The resulting expression (3.2) will prove
particularly useful both for constraining low-energy ex-
perimental data and for providing a basis for a confronta-
tion of chiral perturbation theory up to two loops with
experiment.

are given by the three lowest partial wave amplitudes
fg (s)

Im T(s) = —(Im fc (s) + 2 Im fo (s)j,3

Im U(s) = —(2Im fo (s) —5Im fo (s)),
27 1

Im V(s) = — Im fi (s).
2 s —4M2 (3.4)

The real parts of the functions T, U, and V are defined
only up to polynomials

6T(s) = x(s —s4M ),
bU(s) = yo + yis+ y2s + yss,
6V(s) = —(yi + 4M„yq + 16M ys)

+(y2+ 12M ys)s —3yss,

(3.5)

As dx 1
T(s) = ts + t2s + tss + s Im T(x),

4M

As dx 1
U(s) = — Im U(x),

71 4M' X X —S
(3.6)

As Gx 1
V(s) = vi + v2s + vss + —

2 Im V(x),
4M2 X X —S

where x and the y's are five arbitrary real constants: Be-
cause of the relation s + t + u = 4M„, the two sets of
amplitudes T, U, V and T+bT, U+bU, V+bV lead to the
same scattering amplitude A. [It is shown in Appendix B
that Eqs. (3.5) actually represent the most general trans-
formation of T, U, V leaving the scattering amplitude in-
variant. ] After conveniently fixing the "gauge freedom"
(3.5), the functions T, U, and V can be written as

A. Statement of the theorem

Let A denote a scale (slightly) below the threshold for
production of non-Goldstone particles The ~-~ ampli-
tude can be written as

where the imaginary parts are given by Eqs. (3.4) and
the t's and v's are constants. It will be shown shortly
that Eq. (3.2) is a rigorous consequence of analyticity
and crossing symmetry and of the Goldstone nature of
the pion.

B. Unitarity

3
A(situ) = T(s) + T(t) + T(u)

1+- [2U(s) —U(t) —U(u)]3
1+—[(s —t) V(u) + (s —u) V(t))3

+RA(s t, u). (3.2)

The low-energy representation (3.2) of the scattering
amplitude is exact up to an O(ps) remainder. In the
whole interval 4M2 ( s ( A2, unitarity can be imposed
with the same accuracy in terms of partial waves fz~ As.
already pointed out, deviations from the unitarity condi-
tion

Im fe (s) = Ifz (s)I'

The remainder, Rp, behaves in the chiral limit as O(p )
relative to the scale A: Up to possible logarithmic terms,

RA = O([pjA]s), (3.3)

where p stands for external pion momenta. In practice,
A + 1 GeV. The functions T, U, and V are analytic for
s & 4M, whereas for 4M & s & A their discontinuities

above the inelastic threshold are of the order O(ps). The

Notation and normalization are reviewed in Appendix A.
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amplitude (3.2) contains all partial waves. For E & 2, the
partial waves are real. Nevertheless, unitarity automati-
cally is satisfied for E & 2 up to O(ps) terms, since higher
partial waves anyway are O(p4) or smaller. Consequently,
it is sufIicient to impose unitarity for the three lowest
waves foo, fii, and fo2 (hereafter denoted as f, a = 0, 1, 2

according to their isospin). Projections of Eq. (3.2) into
the three lowest partial waves read

Re f (s) = P (s) +-ss dxIm f (x)
4M' X X —8

A1 dX 8+— —) W b(s, x)Im fb(x)+O(p )
4M2 X

(3.7a)

for the two s waves (a = 0, 2), whereas the p wave pro-
jection is

and v from the best fit to the values Re f (s) determined
fi'orrl 'tile inpll't Im f (s) via the unltarlty condition. The

of this fit may be considered as a measure of the inter-
nal consistency of the input data Im f (s). In practice,
experimental information on Im f (s) is only available for
s well above the threshold. In this case, a more sophis-
ticated iteration procedure [24] of Eqs. (3.7a) and (3.7b)
has to be used in order (i) to extrapolate the experimen-
tal data down to the threshold and, simultaneously, (ii)
to determine the six constants t and v. In both cases,
the resulting amplitude is given by the formula (3.2).

C. Proof af the reconstruction theorexn

Formulas (3.2) and (3.6) can be proven following the
original derivation of the Roy equations [20]. The proof
is based on fixed-t dispersion relations for the three 8-
channel isospin amplitudes F~ ~,

dx Im fi(x)
4M~ x2(x —4M2) x —s

A ) Wib(s, x)Im fb(x) + O(p ).
4M2

7r b=o

(3.7b)

Here, P~(s) are third-order polynomials whose coeffi-
cients are defined in terms of the six constants to, t2, ts
and Ui ) v2) v3 which appear in Eqs. (3.6). These poly-
nomials are tabulated in Appendix C, together with the
nine kernels W b(s, x), which define the left-hand cut con-
tributions to the partial waves.

Equations (3.7a) and (3.7b) may be viewed as a partic-
ular truncation of the infinite system of Roy equations,
which slightly divers from the form in which these equa-
tions have been used in the past [23]. Here, the trun-
cation in angular momentum and energy is performed
under the systematic control of chiral power counting.
In particular, Eqs. (3.7a) and (3.7b) do not require a
model-dependent evaluation of "driving terms, " which
in the standard treatment behave in the chiral limit as
O(p4), owing to the use of twice-subtracted dispersion re-
lations. The price to pay is the occurrence of six (a priori
unknown) constants in the polynomials P (s) instead of
only two constants (usually, the two s wave scattering
lengths), which characterize the inhomogeneous terms in
standard Roy equations [20,23].

Equations (3.7a) and (3.7b) can be used to fully recon-
struct from the data the whole amplitude A(situ) up to
and including accuracy O(p ) in the whole low-energy do-
main of the Mandelstam plane, including the unphysical
region. For this purpose one has to know the absorptive
parts of three lowest partial waves for 4M2 & 8 & A2 and
the six constants to, t2, t3, vq, v2, v3. Suppose one knew
Im f (s) with associated error bars in the whole interval
4M2 & 8 & A2 & 1 GeV2. Then one could calculate the
dispersion integrals on the right-hand side of Eqs. (3.7a)
and (3.7b). One would then determine the constants t

f F(o) )
F(s, t, u) = F(') (s, t, u),

( F(z) )
(3.8)

(Properties of the crossing matrices C, , C,&, and C„i are
reviewed in Appendix A. ) The standard Roy equations
are derived from twice-subtracted dispersion relations-
cf. the minimal number of subtractions required by the
Froissart bound. In this case, however, the high-energy
tail of the dispersion integral, which is hard to control
in a model independent way, contributes to the O(p )
part of the amplitude. (In standard Roy equations, this
contribution is contained in the so-called driving terms
[23].) If, on the other hand, one requires at low energy the
precision O(p ) or higher, then it is more appropriate to
stick to less predictive tripIy subtracted fixed-t dispersion
relations:

F(s t) = C.i(~+(t) + (s —u)b-(t) + (s —u)'c+(t))
1 GX 8 tL

C,„ ImF x, t .
7C 4M 2 X X —8 X —V

(3.10)

Here the subscript + refers to the eigenvalues +1 of the
crossing matrix Cq„. [Notice that in the s-channel isospin
basis (3.8), Cq„——diag(+1, —1, +1).] The subtraction
term then represents the most general quadratic func-
tion in s (for fixed t) symmetric under s-u crossing. By
construction, the dispersion integral in Eq. (3.10) ex-
hibits 8-u crossing symmetry too. The task is now to
impose the remaining two crossing relations and to de-
termine the subtraction functions a, b, and c. This can
be achieved, neglecting in Eq. (3.10) contributions of chi-
ral order O(ps) and higher.

combined with the crossing symmetry relations

F(s, t, u) = C,„F(u, t, s) = C,)F(t, s, u) = C„)F(s,u, t).

(3 9)
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Let A be a scale set by the threshold of production
of non-Goldstone particles. Let us split the dispersion
integral in Eq. (3.10) into low-energy (x & A2) and high-
energy (x & A ) parts. For 4M„& s & A2, the imaginary
part can be written as

2t
ImF = 1m@+(s)+ i

1+ 2 ~

Im4' (s)s —4M2)
+Ay&g(s, 0), (3.11)

where the first two terms stand for the contributions of
s and p waves:

where

4( st, u) = (4+{s)+ C (s))

t —4M~ (3.17)

and C y denote the following dispersion integrals over
the imaginary parts of low-energy s and p waves [cf.
Eq. (3.12)]:

(Imago(s) )
1m 4+(s) = 0

( tm fss ( )Js
(3.12)

s dx Im 4+(x)C+ s
4M' X X —S

(3.18)

3Im fii(s)
0 )

Ag&2 then collects the absorptive parts of all higher par-
tial waves. The reason for this particular splitting resides
in the chiral counting mentioned at the beginning of this
section: The first two terms in Eq. (3.11) dominantly
behave as O(p ), whereas Ag&2 is suppressed to O(p ).
The dispersion integral I(s, t) in Eq. (3.10) then splits
into three parts:

s (s —4M2) dx Im 4 (x)
M. x2(x —4M2) x —s

One observes from Eq. (3.17) that the function 4(s, g, u)
exhibits the full three-channel crossing symmetry. Fur-
thermore, the second and third terms in Eq. (3.16) rep-
resent a function that is quadratic in s (at fixed t) and
symmetric under s-u crossing. These terms can there-
fore be absorbed into the subtraction polynomial in the
dispersion relations (3.10) by a suitable redefinition of
(yet unknown) subtraction functions a+, b, c+. Conse-
quently, the whole amplitude F can be rewritten as

I(s, t) = Ir&2(s, t) + Iq&2(s, t) + IH(s, t). (3.13)
F(s, t) = 4(s, t, u)+ P( st, )u+O([p/A] ), (3.19)

I~&2 (Ir&2) is the contribution of low-energy E & 2 (l & 2)
partial waves, and IH represents the high-frequency part
in which no partial wave decomposition is performed. Ex-
tracting from IH its leading low energy behavior, one can
write

where P is of the form

+(~) + ( — )~-(~) + ( — ) & (~) )
+ (ss + usC, „)HA. (3.20)

IH (s, t) = (ss -I- usC, „)HA + R,H, (3.14)

where H~ are constants, which can be expressed as in-
tegrals over high-energy ~-m total cross sections, and the
remainder behaves at low energies as

RH = O([piA]s). (3.15)

Itss = C'(s, t, u) —t, s ( (t)+Ossc' —(t))t —4M2

d I
Mg x3 x —4M„

(3.16)

The low-energy high-angular-momentum part I&&2 is also
suppressed to O(ps), reflecting the leading behavior of
the absorptive part A~&2 in the chiral limit and the fact
that the corresponding dispersion integral (3.10) extends
over a finite interval x c [4M2, A2]. Hence, it remains
to concentrate on the low-energy low-angular-momentum
part Ir&2. Using Eq. (3.11),one easily checks the identity

Notice that the unspeciFied O(p ) contributions in
Eq. (3.19) originate both from the high-energy remain-
der RH (3.14) and from the low-energy higher-angular-
momentum part Ig&2. Crossing symmetry of the scat-
tering amplitude F should hold order by order in the
chiral expansion. Since the function 4 (3.17) exhibits
full crossing symmetry, it remains to impose the latter
for the function P (3.20). Because of the manifest s-u
symmetry, it is enough to require

P(s, t, u) = C,iP(t, s, u). (3.21)

Neglecting O(ps) contributions, this equation represents
the necessary and sufFicient condition for the complete
crossing symmetry of the amplitude F.

Equation (3.21) can be easily solved. Considering s
and t as independent variables, one easily finds that
n+(t), P (t), and p+(t) should be cubic, quadratic and
linear functions of t, respectively. Hence, P(s, t, u) is a
general crossing symmetric polynomial in the Mandel-
stam variables of (at most) third order. Such a polyno-
mial contains six independent parameters (see Appendix
A). Indeed, after some simple but lengthy algebra, one
verifies that Eq. (3.21) leaves a six parameter freedom in
the original expression (3.20) for P.
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It remains to rewrite the result (3.19) in terms of the
single amplitude

M„= 2mBp,

(4 3)

A(situ) A(=s~ut) = t'tst(s, tu) —, E tit( stu)) , .
327K

(3.22)

The function Ct gives rise to a contribution of the form
(3.2) in which only the dispersion integrals of Eq. (3.6)
occur. [One easily checks that ImT, Im U, and Im V are
given by Eqs. (3.4).] Furthermore, taking into account
the ambiguity (3.5) in the definition of T, U, and V,
it is clear that a general crossing symmetric polynomial
may be conveniently parametrized by the six independent
parameters tp, tz t ts, vi, vq, vs as in Eqs. (3.6).

IV. PERTURBATIVE m-m AMPLITUDE AND
THE EFFECTIVE INFRARED DIMENSION

OF THE QUARK MASS

We are now in a position to compare the two alter-
native low-energy expansions of the amplitude A(situ)
generated by chiral perturbation theory according to the
two possible values of the effective dimension of the quark
mass: 2, in the case of the standard yPT, and 1 in the
case which was defined in Sec. II as improved yPT. Up
to and including two loops, the amplitude A should be of
the general form (3.2). Consequently, neglecting O(ps)
contributions, one can work with the three functions T, U
and V of a single variable and decompose them as

MIc ——(rn, + rn)Bp,

and the vr-vr amplitude takes the well-known form, first
given by Weinberg [15]:

0
Ahead(situ) =

& (s —2mBp) =
2 (s —M ). (4.4)

This represents the standard scenario of chiral perturba-
tion theory. It can hardly be circumvented provided the
scale of Bp is large compared to the pion mass, typically,
Bp & 1 GeV.

On the other hand, if Bp turned out to be much smaller
than the GeV scale, e.gs) comparable to the fundamental
order parameter Fp ( 93 MeV), then the above way of
counting effective infrared dimensions would be modified.
Both the quark mass and the condensate Bp should then
be considered as quantities comparable to the pion mass.
They should both be attributed effective infrared dimen-
sion 1, and they should both be viewed as expansion
parameters. In this case, every insertion of the source
y(x) counts as a single power of pion momentum and
the formula (4.2) no longer represents the most general
expression of dimension 2. Instead, the complete collec-
tion of invariants of dimension 2 now reads

T(s) = ) T~"l(s), U(s) = ) U~"l(s), Fp ((D"UD—„Ut ) + 2Bp (yt U + yU~)0

(4.1) +Ap(y Uy'U+ yU'yU ) + Z, (ytU+ U"y)'

V(s) = ) V~"l(s),
n=p +Z. (X'U —&Ut)'+ 2'(&i&)} (4.5)

where n refers to the number of loops (including tree con-
tributions of the corresponding order). It will be shown
that the amplitudes T, U, and V start to be sensitive
to the effective dimension of the quark mass at leading
(n = 0), one-loop (n = 1) and two-loop levels, respec-
tively.

A. Leading Q(p2) order

If the dimension of the quark mass is 2, i.e., if each
power of the scalar pseudoscalar source y in Z,~ counts
for two powers of pion momentum (mass), then the effec-
tive Lagrangian is dominated by the well-known expres-
sion

l:E & = F(((D"U)t(D„U—)) + 2Bp(y U+ U y)}.0

(4.2)

This formula collects all possible invariants of dimension
2. To leading order, the pion and the kaon masses read

where the tilde over the symbol 8 here (and below) in-
dicates the use of the modified chiral power counting.
The terms containing two powers of y are usually in-
cluded into the next-to-the-leading part Z~ & of the effec-
tive Lagrangian. Here, they appear of the same dimen-
sion and they are expected to be of a comparable size as
the standard expression (4.2). The low-energy constants
Ap, Zps, and Zp represent appropriately subtracted zero-
momentum transfer two-point functions of scalar and
pseudosealar quark densities, divided by Fp2. These two-
point functions are order parameters of spontaneous chi-
ral symmetry breaking and, consequently, they satisfy su-
perconvergent dispersion relations. A simple saturation
of the latter with a few of the lowest massive hadronic
states suggests that the dimensionless constants Ap and
Zp+ are of the order 1, say, Ap 1—5. On the other hand,
Zp violates the Zweig rule in the 0++ channel and conse-
quently it is expected to be suppressed. The parameters
Z Z and Ap are related to the low-energy constants0 ) 0 (4)L6 ) L7 and L8 of the standard d = 4 Lagrangian
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[3]. Expanding the latter constants in powers of Bp, one
gets2

quark-antiquark condensate and the pion mass is more
subtle: Indeed, using first Eq. (4.7), formula (4.10) can
be rewritten as

2

Zp +0 Bp
0

i, 4Bp y

L8 Ap+0 B02
4Bp)

(4.6)

4m~Ap
)

M2

ZS
p

Ap

1 — M
Ai, d(situ) = 2(s —M )+ 2 e(1+2(), (4.11)

(4.12)

M~ = 2m(B + 4mZps) + 4m~ Ap,

M~ ——(m, + m, )(B+4mZp)+ (m, +m) Ap.

(4.7)

Here B stands for the dominant O(p) contribution to
the SU(2)xSU(2) quark-antiquark condensate (divided
by Fp ) taken at m„= m~ = 0:

(uu) „„p= (dd) „„p—— Fp B+O—(m, ). (4.8)

where O(Bp) terms represent divergent contributions to
the two-point functions defining the divergent parts of
the bare constants Ls, Ls. (The constants Ap, Zps, and
ZP do not undergo any infinite renormalization. )

The leading order pion and kaon masses (denoted by
a tilde) now read

Whereas in the standard yPT e would be a small quan-
tity of the order O(p ), in the improved yPT, e is of order
1 and there is no reason for it to be particularly small;
hence, the second term in Eq. (4.11) represents a lead-
ing order modification of the Weinberg's formula (4.4).
(( measures the Zweig rule violation in the 0++ channel
and can be expected rather small. ) Using Eqs. (4.7) one
may easily check that e can indeed be of order 1 for natu-
ral values of Ap (cf. footnote 2) and for reasonably small
values of quark masses. Setting, for the sake of illustra-
tion, Bp ——150 MeV and m = 25 MeV, and neglecting
Zweig-rule violation, one obtains e = 0.62, Ap ——4.8, and
m, 195 MeV.

The leading-order mass formula (4.7) implies a relation
between the parameter e and the quark-mass ratio r =
ms

Within the modish. ed chiral power counting, B consists of
two terms

r2 r6=2
r2 —1' r2 ——2 —1 25.9.MI22

M2
(4.13)

B = Bp+ 2m, Zp, (4 9)
If r decreases from its canonical leading order value r =
r2, then e increases and reaches 1 for r = rq.

Ai„d(situ) =
2 (s —2mB), (4.10)

in complete analogy with the standard result (4.4). Al-
though Eq. (4.10) and Weinberg's formula (4.4) formally
coincide if one neglects Zweig-rule violation, their numer-
ical content is rather different, because of different scales
of quark-antiquark condensation in each yPT alternative.
In Eq. (4.4), 2mBp is the leading approximation to M,
whereas in the improved yPT, the relation between the

which are both of the order O(p). In principle, they could
be of comparable size, if Zp were not suppressed by the
Zweig rule.

The leading contribution to the a-~ scattering am-
plitude calculated from the improved O(p2) Lagrangian
(4.5) turns out to be independent of low-energy parame-
ters Ap and Zp and it can be expressed in term of the
quark-antiquark condensate B,

r g ——2 —1 6.33.M~
M

(4.14)

Similarly, the order parameter Bp can be expressed as

—' =1 —i1+(r+2)4)'
M2

(4.15)

This ratio decreases from its canonical value 1 down to
zero, as r decreases from r = r2 to r = r„;&(() & ri, for
which Bp vanishes. Notice that stability of the massless
@CD vacuum under perturbation by small quark masses
implies Bp & 0.

B. Next to the leading O(p ) contribution

In the improved chiral perturbation theory, the leading
order Lagrangian l'. ~ ~ is followed by a dimension-8 term
l'. ~ ~, which contributes at the tree level before one-loop
contributions of dimension 4 start to appear. Z~ ~ reads

The order of magnitude estimate Ap 1 —5 is compatible
vrith the standard yPT estimates. Taking Ap 5, and using
the standard value Bp 1.2 GeV, the Ap contribution to I 8
in Eq. (4.6) becomes 1.6 x 10,which is consistent with the
standard gPT measurement of Ls [3].

Fp ($(D„UtD~y +—D„gtD"U)4 G

+~ ((xt U)'+ (xUt)') + ~.(xtx(xt &+ Utx))
+"((Xt~)'-(X~t)')(Xt~ —»t)+ & (416)
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The dots stand for terms that violate the Zweig rule in
a nonanomalous channel. Notice that (4.16) differs in its
first term from the expression given for Else in Ref. [6).
The two forms of Llsl are equivalent: They are related
by a simple redefinition of the Goldstone boson field U.
The low-energy constants ( andy, are finite —there are
no divergences of dimension 3. K~3~ induces a shift in the
pion mass:

6M = eM (9Ai+ A2), (4.17)

where

mp,
4Ao

(4.18)

are dimensionless parameters of order O(M ). Similarly,
the leading m-vr amplitude receives a constant d = 3 con-
tribution

M2
bA(situ) = e

&
(81Ai+ A2). (4.19)

F 2 F2P 2 iF»
)Fo2 r —1 i, F2 (4.20)

It is convenient to collect all d = 2 and d = 3 contribu-
tions, and to express the resulting tree amplitude in the
form (3.1):

M2
A&„,(situ) = [aM + P(3s —4M )] + z 6o;,3F2

Finally, the first term in Z~ ~ is responsible for splitting
of the decay constants F,F~, Fz. Eliminating the low-

energy parameter (, one obtains, to that order

The remaining term M~ ba4 accounts for the O(p4) and
higher contributions to M2. One has

M bn4 = —Pi&I [1+3'(1+2()], (4.24)

where

L&S„=M~ —M —b'M (4.25)

represents the O(p ) difference between the physical
value and the tree approximation of the pion mass
squared.

The results of standard yPT are reproduced by setting
e = ( = 0 in the previous equations; i.e., r = r2 25.9.

0
In this case, M reduces to M [Eq. (4.3)], and n = P =
1. The improved yPT still requires P 1, but n is now
allowed and expected to be considerably larger, since e
is now an order-1 quantity. In fact, the vacuum stability
conditions mentioned above imply that for a given quark
mass ratio r [lying between ri and r2—cf. Eqs. (4.13) and
(4.14)], the Zweig-rule-violating parameter ( = Zos/Ao
should satisfy

1r rir+—ri+2
2r2 —r r+2 (4.26)

Tl'&(s) = (6+ M)M', U&'l(s) = 0, Ul'l(s) = 9P,

(4.27)

Using these bounds in Eq. (4.22), one obtains a rather
narrow band of allowed values in the plane defined by the
ratio n/t9 and r. This band is shown in Fig. 1.

It is straightforward to rewrite the above result in
terms of the amplitudes T, U, and U. The tree con-
tribution to these amplitudes simply reads

(4.21) where

where M and F denote the experi, rnentat (charged)
pion mass and decay constant. The parameters o. and
P read

0! 1

g6& F2'
P 1

96vr F2 (4.28)

—= 1+3e (1 + 2g), P = ~, (4.22)
F2

whereas bn = 6as+6n4 describes small O(p ) and O(p )
corrections. 6'n arises from the genuine O(ps) contribu-
tion (4.19) of Z~ & to the vr —vr amplitude and from the
introduction of the physical mass M into the formula
(4.21). Using Eqs. (4.17) and (4.19), the O(ps) constant
M 6&3 can be expressed in terms of the parameters A ~

AI]owed Region for Ratios a/P and r

M~ 6ns = e PM~ [72Ai —(27Ai+3Ag) e(1+2()].
(4.23)

In practice, M = 139.6 MeV and I = 93.1 MeV will be
identified with the corresponding theoretical expressions up
to and including the highest order of gPT considered.

1.000
6.00 8.00 10.00 12.00 14.00 16.00 18.00 20. 00 22. 00 24. 00

r

FIG. 1. The region of allowed values for the ratios o./P and
m, /m lies between the two curves shown.
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C. One loop O(p4) order

Let Z„~ denote an invariant entering the effective La-
grangian, that contains n powers of covariant derivatives
D and m insertions of the scalar-pseudoscalar source y.
[For simplicity, the expansion coefficients E" of Eq. (2.7)
are included in 2„.] In the standard chiral perturbation
theory the d = 4 part of the effective Lagrangian can be
written as

g(4) )
n+2m=4

(4.29)

and likewise for 66. Our main task is to use all available
experimental information to measure a, P and, indirectly,
the quark mass ratio r.

It contains all counterterms that are needed to renormal-
ize one-loop contributions generated by 2( ). If the di-
mension of the quark mass is 1, one-loop renormalization
gets modified in two respects: (i) The effective dimension
of a term 2„ is d = n+m instead of d = n+2m, and (ii)
Bp is now a (small) expansion parameter of dimension 1.
It follows, in particular, that renormalization has to be
performed order by order in Bo. The modified d = 4 part
of Z,g then reads

). &n~ + Bp (&2i + &ps) + Bp &p~ (4 3o)
n+m=4

The last two counterterms are needed to renormalize the
Bp-dependent part of one-loop divergences generated by
2( ). Terms that are contained both in 8( ) and in Z( )

are merely made with four derivatives [3):

24p = Lg(D„UtD~U) + L2(D„UtD U)(D"UtD"U) + Ls(D„U~D"UD UtD U)
—iLs(F D"UD Ut + F D"UiD U) + LM(UiF UF '"

) + H (F F '~ + F F '~
) (4.31)

Re f (s) = ) (p(").
G)2

(4.32)

The meaning and renormalization of low-energy con-
stants in Eq. (4.31) are independent of the symmetry
breaking sector and, in particular, of the infrared dimen-
sion of the quark mass. The remaining Bo-independent
terms in Eq. (4.30), cf. 222 and l'p4, are absent from
the expression for 2( ): With quark mass of dimension
2, these terms would count as O(ps) and O(ps), respec-
tively. On the other hand, all terms but 840 contained in
Z(4) are already included either in Z( ) or in Z(3). Conse-
quently, 2( )+Z(3) +2( ) not only encompasses all terms
of the standard l:( ) + 8( ) but, in addition, it contains
new terms of the type Z. ( ), 222, and 204. This phe-
nomenon is general. Order by order, the improved yPT
contains the standard perturbation theory as a special
case: It contains more parameters and it could well fit
the experimental data even when the standard yPT fails.

The one-loop contribution to the 7t.-vr amplitude
A(situ) has been worked out within the standard chi-
ral perturbation theory in Refs. [2,3]. The result can be
expressed in terms of four constants: a = P (close to
1), the shift 6o.4 (bo.s = 0 in this case) introduced in
Eqs. (4.21), and two linear combinations of the renor-
malized constants I ~, I q, and I3. In the improved yPT,
the one-loop O(p4) amplitude contains, in addition, two
parameters that arise from the new terms 222 and 204 in
Z( ). Working with the amplitudes T, U, V [the formula
(3.2) is valid up to and including two loops], one may
obtain a closed form for the one-loop amplitude, which
encompasses both alternatives of chiral perturbation the-
ory.

Let p (s) denote the effective dimension-d contri-(~)

bution to the real part of the partial wave amplitude
f (s), (a = 0, 1, 2), introduced in Sec. IIIB:

From Eqs. (4.27) one finds

(s) = GP (s + rp),(2)

(s) = P(s —4M ),

W,
'

(s) = —3P(s+ K,),(2)

(4.33)

where

(5n 4

Im f(")(s) =

(4.36)

This result is an exact property of yPT amplitudes for
4&d&8.

The one-loop level contains d = 4, d = 5, and d = 6
contributions to the scattering amplitude A(situ). In
the following, we shall merely concentrate on the lead-
ing O(p4) part. The corresponding components of the
functions, T, U, V,4 will be denoted as T&, z(s), U&, &(s),
and V&, &(s). The discontinuities of these functions are

given by the O(p4) absorptive parts Im f( ), following

(4.34)

Similarly, the real parts at the O(ps) level are

Vp = 5M &o's, p, =0, p, = —2M'bns, (4.35)(3) ~ (~) (3)

where 6as is given by Eq. (4.23). For d ) 3, the real parts
are no longer defined by the tree amplitude alone. The
O(p") contribution to the imaginary part of the partial
wave amplitudes Im f( (s) can be expressed for s ) 4M2
through elastic unitarity:
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Eqs. (3.4). Hence, the O(p ) one-loop amplitudes T, U, V
can be written as

Tie~a (s)

U'..' ( )

V„,d (s)

3([~p"(s)l'+ 2[~2"'(s)]')L(s p')

+~4(p') + ~p(p') s',

-(2[~'"( )]' —5[V'"( )]')L( p') (4 37)

27 [pi. (s)]
2 L(s, p )+P2(p )+Pp(p, )s,

where L(s, p2) is the loop integral subtracted at the point
S = —P

2

L(s p') —=
dx 1

M2 X+P X —S

x —4M2
(4.38)

T ' (s) = b'T(s), U(' (s) = bU(s),
Op Bp

v(') ( ) = sv( ),p2

(4.39)

where 6T, 6U, and ti'V are of the general form (3.5). Tak-
ing into account the s independence of (0/Bp, )L(s, p, )
and L(0, p2) = I( p, 0), t—he s—olution of Eqs. (4.39)
can be easily found:

o'p(p') = o'p(0) + 18''L(—p')
Pp(p') = Pp(0),

o;4(p ) = n4(0) + (lln —32P )M L(—p, ),
Pg(p ) = P2(0) + 18P(5n —2P)M L( p'). —

(4.40)

In these equations we have denoted

The constants a.„(p2) and P„(p2) behave in the chiral
limit as M„". They describe the most general polyno-
mial part of T, U, and V, which is O(p4) and takes into
account the freedom (3.5). These constants represent
renormalized tree contributions of the d = 4 part of Z,g.
Their dependence on the subtraction point p can be
determined by demanding that the scattering amplitude
A(situ) be p independent. Following Appendix B, this
requirement is equivalent to the conditions

Pp(0) = 4(L~ —2L", —Ls) +
8mEO4 10247t Eo

'

where

—2 1 M2 1 M~2 9
v(p, ) = ln +. —ln

32~2 p2 8 p,2 8
(4.43)

and p,
2 denotes the renormalization scale introduced in

Ref. [3]. The renormalized constants L&, L2 are p2-
dependent, whereas L3 and I2 —2I

&
are not. Further-

more, the combination L2 —2 I.
&

should be suppressed by
the Zweig rule or in the large N, limit. Notice that the
constant Pp is independent both of p and of p~. The
interpretation of the remaining two constants o;4 and P2
depends on the efFective dimension of the quark mass. In
the standard chiral perturbation theory, these constants
can be expressed in terms of the shifts of the pion mass
and decay constant, as calculated within SU(2) xSU(2)
perturbation theory [2]. In the improved yPT, o4(0)
and P2(0) are independent parameters, which describe
respective contributions of new terms Zo4 and 222 in the
O(p~) effective Lagrangian Z(4I. The explicit relation-
ship between n4(0), P2(0) and the low-energy parameters
of 2~4~ is of no direct use in the present paper, and it will
be given elsewhere.

Concluding this section, it is worth noting that the low-
energy theorem of Sec. III considerably simplifies the cal-
culation of two-loop contributions to A(situ): For d ( 8,
all O(p") terms can be obtained by a straightforward
combination of Eqs. (3.2) and (3.4) with the unitarity
condition (4.36). Up to and including two loops, the
yPT expansion of the vr-vr scattering amplitude can be
viewed as an iteration of the Roy-type Eqs. (3.7a) and
(3.7b). The corresponding polynomials P (s) appear-
ing at a given order O(p") are then defined in terms of
the renormalized low-energy constants of the Lagrangians
Z~"~ or Z~"&, according to the effective dimension of the
quark mass being, respectively, 2 or 1.

In the following we shall work at p,
2 = 0.

The constants o.p and Pp are related to the low-energy
parameters I q, I2, and I 3 which occur in the expression
(4.31) for Z4p. One gets

1
o(o) = [L"+L"+ -'L —-' (! ')]

7C o

(4.42)

=1 o. —1 iL(s) —= L(s, p = 0) = — 2+ o ln
o +1) V. DETERMINATION OF PARAMETERS

OF JEFF FROM m-7r SCATTERING DATA

4M2
0' =

s
(4.41)

Notice that O(p ) terms in V contribute to the scattering
amplitude A of Eq. (3.2) as Q(p~+~).

Suppose one has enough experimental information to
perform the program formulated in Sec. III and to re-
construct the low-energy amplitude A(situ). Let us call
the result of this reconstruction A,„~t(situ) and the cor-
responding T, U, V amplitudes given by Eqs. (3.4) T,„~&,
U pt and V pt respectively. We would like to compare
the experimental amplitude A, ~t with the theoretical
amplitude Aqh given in Sec. IV in c whole low-energy
domain of the s-t-u p/ane including the unphysical re
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A,„pi(situ) —Ath(s~tu) = 0, (5.1)

which is supposed to hold in a crossing symmetric domain
of the Mandelstam plane, is actually equivalent to a set
of three single-variable equations:

qion. Such a comparison should lead to a detailed fit,
which in turn should provide a rather precise determina-
tion of low-energy constants entering Ath. In particular,
we would like to measure the parameter u and, in this
way, let Nature tell us whether it prefers a quark mass of
efI'ective dimension 1 or 2. The theorem proved in Sec. III
considerably simplifies the above task: Neglecting O(ps)
contributions, the equation

D(s)—:6' Re L(s),
1 —QJ

D(s) = 12 + 6ii) ln
1 + tU

s&0, s&4, (5.7)

D(s) =- 12 —12u) arctanu), 0 & s & 4.

The p (s) are two third-order polynomials, whose coeffi-
cients are given in terms of (i) three constants t, [cf. the
first of Eqs. (3.6)], (ii) the parameters n, P, o;o(0) and
a4(0) defined in terms of Z,a, and (iii) the irrelevant
five constants that characterize the polynomial ambigu-
ity (3.5). The explicit expression for the coefficients of
p (s) can be easily read off from Eqs. (3.6), (4.27), and
(4.37). Similarly, the V equation (5.2) can be written as

T,„ ~i( s)
—Tih(s) = bT(s),

U,„~i(s) —Uih(s) = bU(s),
V,„~t(s) —Vih (s) = b V (s),

(5.2)

valid in an interval of s. The functions bT(s), bU(s), and
bV(s) are the arbitrary and irrelevant polynomials given
by Eq. (3.5). In this section, we will analyze Eqs. (5.2).
Hereafter we systematically set M2 = 1.

"2

Pi(s) = (s —4)D(s) + q(s), (5.5')

where q(s) is now a second-order polynomial with coef-
ficients given by linear combinations of three parameters
v, [cf. the last of Eqs. (3.4)], the Z, ir parameters P()(0)
and Pz(0) and the irrelevant constants y, . For small s,
the function D(s) behaves as

D(s) = s+ —s + 0(ss).
10

(5.8)

A. One-loop precision

Tth = T + T)e~d
(p) (&) (5.3)

(and likewise for U and V), where the tree and leading
one-loop contributions are presented in Eqs. (4.27) and
(4.37), respectively. We shall concentrate on real parts
of Eqs. (5.2).

Let us denote the partial wave integrals appearing in
Eqs. (3.6) as

The functions Texpt~ Uexpt~ and Vexpt are given by
Eqs. (3.6). Up to and including (one-loop) order O(p4),
the theoretical amplitude reads

p (s) = rs — v—(r + 2—0)s + ~ sPNa 2 1

6vr 10

p2
q(s) = —(—s(s —4) + 'ris ),6'

(5 9)

where 7 p, T], 72 are three yet undetermined parameters.
Equations (5.5) and (5.5') now take the form (a = 0, 2)

On the other hand, the functions P (s) and (t)i (s) defined
in (5.4) behave as O(s ) and O(s2), respectively. The
polynomials pa(s) and q(s) should be such to ensure this
small-s behavior on the right-hand sides of Eqs. (5.5) and
(5.5'). Using (5.8), one easily finds (a = 0, 2)

ss dx Im f, (x)
a s

7i 4 x x —s

s' ~ dx 1 Im fi(x)s
4 x2x —4 x —s

(5.4)
p, (s) = '

Is D(8) + 28]13(s) —8]z,

+[D(s) —s ——s ]r +~ s1223
It is convenient to take linear combinations of the
Eqs. (5.2) for T and U and isolate the contributions of
I = 0 and I = 2 s waves. The resulting equations can be
written as (a = 0, 2)

(5.10)

2N
(b (s) = (s+r. )zD(s)+p (s), (5.5)

where

Np ——36,

and (u):—~1 —4/s~ i~2),

N2 ——9, (5.6)

Once the experimental phase shifts are known, one can
compute the integrals P(s) on left-hand side of Eq. (5.10)
and fit them with the corresponding right-hand side. The
parameters of the fit are ci, P, ro, wi, w2. At this stage, one
does not need to know the subtraction constants t, and v,
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bCt + Cl4(0) = tp 6 (2Kp + K2)
4&'
37r

21P
p, (0) =., —9p+ (5~, —SK,}20vr

(5.11b)

6/2
+ (5(zq —2~2) —8(Ko —2~0)) .

The remaining two equations do not involve any param-
eter of Z,~ to be determined. They read

ts = ——(2~o+ 72),
7r

9P2
vs —— (1 —S~p + 5~2 —7.i).4'

(5.12)

The two Eqs. (5.12) should be merely expected to rnea-

sure the strength of neglected two-loop and X(s) contri-
butions, rather than represent a true constraint on the
fit based on Eqs. (5.10).

B. Fits to Roy-type equations (3.7a) and (3.7b)

In order to reconstruct the amplitude A,„~i(situ), one
needs a complete set of pion-pion phase shifts b (s), (a =
0, 1, 2). (By complete we mean that they extend in energy
from the threshold to A ( 1 GeU for all three isospins
and are dense enough in the interval to allow adequate
numerical evaluation of our dispersion integrals. )

There exists only one complete set of pion-pion scatter-
ing phase shifts (extrapolated from experimental datas)

For a recent review of experimental 7r-7r scattering data, see
[25,26].

in the dispersion relations (3.6). The latter are needed,
however, if one wants to measure the four parameters of

, namely, ao(0), Po(0), ha+ n4(0), and Pz(0). [Re-
member that the parameters no(0) and Po(0) determine
the two linear combinations (4.42) of the low-energy con-
stants Li, L2, and Ls that appear in the 24o part (4.31)
of Z,p.] Indeed, comparing coefficients of polynomials
on both sides of Eqs. (5.9), one gets ll linear relations
among the "experimental" constants to, t2, , t3 v$ vQ v3,
the four parameters of Z,g mentioned above, and the ir-
relevant five constants x, yo, y~, y2, y3. Eliminating the
latter, one can express the four Z,g parameters as

"2

ap(0) = t2 — (2Kp(tcp + 20) + K2(Kg + 20)),10'
(5.11a)

9/2
po(0) = v2+ (1 —87o+ 5~2)

3P2
+ (Srp(rp + 20) —5v2(v2 + 20)),

) ) [R fLHS( ) R fRHS( )]2
G

(5.13)

where Ref" s is the real part of f determined directly
(via unitarity) from b . This is not a proper y fit, since
no uncertainties can be included; consequently, no un-
certainties can be quoted for the resulting constants. We
find, however, that the values for experimentally deter-
mined constants are stable for reasonable variations in
the energy interval used for the fit (see Table I). The fit
over the largest range, 4 ( s ( 25, is excellent: Ref+Hs
and Ref" s agree to 1'Fo over nearly all the interval, the
sum in Eq. (5.13) being 10 4 for 63 data points. We
see no need to present the results graphically: Ref RHs
and Ref s would be indistinguishable. Instead, the val-

TABLE I. Parameters resulting from fitting Eqs. (3.7a)
and (3.7b).

Energy range for fit (MeV)
300-580 300-640 300-700

Using phase shifts of Froggatt and Petersen
0.0206 0.0207 0.0208

6.4x10 6.5x10 6.7x10
5.2x 10 3.5x 10 1.6x 10

0,0764 0.0760 0.0755
0.0021 0.0020 0.0020

-1.3x 10 -4.4 x 10 +3.5 x 10
Using phase shifts of Schenk, solution B:

0.0067 0.0065 0.0063
4.6x10 4.8x10 5.1x10
1.4 x 10 9.9x 10 6.9x 10

0.0697 0.0695 0.0693
0.0021 0.0020 0.0020

-8.4x10 " 2.3x10 6.5x10

Parameter

to
t2
t3
Vy

V2

V3

tp
t2
t3
Vl

V2

V3

that has been published in numerical form, namely that
appearing in the paper of Froggatt and Petersen [17].
They provide values for b' (s), without quoted errors, at
20-MeU energy intervals in 4M2 ( s ( A2, for a = 0, 1, 2.
The phase shifts 6 come from an analysis following that
of Basdevant, Froggatt, and Petersen [23], which employs
a truncated set of twice-subtracted Roy equations, makes
a particular choice of parametrization for f~ (fixing the
I = 0 scattering length, ap) and uses a Regge-type model
for estimating the high-energy contributions to the dis-
persion integrals. Data were taken from the Estabrooks-
Martin analysis [27] of the CERN-Munich experiment on
vrN + 7r7rN [28]. Although Basdevant, Froggatt, and Pe-
tersen [23] present graphical results for several choices of
values of ao in their work, numerical results are only pre-
sented in the subsequent paper of Froggatt and Petersen
[17), and only for the unique choice ao = 0.3.

We Erst check to what extent the Froggatt-Petersen
phases satisfy the version of the Roy equations set forth
in Sec. IIIB. To this end, we compute the integrals
on the right-hand side of Eqs. (3.7a) and (3.7b), using
the 6 from Froggatt and Petersen. Calling the result
Ref~ (s), we then determine the parameters t, , v, by
minimizing
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TABLE II. Comparison of the left- and right-hand sides of Eqs. (3.7a) and (3.7b), using phase
shifts of Froggatt and Petersen.

Energy
300
320
340
360
380
400
420
440
460
480
500
520
540
560
580
600
620
640
660
680
700

LHS
0.342
0.377
0.414
0.447
0.479
0.509
0 534
0.557
0.573
0.584
0.590
0.590
0.585
0.574
0.558
0.537
0.512
0.483
0.450
0.414
0.375

I=O
RHS
0.344
0.376
0.411
0.445
0.477
0.507
0.534
0.556
0.572
0.585
0.591
0.591
0.586
0.576
0.558
0.538
0.513
0.484
0,450
0,413
0.373

LHS
0.005
0.014
0.022
0.028
0.039
0.049
0.058
0.072
0.088
0.105
0.123
0.146
0.171
0.199
0.234
0.272
0.318
0.371
0.428
0.486
0.532

RHS
0.006
0.012
0.019
0.027
0.037
0.047
0.058
0.071
0.086
0.103
0.122
0.144
0.170
0.199
0.233
0.273
0,319
0.371
0.429
0.490
0.531

LHS
-0.029
-0.043
-0.055
-0.067
-0.080
-0.090
-0.100
-0.113
-0.122
-0.132
-0.142
-0.152
-0.161
-0.171
-0.178
-0.186
-0.194
-0.201
-0.209
-0.214
-0.222

I=2
RHS
-0.029
-0.041
-0.052
-0.064
-0.076
-0.087
-0.099
-0.110
-0.121
-0.132
-0;143
-0.153
-0.163
-0.172
-0.181
-0,189
-0.196
-0.203
-0.209
-0.214
-0,217

ues of Ref~ s and Ref~ are compared in Table II, for
21 energies included in the sum (5.13). We thus conclude
that the Froggatt-Petersen phases indeed give a solution
of our set of triply subtracted Roy equations, for the
values of parameters t; and v, summarized in Table I.
[Notice that the parameters ts and vs are poorly deter-
mined, but that they are suKciently small not to affect
the analysis at the O(p4) level. ] The corresponding low-
energy amplitude A,„~t(s[tu) will be confronted with the
theoretical prediction Ath shortly.

K,4-decay experiments [29] are consistent with the
value ae = 0.30 for the scattering length, characteristic
of Froggatt-Petersen phases, but standard yPT predicts
a lower value, namely, ao ——0.20 +0.01 [2] (see Fig. 2). It
would be desirable to have complete sets of phase shifts
that fit both experiment and Roy equations for other val-
ues of ao & 0.30. These are not available. For this rea-
son, we must use ad hoc extrapolations down to threshold
of existing data at energies E ) 500—600 MeV obtained
from 7rN —+ rr+N and AN —+ ~vrA production experi-
ments. One such extrapolation has been recently consid-
ered by Schenk [30] using a simple parametrization

for the two s waves (i = 0.2) and a similar formula for the
p wave. The scattering lengths a, and the slope parame-
ters b, are fixed at their values predicted by the standard
one-loop yPT [3]:

ao =—ao ——0.20, ag = ao ———0.042, a~ —= a& ——0.037

(5.15)
6, = t 0 = 0.24 6, = 6', = —0.075.

The remaining parameters are determined by Btting the
data obtained from various analyses of dipion production
experiments [28]. For the I = 0 s wave, Schenk uses the

Bp 6 1 as a function of energy
20

15—

tan b, (s) = s —4 s —4l
a, +b,

"(' "'
('-::)

10—

6, = b, —a, + (a, )s.
so —4

(5.14)
0
2BO 300

1

320 340 360 380
Energy (MeV)

J.L. Basdevant (private communication).

FIG. 2. Phase shift bo-bq from data sets of Froggatt and
Petersen [17] (dashed curve) and Schenk B [30] (solid curve)
compared with experimental data [29] from K,4 decay.
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Ochs energy-independent analysis7 of the CERN-Munich
experiment [27], covering the energy range 610—910 MeV.
For his best fit, called solution B, no y2 or error bars
are quoted. Instead, two additional sets of parameters
cp and sp = Ep called A and C are given that bracket
together both the Ochs data and the well-known data
by Estabrooks and Martin [27]. A similar procedure is
adopted for the I = 2 8 wave, whereas the parameters of
the p wave are determined from the experimental p mass
and width. Results of this analysis and more details can
be found in Ref. [30].

In this way, the parametrization (5.14) provides a com-
plete set of phases, hereafter referred to as Schenk B, that
fits the data at higher energies and uses the threshold pa-
rameters (5.15) of the standard yPT. Using this set, we
have performed exactly the same kind of fit to the Roy-
type Eqs. (3.7a) and (3.7b) as in the case of Froggatt-
Petersen phases. Surprisingly enough, we find this fit
at least as good as in the case of the Froggatt-Petersen
phases, despite the fact that the Schenk B phases were
not obtained using Roy equations or any other crossing-
symmetry correlation among the three lowest partial
waves. The resulting parameters t; and v, are given
in the second half of Table I, and the quality of the fit
can be appreciated from Table IV. Unfortunately, we do
not see any simple way to associate the Schenk B phases,
and the corresponding parameters t, and v, , with a set of
errors, which would be deduced from statistical errors of
the experimental data used at the beginning and which
would respect the correlations imposed by the Roy equa-
tions. The same remark applies to the set of phases of
Froggatt and Petersen.

C. Determination of parameters n, p, I i, I q, and I a
from a complete set of phase shifts

The next step is to confront the empirical amplitude
A,„~t with the amplitude Aqh computed from chiral per-
turbation theory. In particular, the two solutions of the
Roy-type equations (3.7a) and (3.7b) described above can
be used to measure the parameters n, P and, through
Eqs. (4.42), two linear combinations of the low-energy
constants I~i, Lz~, and Is, defining the four-derivative
terms in Z,rr. The measurement is based on Eqs. (5.10).
First, one evaluates the three functions P~(s), a = 0, 1,2,
defined in Eqs. (5.4), using the complete sets of phase
shifts exhibited in Sec. VB. The results are represented
graphically by continuous lines in Fig. 3 for the case of
Froggatt-Petersen phases and in Fig. 4 for the Schenk B
set. Next, one fits the experimental functions P (s) with

TABLE III. Data from energy-independent analysis of
Ochs [31].

Energy (MeV) 6p (deg)
610 56.3 + 3.2
630 59.5 + 2.9
650 65.6 + 3.2
670 62.5 + 3.5
690 68.8 + 3.6
710 74.5 + 3.8
730 79.4 + 3.6
750 81.2 + 5.7
770 79.9 + 3.9
790 77.5 + 5.7
810 84.1 + 3.3
830 84.4 + 2.6
850 87.1 + 2.5
870 89.2 + 2.5
890 93.2 + 2.9
910 103.3+ 3.2

the theoretical expression represented on the right-hand
side of Eqs. (5.10). The parameters of the fit are n, P
and 'rp, 7 i, 7z. [Recall that the v are defined in terms of
the ratio n/P —see Eq. (4.34).]

The range in 8 in which the fit is performed should
not exceed the range in which the O(p )-order yPT may
actually be expected to apply. On the other hand, this
range should be large enough to permit a sensitive deter-
mination of parameters. For this reason, it might be mis-
leading to consider exclusively the physical region s & 4
[4,26]. In the following, we use the interval —4 ( s ( 8,
which most likely represents a rather conservative choice.

From Figs. 3 and 4 one observes a large difference in
scale of individual P: Pp is typically an order of rnag-
nitude or more larger than Pz and nearly two orders of
magnitude larger than Pi. For this reason, we first fit the
function Pp, determining the three parameters n, P, and
7p. Then, using the values of n and P obtained in this
way, we perform two single-parameter fits to Pz and Pi,
determining ~2 and ~q respectively. In the absence of er-
ror bars for P~(s), it is impossible to perform a true y fit.
Instead, we minimize the sum of squares of the difFerence
between the left- and right-hand sides of Eqs. (5.10), for
66 equidistant points in the interval —4 & s & 8, giving
the same weight to each point.

In all cases, the parameter P = I'z/Fpz should remain
close to 1, and the fit should be constrained by this con-
dition. We require

P & 117, (5.16)

The data by Ochs can be found in his unpublished thesis
[31]. We are indebted to Dr. J. Gasser for communicating
these unpublished data to us. For the reader's convenience,
they are reproduced in our Table III.

A. Schenk (private communication).

corresponding to the lower bound Fo & 86 MeV. This
bound is consistent both with existing standard yPT es-
timates [3] and with the improved yPT formula (4.20).
Leaving the ratio n/P unconstrained in the minimiza-
tion procedure, one tests, for a given set of data, the
relevance of the improved yPT. The corresponding fits
are represented by dashed curves in Figs. 3 and 4. The
corresponding best values of the parameters are
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FIG. 3. The functions P (shown as solid curves) for (a)
a = 0, (b) a = 1, and (c) a = 2, using experimental phase
shifts given by Froggatt and Petersen [17]. Comparison is
made with theoretical fits: those of the standard yPT are
shown as dot-dashed curves, while the improved yPT fits are
shown as dashed curves.

FIG. 4. The functions P (shown as solid curves), using
phase shifts from the Schenk B [30] parametrization of the
phase shifts of Ochs [31]. The meaning of the curves. is the
same as in Fig. 3.
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TABLE IV. Comparison of the left- and right-hand sides of Eqs. (3.7a) and (3.7b), using phase
shifts of Schenk, solution B.

Energy
300
320
340
360
380
400
420
440
460
480
500
520
540
560
580
600
620
640
660
680
700

LHS
0.236
0.274
0.314
0.356
0.398
0.439
0.479
0.515
0.545
0.569
0.584
0.589
0.585
0.571
0.548
0.517
0.480
0.439
0.395
0.350
0.304

I=O
RHS
0.234
0.272
0.312
0.355
0.397
0.440
0.479
0.515
0.546
0.569
0.584
0.590
0.585
0.571
0.547
0.517
0.479
0.439
0.394
0.350
0.305

LHS
0.006
0.012
0.019
0.027
0.035
0.045
0.056
0.068
0.083
0.099
0.117
0.138
0.163
0.192
0.226
0.267
0.315
0.370
0.433
0.496
0.540

RHS
0.005
0.011
0.018
0.026
0.034
0.044
0.055
0.067
0.081
0.098
0,116
0.138
0.163
0.192
0.227
0.268
0.316
0.372
0.437
0.495
0.538

LHS
-0.053
-0.064
-0.075
-0.087
-0.098
-0.109
-0.121
-0.132
-0.143
-0.153
-0.164
-0.174
-0.184
-0.194
-0.203
-0,212
-0.221
-0.229
-0.237
-0.244
-0.252

I=2
RHS
-0.052
-0.063
-0.074
-0.085
-0.097
-0.108
-0.119
-0.130
-0.142
-0.153
-0.164
-0.174
-0.185
-0.195
-0.204
-0.213
-0.222
-0.230
-0.237
-0.244
-0.249

n/P = 4.20, P = 1.17,
(5.17a)

wp ———0.263) wy
——3.75, ~2 ———0.540,

for the set of Froggatt-Petersen phases, and

n/P = 1.63, P = 1.17,
(5.17b)

~p ———0.032, rg ——3.68, w2 ———0.640,

n = P & 1.17. (5.18)

Results of the minimization with this constraint are rep-
resented by dot-dashed curves in Figs. 3 and 4. The best
values of parameters corresponding to this constrained
Bt are

n=P=1.17, wp
———0.414, 7.

y
——3.75, w2 = —0.661

(5.19a)

n=P=1.17, 7.p
———0.045, v.

y
——3.68, r2 ———0.653

(5.19b)

for the Froggatt-Petersen and Schenk B sets of phases,
respectively.

A few remarks are in order. The Froggatt-Petersen

for phases of the Schenk B set. On the other hand, in
order to test the compatibility of the O(p4) standard yPT
with a given set of data, one further restricts the Gt by
requiring

data are considerably better fit in terms of a larger value
(5.17a) of the ratio n/P than the standard yPT would
permit, although without a true y~ fit we cannot be
quantitative about this observation. The failure of stan-
dard yPT to describe the Froggatt-Petersen s wave is
also apparent in Fig. 3(a) (dot-dashed curve). Concern-
ing the p wave, the fit is reasonably good for both cases
[Fig. 3(b)], reflecting the fact that the theoretical calcu-
lation of Pq(s) senses the effective infrared dimension of
the quark mass starting only at the two-loop level. It
is worth noting that the best value n/P = 4.20 is over-
critical by 5%. This means that the Froggatt-Petersen
I=O s wave would be compatible with the vanishing of
the qq condensate Bc.s From this point of view, the set
of Froggatt-Petersen phases with ap ——0.30 appears as
an extreme alternative. The opposite extreme is repre-
sented by the Schenk B set of phases. Since the latter
incorporates a priori the values of scattering lengths and
effective ranges as predicted by the standard yPT, it is
not surprising that the corresponding best value for n/P
(5.17b) is considerably closer to 1 than in the Froggatt-
Petersen case. Furthermore, Fig. 4(a) seems to indicate
that, although the best value for n/P is still as large as
1.63, this fact need not be significant. In the absence
of error analysis, it is hard to be too afBrmative in the
interpretation of the Schenk B fit.

It remains to exploit the additional information (values
of constants t and v as well as the constants 7. resulting

This critical case has been considered earlier [321.
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from our fits), in order to measure certain parameters of
the dimension-4 component of Z, ][I. Here, we merely con-
centrate on the constants Lq, L2, and I 3 characteristic of
24p, Eq. (4.31), whose meaning and renormalization do
not depend on the effective dimension of the quark mass.
For this purpose, we have to determine the constants
np(0) and Pp(0) given by Eqs. (5.11a). Using the central
values of the parameters t2 and v2 (the second column of
Table I) and the best values for n/P and the r's, as deter-
mined in the previous fits, one gets ap(0) = 5.81 x 10
pp(0) = 3.99 x 10 s for the Froggatt-Petersen solution,
and np(0) = 5.87 x 10 4, Pp(0) = 2.07 x 10 s for the case
of Schenk 8 phases. These numbers are easily converted
into information on the constants L i 9 3 using Eqs. (4.42)
and (4.43). Assuming the Zweig-rule (or large-N, ) rela-
tion L~ —2Li ——0, and identifying the running scale p
with the q mass, as done in Refs. [3,33], one obtains

Lz ——2I i ——1.34 x 10, Ls = —4.50 x 10 (5.20a)

for the Froggatt-Petersen data, and

I 2 = 2L", = 0.56 x 10, Ls = —2.15 x 10 s (5.20b)

ergy range 570—910 MeV, i.e. , using all their points in the
elastic scattering region except for their first three lowest-
energy points, which appear to be less trustworthy. In
performing the extrapolation, the scattering length ap is
fixed and the remaining parameters bo, co, Eo are deter-
mined by minimization of y using the phases and errors
given to us. We show in Fig. 5 the results of this fitting
procedure for the choices ap = 0.20 (preferred by stan-
dard yPT) and 0.26 (preferred by K,4-decay experiment)
for each of the two data sets; the resulting parameters are
given in the second through fifth columns of Table V. The

for these fits is quite good. (We note in passing that
the data of Estabrooks and Martin is not well described
by the parameters ao = 0.20, 6O = 0.24 which character-
ize the Schenk B solution. ) The next step is to estimate
the uncertainty in the extrapolated phases bo. Since the
dominant parameter (after ap, which is fixed) is bp, and
in view of the strong correlations among the parameters,
we proceed as follows: For fixed values of bp larger than
its value for y;„, the minimum-y value, fit the data
by allowing co and Eo to vary freely, and find the values

for the set of Schenk B phases. It is gratifying to see
that these values, especially (5.20a), compare well with
other determinations based on standard yPT [3,33]. In-
deed, there is no reason why the purely derivative terms
in Z,p should be affected by questions concerning the
symmetry-breaking sector.

120

100—

i & i t

~

& T

D. Estimates of errors
in the direct measurements of o, /P 60

The uncertainties in the values of the parameters o. , P
and r arise from uncertainties in the functions P; these
uncertainties, in turn, arise from uncertainties in the
phase shifts 6 over the range of integration in Eqs. (5.4).
As we have noted, there is no set of phase shifts 6 that
exists, together with corresponding errors, in this energy
range. In the present subsection, we extend the extrap-
olation method of Schenk [30], described above, to con-
struct several sets of I = 0 phase shifts 6p, together with
estimated errors, in the necessary energy interval. In
this way, we obtain values and estimated errors for the
parameters n/P and rp for each extrapolated data set.
Only I = 0 phases are considered. In fact, we could treat
I = 1 phases similarly (although the insensitivity of Pi
to n makes this relatively uninteresting); in any case, the
paucity of experimental data on I = 2 makes the produc-
tion of a complete set of phase shifts impossible without a
more extensive recourse to the use of the Roy equations,
as in the analysis of Basdevant, Proggatt, and Petersen

The two original sets of phase shifts (with correspond-
ing errors) used are that of Ochs and that of Estabrooks
and Martin. These were each obtained independently
from analysis of the same CERN-Munich experiment.
The first step is to extrapolate bo down to threshold,
using the Schenk formula (5.14). The Ochs phases are
fit over the energy range 610—910 MeV, i.e. , using all his
data for which no inelasticity is suggested. (See Table
III.) The Estabrooks-Martin phases are fit over the en-
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FIG. 5. (a) Schenk-type parametrization of phase shift
data of Ochs, fixing ap = 0.20 (solid curve) and ap = 0.26
(dashed curve); (b) Schenk-type parametrization of phase
shift data of Estabrooks and Martin, fixing ap = 0.20 (solid
curve) and ap = 0.26 (dashed curve). Details are given in the
text.
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TABLE V. Analysis of p(I based on the phase shift data of Ochs and of Estabrooks and Martin
(EM), extrapolated to threshold, for fixed values of the scattering length a(I, using the parametriza-
tion of Schenk.

Data bp Cp Ep y /NDF TO y /NDF
(imprvd. )

y /NDF
(stand. )

Ochs "0"
Ochs "6"
Ochs "c"
EM "0"

&(Q&)

EM "c"

Ochs "0"
Ochs "b"
Ochs "c"
EM "0"
EM "6"
EM "c"

0.393
0.348
0.298
0.253
0.229
0.205

0.369
0.324
0.274
0.227
0.203
0.179

-0.0356
-0.0292
-0.0206
-0.0184
-0.0147
-0.0109

-0.0339
-0.0274
-0.0188
-0.0163
-0.0126
-0.0087

867.8
863.3
858.8
818.6
814.0
809.6

867.4
863.1
858.6
817,8
813.3
808.9

ao = 020
11/13
10/13
ll/13
15/15
14/15
15/15

ap ——0.26
11/13
10/13
11/13
14/15
13/15
14/15

-0.094(6)2.32(4)

3.50(3) -0.154(6)

-0.305(2)2.86(3)

1.581(3) -0.236(5)

67/63 690/63

30/63 677/63

48/63 2328/63

73/63 4947/63
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FIG. 6. The function (t]o (shown as points with error bars), using Schenk-type parametrization of phase shift data: (a) data
of Ochs, fixing a(I = 0.20; (b) data of Ochs, fixing ao = 0.26; (c) data of Estabrooks and Martin, fixing ao ——0.20; (d) data of
Estabrooks and Martin, fixing ap ——0.26. In each case, the solid curve represents the parametrization of improved gPT, while
the dashed curve represents that of standard yPT.
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of 6p, cp, Ep which give y = y;„+1; call this solution
"a" in analogy with Schenk's notation; repeat this pro-
cedure for fixed values of bp smaller than that for p~j„l)
call this solution "c"; the uncertainty in the phase shift
6p(E, ), for each value of E = E, , is then estimated by
interpreting the variation of bp(E, ) from its solution "a"
value to its solution "c" value as +1 standard deviation
in 6p(E, ). (This is similar to the procedure adopted by
Schenk, although he allows much greater variation, lead-
ing to much larger uncertainties, in order to bracket both
Ochs and Estabrooks-Martin phases at the same time. )

Now, for each of the four sets of phase shifts 5p, ob-
tained by the extrapolation procedure described above,
we may make the comparison for Pp as done for the
Froggatt-Petersen and Schenk B phases in Sec. IVC.
However, we now have the important advantage that a
true y fit is possible, so we can have some idea of the
precision with which the resulting parameters are deter-
mined. For each set, we make two fits: one, correspond-
ing to standard yPT, for which we fix a = P & 1.17;
the other, corresponding to improved yPT, for which
P & 1.17 but a is allowed to vary freely. The fits are
all performed over the same interval —7 & s & 9. Re-
sults of the determination of the parameters o./P and 7p

are given in the sixth through ninth columns of Table
V; the reader can judge the quality of the fits from the
plots of Pp given in Fig. 6. The solid curves represent
the parametrization of improved yPT, while the dashed
curves represent that of standard yPT. It is clear, both
from the large y values tabulated for the standard yPT
fits and from examination of the dashed curves in Fig. 6
that standard yPT is not compatible with these phase
shifts. For this reason, we quote no result for v.p for this
case. On the other hand, improved yPT can easily ac-
commodate such data. It is important to note that, for a
given set of phase shifts, the parameters u/P and 7 p are
very well determined by the improved yPT fit.

As a check on our procedure of estimating errors, we
have also used a more "conservative" procedure, viz. ,

vary all nonfixed parameters within their one-standard-
deviation limits to produce solution "a, „„" taking
max(bp), max(cp), min(sp), and solution "c„„„"taking
min(bp), min(cp), max(sp); then compute the conservative
uncertainties in the phase shifts 6p(E, ) using these solu-
tions as we did for solutions a and c before. Clearly, this
method does not take into account the strong correla-
tions in bp, cp, sp. Thus, when the consequent phase-shift
errors are used in the fitting of Pp, these larger errors
result in larger errors in the experimental function Pp.
The result is then a y roughly half of that previously
obtained, and errors in a/P and wp roughly 2—5 times
larger. Nevertheless, the best fit is the same.

VI. SUMMARY AND CONCLUSIONS

A new framework for testing the convergence rate of
chiral perturbation theory is proposed. One first replaces
the standard expansion of the e6'ective Lagrangian by a
more general expansion that is as systematic and unam-
biguous as the standard yPT. In addition to the usual

terms, the new expansion involves at each given order
new contributions that the standard yPT relegates to
higher orders. The size of these additional contributions
can then be tested experimentally, in particular in low-
energy 7t-x scattering. Unless these contributions turn
out to be small, the improved yPT has, in principle,
more chance to produce a rapidly convergent expansion
scheme.

A new low-energy theorem is presented, which provides
the general solution of constraints imposed by analyticity,
crossing symmetry and unitarity on the vr-vr scattering
amplitude, neglecting O(ps) contributions. Applications
of this theorem are threefold.

(i) First, it considerably simplifies the evaluation of
the perturbative vr-vr amplitude up to and including two
loops. This applies both within the "standard yPT" and
within the more general "improved yPT, " which contains
the former as a special case. In both cases, the calculation
reduces to the iterative insertion of the unitarity condi-
tion (4.32) into the dispersive integral for the functions T,
U, and V in Eq. (3.2). The improved yPT one-loop am-
plitude is worked out in detail in Sec. IV. The two-loop
amplitude can be easily calculated along the same lines.
The reason why the formula (3.2) no longer holds beyond
two loops resides in new O(ps) effects in the absorptive
part: inelasticities and higher partial waves.

(ii) Next, the low-energy theorem of Sec. III can be
used to constrain the low-energy scattering data and to
fully reconstruct the corresponding amplitude. The for-
mula (3.2) implies a particular truncation of the infinite
system of Roy equations, under a rigorous control of chi-
ral power counting: Neglected contributions are O(ps),
whereas in the original form of the Roy equations [20]
the model-dependent "driving terms" are of the same
order O(p ) as the effects we are looking for. A com-
plete set of low-energy phases bp, bp, and bi, together
with the six subtraction constants t and v for which the
Roy-type Eqs. (2.7a) and (2.7b) are satisfied to a rea-
sonable accuracy (see Tables II and IV), define up to
O(ps) corrections the scattering amplitude A(s, t, u) in
a whole low-energy region of the Mandelstam plane in-
cluding the unphysical region. Two examples of such a
complete low-energy amplitude are given, based on phase
shifts published by Froggatt and Petersen [17] and by
Schenk [30], respectively. They are both compatible with
existing AN —+ xvrN and K,4 experimental data.

(iii) Finally, the low-energy representation (3.2) sim-
plifies the direct comparison of the perturbative ampli-
tude A'" (s, t, u) with the amplitude A'"i" (s, t, u) recon-
structed from the data. In particular, parameters of Z,g
contained in A'" can be measured through a detailed
fit of the amplitude A'"i" (s, t, u) over a sufficiently large
portion of the Mandelstam plane in which the low-energy
expansion can still be taken as valid. The fit is particu-
larly sensitive to the ratio o./P, which parametrizes the
leading O(p2) amplitude. The improved yPT requires
1 & o./P & 4, whereas the special case of the standard
yPT corresponds to a/P = 1. The ratio a/P is related
to the value of the @CD parameter 2mBp in the units of
pion mass squared and, via the pseudoscalar mass spec-
trum, to the quark mass ratio r = m, /m.
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Examples of measurement of n/p exhibited in this pa-
per illustrate the lack of sufFiciently precise experimental
information on low-energy vr-vr scattering. For a fixed
value of the scattering length aoo, the statistical errors of
the production data on 600 are estimated to show up as
errors in the measured values of n/P of the order of a few
percent. On the other hand, for diEerent values of a& in
the experimental range ao ——0.26 + 0.05, and for differ-
ent sets of production data, the resulting values of n/P
vary between 1.5 and 4.2. The two complete low-energy
amplitudes mentioned above correspond to these two ex-
tremes. In particular, the Froggatt-Petersen phases (for
which ao ——0.30) are compatible with the vanishing of the
condensate Bo and with the critical value of the quark
mass ratio r = ri 6.3.

The suspicion that a bad convergence of the stan-
dard yPT might bias the usual conclusions that r =
m, /m 25.9 and 2mBO M is at least well moti-
vated, but clearly it requires confirmation. In order to
produce a truly unbiased measurement of these funda-
mental @CD parameters, the method developed in this
paper can prove useful provided that it is supplied with
more accurate experimental information on low-energy
vr-vr phase shifts. The current imprecision, illustrated by
error bars as large as in aoo——0.26+0.05 can hide atl cases
of interest, including the intriguing critical case (qq) = 0.
Here, one faces a challenge of fundamental high-precision
low-energy experimental physics.
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exhibit the main properties of the crossing matrices C
[Eq (3.9)l

The S-matrix element for the transition m +7t.~ ~ ~'+
&, where a, b, c, d are pion isospin indices, is connected
to the T-matrix element by the relation

(«I~la&) = («lat) + i(2~)'~'(P +Pb Pc Pd) +ab, cd

(A1)

The T-matrix element can be written in terms of isospin
invariant amplitudes; taking crossing symmetry into ac-
count, the decomposition reads

T b,,d (s, t, u) = A(s ltu) b' bb, d + A(tI su) b, bbd

+A(ul ts) &ad&b„(&2)
where s, t, and u are the Mandelstam variables:

s = (pa + pb) &I t = (pa pc) &1 u = (pa pd) ~ (+3)

( y(0) )
F(~)

2))

3 1 1 Astu
(s, t, u) = 0 1 —1 A(tlsu)

t, 0 1 1) t, A(ults) )
(A4)

The partial wave expansion is

F = ) (2E+ l)Pg(cos 8)f~ (s),
e

where s = 4(M + qz), t = —2q (1 —cos8). With this
normalization, the elastic unitarity condition for f& takes
the form

The amplitude A(situ) is symmetric in the variables t, u.
[The amplitude A(tlsu) is obtained from A(situ) by the
exchange of variables s, t and by subsequent analytic con-
tinuation. ]

The s-channel isospin amplitudes E&i) [Eq. (3.8)] are
related to the amplitude A by

APPENDIX A: NOTATION AND CONVENTIONS

Im f~ (s) =

ft (s) =

If~'(s) I'

e's'&') sinai( )s —4M2

(A6a)

(A6b)

In the first part of this appendix, we fix the notation
and normalization for the scattering amplitude. We then The crossing matrices C [Eq. (3.9)] have the forms

( 1/3 1 5/3 ) ( 1 0 0 ) ( 1/3 —1 5/3 )
C,&

——
i 1/3 1/2 —5/6 , Cg„ —— 0 —1 0 , C,„= —1/3 1/2 5/6

13 —12 16 0 0 3. 13 12 16
(A7)
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and satisfy the relations k„—= [n/2] + 1 (All)

«s~«s = «~u«s~= «s «~

symmetric monomials in t, u that are homogeneous of
degree n, the number of independent parameters in a
general crossing symmetric polynomial of degree N is

«.u«. ~ = «~u«. = «.~«
(A9) N

Kiv =) k„.
n=O

(A12)

it js worthwhile to notice that Eqs. (A9) imply that the
eigenvectors A.g with eigenvalues +1, respectively, of the
matrix Cq„satisfy

Hence, the most general polynomial of degree three con-
tains six parameters, as claimed in Sec. III C.

«,„«„A~ ——+«„A~. (A10) APPENDIX B:AMBIGUITIES OF THE
AMPLITUDES T) U, AND V

These relations are extensively used throughout the cal-
culation of Sec. III C.

The invariance of the amplitude A(situ) under the ex-
change of the variables t, u permits us to construct rather
easily all independent crossing symmetric polynomials of
a given degree in s, t, u. It is convenient to take the vari-
ables t, u as independent. Since there are

In this appendix, we determine the general expression
for the transformations T —+ T + 6T, U —+ U + bU, and
V + V+bV that leave invariant the scattering amplitude
A [Eq. (3.2)]. It follows that the variations 6T, 6U, and
6V must satisfy the equation

1 1
6T(s) + 6T(t) + 6T(u) + —[26U(s) —6'U(t) —6U(u)] + —[(s —t)6V(u) + (s —u)6V(t)] = 0.

3 3
(Bl)

In order to solve Eq. (Bl), one notices that only two
out of the three variables s, t, u are independent. By suc-
cessive differentiation with respect to independent vari-
ables, one obtains a set of simpler equations, which can
be solved easily. To simplify notation, let us define

f =6T, g—:6U, h=6V. (B2)

f'( ) - f'( )+ -[2g'( )+ g'( ))+ -[h( )+2h(t)]3' 3

——(s —t)h'(u) = 0, (B3)3

We first consider s and t as independent variables, and
difFerentiate Eq. (Bl) first with respect to s and then with
respect to t. We thus obtain the following two equations,
where the primes indicate differentiation with respect to
the arguments of the functions:

a quadratic polynomial:

h(t) = at + bt+ c—, (B6)

f(u) = —g(u) + —au — (b+ 2M a—)u + du+ e,=1 1 3 1 2 2

3 18 3

where d and e are constants. We then return to Eq. (B3),
consider 8 and u as independent variables, and differen-
tiate with respect to s. This implies

f (s) + -g (s) — b —-a(-4M —s) = 0,
2 „4 2

3 3 3 (B8)

which becomes, after replacing f in terms of g [Eq. (B7)],

where a, b, c are constants. Using this result for h in
Eq. (B4), we find a relation between f and g:

f"(u) ——g"(u) + —h'(t) + —(s —t) h" (u) = 0.
3 3 3

g"(s) + as —2(b + 2M a) = 0,
B4

the solution of which is

(B9)

We now consider t and u as independent variables and
difFerentiate Eq. (B4) with respect to t, obtaining the
result

h" (t) —h" (u) = 0,

which indicates that h" is a constant, and therefore h is

g(s) = ——s + (b+ 2M a)s + ks + E, (Blo)

f(s) =
I
d+ —

I
s+ e+ —

I
.3) 3J

where k and I are constants. The expression for f then
becomes
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Finally, upon substituting the expressions for h
[Eq. (B6)],g [Eq. (B10)],and f [Eq. (Bll)] in the original
equation (Bl), we obtain two constraints on the constants

the functions f, g, and h, and hence 6'T,
[Eqs. (B2)] take the forms given in Eqs. (3.5).

(s+-/ = — /d+ —),
16

I
k+4M.'l + —M.'a i.7I 3 J

After relabeling the constarrts as

y, —g, » = k, y, = (5+ 2M'a),

ys
———a/6, x = d+ I'/3,

(B12)

(B13)

(B14)

APPENDIX C: POLYNOMIALS AND KERNELS
OF THE ROY-TYPE EQUATIONS

In this Appendix we explicitly list the polynomials
P (s) and the kernels W~b which appear in the Roy-type
dispersion relations (3.7):

Pp(s) = 5tp + —t2 [3s + 2(s —4M~) ] + —ts [2s —(s —4M~) ]

+ —vr(3s —4M ) ——vs(s —M )(s —4M ) + —vs(5s —4M )(s —4M ),
P2(s) = 2tp+ —t2[3s + 2(s —4M ) ] + —t [2s —(s —4M ) ]

——vr(3s —4M ) + —v2(s —M )(s —4M ) ——vs(5s —4M )(s —4M ),1 2 1 2 22

Pr(s) = —(s —4M )(vr + v2s) + —(s —4M )vs[s' ——(s —4M )(lls —4M„)],

(C1)

(C2)

(C3)

A'
dx '.) Wpb(s, x)Im fb(x) = —(s —4M ) (s —2M )7r 4M 2 X '7r

dx Im fr(x)
M2 X3 x 4M2

(s —4M )
1 2 3
6'

A dx
4 (Im fp(x) + 5Im f2(x)

4M2

(C4)

A'
dx '. 2) W2b(s, x)Imfb(x) = ——(s —4M ) (s —2M )4M2 7r

dx Irn fr (x)
M~ x3 x 4M2

(s —4M )127r

A dx
(2 Im fp(x) + Irn f2(x)

M2 X

(C5)

A

) Wrb(s, x)Im fb(x) = ——(s —4M ) (s —2M )
1 dx 1 2 2 2

4M2 7rb=o

dx Im fr(x)
M2 X3 x —4M2

+ (s —4M )
1

127r

d z i s —dM'i (s
—4M'\

4M' x l x )
2sI 2f m( )s—z5'Lmf ( )+ q

~
spaz+

~

Im f, ( )Izx —4M2p

In Eqs. (C4)—(C6), the function G is defined as

G(x) —= 4 y 4 2 4 4
dy = ———+ ———ln(l+ x), G(0) = 1.1+xy 3x x2 x3 x4 (C7)
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