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Role of vector mesons in high-Q lepton-nucleon scattering
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The possible role played by vector mesons in inclusive deep-inelastic lepton-nucleon scattering is in-
vestigated. In the context of the convolution model, we calculate self-consistently the scaling contribu-
tion to the nucleon structure function using the formalism of time-ordered perturbation theory in the
infinite momentum frame. Our results indicate potentially significant effects only when the vector-
meson —nucleon form factor is very hard. Agreement with the experimental antiquark distributions,
however, requires relatively soft form factors for the ~N, pN, and coN vertices.

PACS number(s): 13.60.Hb, 12.38.Lg, 12.40.Aa

I. INTRODUCTION

In the context of meson-exchange models of the NN
force in nuclear physics, it has long been realized that
vector mesons play a vital role [1,2]. For example, the
isovector p meson is needed to provide sufficient cancella-
tion of the tensor force generated by ~ meson exchange,
which would otherwise be too large. On the other hand,
the isoscalar co meson, through its large vector coupling,
is responsible for the short range %IV repulsive force, and
also provides most of the spin-orbit interaction. Tradi-
tionally it has been necessary to use hard vector-
meson —nucleon form factors in order to fit the XX phase
shifts [2]. However, alternative approaches have recently
been developed in which the NX data can be fitted with
quite soft form factors [3,4].

From another direction, the vector-meson dominance
model of the elastic electromagnetic nucleon form fac-
tors, in which an isovector photon couples to the nucleon
via a p meson, provides a natural explanation of the di-
pole Q behavior of the yNN vertex function. Recent
analyses [3] have shown that a pNN vertex parameterized
by a soft monopole form factor (A, —800 MeV) provides
a good description of the Q dependence of the Dirac and
Pauli form factors. The effect of vector mesons upon nu-
cleon electromagnetic form factors has also been explored
[5] in the cloudy bag model [6], and in various soliton
models [7].

In this paper we investigate the possible role played by
vector mesons in high-Q inelastic inclusive scattering of
leptons from nucleons, in the context of the so-called con-

I

volution model, in which the deep-inelastic process is de-
scribed in terms of both quark and explicit meson-baryon
degrees of freedom. More specifically, the scaling proper-
ty of the meson- and baryon-exchange contributions to
the inclusive cross section allows us to probe the extend-
ed mesonic structure of nucleons.

Quite naturally the pion, being by far the lightest
meson, was the first meson whose contributions to the
nucleon structure function were investigated [8]. It was
later noticed [9] that the pion cloud could be responsible
for generating an asymmetry between the u- and d-quark
content of the proton sea, through the preferred proton
dissociation into a neutron and ~+. Furthermore, deep-
inelastic scattering (DIS) data on the momentum frac-
tions carried by antiquarks were used to obtain an upper
limit on this nonperturbative pionic component [9,10].
An enhancement of d over u resulting from this process
was also postulated as one explanation for the slope of
the rapidity distribution in p-nucleus Drell-Yan produc-
tion [11]. More recently it has been hypothesized that
this asymmetry could account for some of the apparent
discrepancy between the naive parton model prediction
for the Gottfried sum rule [12] and its recently deter-
mined experimental value [13],and indeed this has result-
ed in the greater attention that the convolution model of
lepton-nucleon scattering has received [14—21].

In a model in which the nucleon has internal meson
and baryon degrees of freedom, the physical nucleon
state in an infinite momentum frame can be expanded (in
the one-meson approximation) in a series involving bare
nucleon and two-particle meson-baryon states:

~N)~„„,=&Z ~N)„,„,+ g f dy d krgo P st(y, k)T~M(y, zk-);B(1 —y, —kT))
MB

Here, /Mt'(y, kT) is the probability amplitude for the
physical nucleon to be in a state consisting of a meson M
and baryon B, having transverse momenta kT and —kT,
and carrying longitudinal momentum fractions y and
1 —y, respectively. Z is the bare nucleon probability. Al-
though we work in the one-meson approximation, we will
include higher-order vertex corrections to the bare cou-
pling constants go . Illustrated in Fig. l is the deep-

MBN

inelastic scattering of the virtual photon from the two-
particle state ~M;8 ). In Fig. 1(a) the photon interacts
with a quark or antiquark inside the exchanged meson,
while in Fig. 1(b) the scattering is from a quark in the
baryon component of the physical nucleon.

According to Eq. (1), the probability to find a meson
inside a nucleon with momentum fraction y ( =k q /p q)
is (to leading order in the coupling constant)
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II. THE PION-NUCLEON CONTRIBUTION

A. Covariant formulation

Traditionally the effects upon F2~(x) of the vr meson
cloud have been studied most intensely. The distribution
function of a virtual pion accompanied by a recoiling nu-
cleon has been calculated in a covariant framework [8,9]
as

(b)

FIG. 1. Deep-inelastic scattering from the virtual (a) meson

and (b) baryon components of a physical nucleon.

fMB(y) =Zg p fd kT ~/MB(y, kT )
~

. This must also be

the probability to find a baryon inside a nucleon with
momentum fraction 1 —y. The baryon distribution func-
tion fBM(y'), where y'=p' q/p q, is probed directly
through the process in Fig. 1(b), and should be related to
the meson distribution function by

fMB(y ) =fBM(1 y)— (2)

for all y, if the above interpretation is valid. We also
demand equal numbers of mesons emitted by the nucleon,
( n )MB

= f pdy fMB (y ), and virtual baryons accompany-
ing them, (n )BM = fpdy'fBM(y'):

&n &MB=&n &BM (3)

This is just a statement of charge conservation. Momen-
tum conservation imposes the further requirement that

&y &MB+&y &BM & &MB (4)

&y &MB jpdy y fMB(»
=jpdy'y'fBM(y') are the average momentum fractions
carried by meson M and the virtual baryon 8, respective-
ly. Equations (3) and (4), and in fact similar relations for
all higher moments of f (y), follow automatically from
Eq. (2).

In what follows we shall explicitly evaluate the func-
tions fMB and fBM, and examine the conditions under
which Eq. (2) is satisfied. The results will be used to cal-
culate the contributions to the nucleon structure function
from the extended mesonic structure of the nucleon,
which are expressed as convolutions of the functions f (y)
with the structure functions of the struck meson or
baryon:

1

F2N(x ) = J dy fMB (y )F2M(x /y)
X

1fi'™F2~(x)=I dy'fBM(y')F2B(x/y'),
X

(5)

(6)

with x = —q2/2p q being the Bjorken variable. Note
that Eqs. (5) and (6) are correct when physical (renorrnal-
ized) meson-baryon coupling constants are used in the
functions fMB and fBM (see Sec. IV for details). By com-
paring against the experimental structure functions, we
will ultimately test the reliability of the expansion in Eq.
(1), and in particular the relative importance of the states
involving vector mesons compared with the pion states.

3g„xx ",„( t)9'—x(t)f.~(y)=, y ™~di
16m — (t —m )

Here, r:k—=t,„—kT/(1 —y) is the four-momentum
squared of the virtual pion, with a kinematic maximum
given by t,„=—m~y /(1 —y), and kT is the pion trans-
verse momentum squared. In a covariant formulation
the form factor V ~ parametrizing the ~NN vertex, at
which only the pion is off-mass-shell, can only depend on

Contributions from processes in which the virtual nu-
cleon (accompanied by a recoiling pion) is struck have
been calculated by several authors [18,20,22], although
not all agree. Partly because there is less phenomenologi-
cal experience with so-called sideways form factors
(where the nucleon, rather than the pion, is off-mass-
shell), some early work [23,15,17] simply defined f~ (y')
through Eq. (2). However, this is unsatisfactory from a
theoretical point of view, and ideally we would like to
verify explicitly that the functions f ~ and f~„satisfy
Eq. (2).

Clearly the treatment of deep-inelastic scattering from
an interacting nucleon is considerably more involved
than that from a real nucleon, which is described by the
usual hadronic tensor

II't'(p q)=g" ~»(p»q)+P"P ~2~(p»q» (8)

where g" = g"'+q"q /q— and p"=p" q"p q/q . —
The hadronic vertex factor for the diagram of Fig. 1(b) in
this case will be

Tr[(P+mz)iys(P +me)~V(p q ~~X +me)'ys] (9)

where kg (p', q ) is a matrix in Dirac space representing
the hadronic tensor for an interacting nucleon, and is re-
lated to the hadronic tensor for real nucleons by [24]

Wg (p, q) = ,'Tr[(P+—m~)kg'(p, q)] . (10)

If the struck nucleon is treated as an elementary fermion
[25] the relevant operator in Wg (p', q) is g/2p' q, which
leads to [22]

f& (y')= y'J dt' —m —,(t' —m&)
16m oo

V~ (t')
X

(t' —m~)

where r'= p' =t'",„—p'T(1 —y') —is the four-momentum
squared of the virtual nucleon, with the upper limit now
given by t', „=m~y' my'/(1 —y—'), and p'T denotes
the nucleon's transverse momentum squared. Apart from
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the form factors, Eqs. (7) and (11) are clearly related by
an interchange y'~1 —y.

Note that choosing a different operator form for 8'&
may lead to unphysical results. For example, with an
operator involving I rather than g the trace factor in Eq.
(11) is proportional to —m . Problems also arise for the
emission of scalar or vector mesons [26]. A full investiga-
tion of the off-mass-shell effects in deep-inelastic struc-
ture functions of composite objects will be the subject of a
future publication [27].

The large-t' suppression for the X~N vertex is intro-
duced by the form factor V/v, which is usually
parametrized by a monopole or dipole function

El

ANn. m NV„.(r') =
A~ —t

for n =1 and 2, respectively. However, to satisfy Eq. (3),
the cutoff parameter A& will in general have to be
different from the cutoff A & regulating the ~NÃ vertex
form factor in Eq. (7):

2 2
A~N

V ~(t)=
A ~ —t

In general a different A„~ would be required to satisfy
Eq. (4), and it would not be possible to guarantee Eq. (2).

Another important assumption in the covariant convo-
lution model is that the dependence of the virtual meson
and baryon structure functions in Eqs. (5) and (6) on the
invariant mass squared is negligible. The argument usu-
ally made is that the vertex form factor suppresses contri-
butions from the far off-mass-shell configurations (i.e., for
~t~ ~10m& [17]). However, in this approach even the
identification of the off-shell structure functions them-
selves is not very clear. Some suggestions about how to
relate the off-shell functions to the on-shell ones were
made [28] in the context of DIS from nuclei, although
these were more ad hac prescriptions rather than theoret-
ical derivations. Attempts to simplify this situation were
made in Ref. [29], where it was proposed that the instant
form of dynamics, where only on-mass-shell particles are
encountered, be used to calculate the nuclear structure
functions. Along similar lines was the light-front ap-
proach of Berger et al. [23]. Actually these two tech-
niques are the same if one works in the infinite momen-
tum frame. The instant form of dynamics was previously
used by Giittner et al. [30] in the calculation of the func-
tion f /v(y) for the case of pion electroproduction, and
more recently by Zoller [20] in the DIS of charged lep-
tons from nucleons.

B. Infinite momentum frame states

An alternative to the use of covariant Feynman dia-
grams, in the form of "old-fashioned" time-ordered per-
turbation theory in the infinite momentum frame (IMF),
was proposed some time ago by Weinberg [31] for scalar
particles. This was later extended by Drell, Levy, and
Yan [32] to the mN system in deep-inelastic scattering.
The main virtues of this approach are that off-mass-shell
ambiguities in the structure functions of virtual particles

Following Weinberg [31] we write the pion three-
momentum as

k=yp+kT,
where kT p =0, and conservation of momentum demands
that the recoil nucleon momentum be

Since all particles are on their mass shells the energies of
the intermediate n and X must be

kT+I
ko= iy Ipc+, +O

2 y~pl. pL

k„+m~
po = ~1

—y~pL+ +0
2 1 yipL pL

For forward moving particles [Fig. 2(a)] y and 1 —y are
positive, and according to the rules of the time-ordered
perturbation theory the energy denominator appearing
in the calculation of f /v (y ) is (p o

—p o ko )

(a)

q
(

.)

p', l l-yl

px

(b)
k, -lyl

I
/

/

p

1+ lyl

FIG. 2. Time-ordered diagrams for pions moving (a) for-
wards and (b) backwards in time. Time is increasing from left to
right.

can be avoided, and that the meson and baryon distribu-
tion functions can be shown to satisfy Eq. (2) exactly.

In the time-ordered theory the analogue of Fig. 1(a)
will now involve two diagrams in which the m. moves for-
wards and backwards in time, Fig. 2. However, in a
frame of reference where the target nucleon is moving
fast along the z direction with longitudinal momentum
pL ( ~ ~ ), only that diagram involving a forward moving
pion gives a nonzero contribution. In the IMF the target
nucleon has energy

2mx 1
po =pI. + +O

2pI. pL
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= (mg s ~ )/2pL, where and q" . The functions 8'0
& 2 are related to the on-

mass-shell structure function W» by Eq. (10):
s ~=s ~(kT,y)=(po+ko) —(p'+k)

kT+ Pl kT++
1

W&&(p, q) =2(m~ Wo+m~ W, +p.qW2) ~

Then direct evaluation of the trace in Eq. (9) gives

(14)

is the center-of-mass energy squared of the intermediate
mX state. Changing the variables of integration from d k
to dy and dkT, all powers of pL are seen to cancel when
combined with the appropriate vertex factors (2po)
and (2ko ) . However, for a backward moving pion
[Fig. 2(b)] y is negative, and the energy denominator be-
comes (po —po —ko)=2ypI +O(1/pI ). Therefore in the

p~ ~ ~ limit this time ordering does not contribute, and
the result of Eq. (7) is reproduced, form factor aside.

For an interacting nucleon with m recoil, Fig. 3, the
kinematics are similar to the above, namely the nucleon
and pion move with three-momenta

and have energies

kT+m~
po=ly'Ipl. + i, i

+O
2~y'~pL p

kT+m„
ko=

I
1 —y'lpl +, „+0

211—
3 'IpL pL

4(2p p' —2m~)[g"'(m&Wo+m~W& +p' qW2)+ ]

=2(2p p' —2m~)g""W&z(p', q)+

where now the exact on-shell nucleon structure function
appears, and there is no off-shell ambiguity.

For a backward moving nucleon [Fig. 3(b)] y' is nega-
tive, and 2p p' —2m~= —4y'pL+0(l/pi ), so that the
numerator becomes large in the pI ~ ao limit. Technical-
ly this is due to the "badness" of the operator y5, which
mixes upper and lower components of the nucleon spi-
nors. The energy denominator here is

(po —po —ko) =2y'pI +O(1/pL ), and when squared and
combined with the 1/pL from the integration and vertex
factors, the contribution from this diagram vanishes
when pl is infinite.

Therefore we need only evaluate the diagram with the
forward moving nucleon, Fig. 3(a), which gives the result
of Eq. (11):

3g~~~ co kT+(1 y )
f~ (y')= dkT

16~' o y'

kg (p, q)=g"'(k +gfk, +gW )+ . (13)

where we have omitted terms proportional only to p"'

respectively. The general structure of the tensor describ-
ing a nonelementary interacting nucleon can be written
as

with sz~(kz. ,y') =s„z(kT, 1 —y'), except that the form
factor is now unknown. It is quite natural to choose the
form factor to be a function of the center-of-mass energy
squared of the mN system, s&, as was done by Zoller
[20]. The only difference between our treatment and that
in Ref. [20] is that we follow the conventional normaliza-
tion so that the coupling constant g„&& has its standard
value at the pole:

(a)
p' Iy

k, I1-y'I 0.6 MeV

eV

0.2

(b)
p', -ly'I

k

1+ ly'I

0.0
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 3. Time-ordered diagrams for nucleons moving {a) for-
wards and {b)backwards in time.

FIG. 4. mX distribution function for a dipole form factor and
that given in Eq. {17). The cutoffs are chosen so that
( n ) ~ =0.25 in both cases.
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FIG. 5. Proton SU(2) antiquark distributions from DIS on
the ~N component of the nucleon, evaluated for the difterent
m.N form factors, as in Fig. 4. The data (dotted curves) are the
parametrizations of Owens, Morfin and Tung, Eichten et al. ,
and Diemoz et al. [38].

V

(.-g

(b)
p', ly'I

q

Vz (kT,y')=exp
2
N SNn

A
(16)

k, 11-y'I

FIG. 6. Time-ordered diagrams for the DIS from (a) vector
mesons and (b) nucleons with recoil vector mesons, that are
nonzero in the IMF.

Within this approach there is an explicit symmetry be-
tween the processes in which the intermediate pion and
the intermediate nucleon are struck, provided we take the
form factor in f z as

III. VECTOR MESON CONTENT
OF THE NUCLEON

9„~(kT,y)=V~„(kT, 1 —y) . (17)

Then as long as the same mass parameter A is used in
both vertex functions, Eq. (2) is automatically satisfied.

In Fig. 4 we compare f z(y) with a dipole form factor
and with the form factor in Eq. (17). In order to make
the comparison meaningful the cutoffs have been chosen
to yield the same value of (n ) tv( =0.25). With the y-
dependent form factor in Eq. (17) f z(y) is a little
broader and peaks at around y =0.3, compared with

y =0.2 for the covariant formulation with a dipole form
factor. Consequently, the convolution off &(y) with F2
for the y-dependent form factor will have a slightly small-

er peak and extend to marginally larger x. This is evident
in Fig. 5, where we show the calculated SV(2) antiquark
contribution to 5' 'F2 (x), compared with some recent
empirical data at Q =4 GeV .

I

In this section we extend the convolution model
analysis to the vector-meson sector. Our approach is
similar to that described in Sec. IIB, namely we use
time-ordered perturbation theory to evaluate those dia-
grams which are nonzero in the IMF. Previous calcula-
tions [18,19] of the vector-meson contributions were
made in a covariant framework, but with the assumption
that the vector-meson and nucleon intermediate states
were on-mass-shell. In our approach we self-consistently
calculate both the contribution from a struck vector
meson [Fig. 6(a)] and from a struck nucleon with a
vector-meson recoil [Fig. 6(b)], and show explicitly that
the distribution functions for these obey the relation in
Eq. (2) exactly.

Starting from the efFective VNN interaction (see, e.g. ,
Ref. [2)), where V=p or co, we write in full the vector-
meson contribution (with a nucleon recoil) to the nucleon
hadronic tensor:

n" 'w~(, )=& d k3 (k )

vt (2 ) (2 ~ )(2k )2 ~ aft at3 g VNN 4 at3, z IV) (k, q), (18)
Pp 2 p (4m~) m~ (po —po —k )

where

~ @=2(m~ —p.p')g tJ+2p& j+2p~p,
p
—

2 [(mvm~ —2p k p'. k+m&p p')g &
—

( &m+. pp) k

mpp~&+p&p.')+—p' k(p. ktt+p~k. )+p.k(p.'k~+p~k. )],
C tt=2(p k p' k)g t3 (p k&+p—fjk )+(p'—k&+p&k )

(19)
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are the VNN vertex trace factors for the vector, tensor, and vector-tensor interference couplings, respectively. The iso-
spin factor cv is equal to 3 and 1 for isovector and isoscalar mesons, respectively. For an on-mass-shell vector meson,
the spin-1 tensor W" ~, symmetric under the interchange of p~v and a~P, is given by

WP ~(k, q) = [g~ W, v(k, q)+ k "k W2v(k, q)]g ~ . (20)

This form guarantees that the vector current is conserved, k &8'" ~=O=q„8'"' ~. Furthermore, it reproduces the
correct unpolarized on-shell spin-1 tensor when contracted with the meson polarization vectors (e &) and summed over
the V helicity, A, [33]:

WP(k, q)=pe*(l, , k)e&(A, , k)WP ~(k, q)= —g &+ z WP ~(k, q)
k kp

(21)
~g" W, v(k, q)+k"k W2V(k, q) .

In the case of DIS from a vector particle emitted by a nucleon, Fig. 6(a), contracting the spin-1 tensor W" ~ with the
VNN vertex trace factors in Eq. (19), and equating coefficients of g" gives

5 WiN(p q)=cv
3 ~ gvNN

—6mN+
~ +2p p'( VN) d k 2 2 4p kp'k

(2~) (2po )(2ko) mv

2fVNN

2
4p. k p' k mvP P

3m +
z

mN mN

&'VN(kT»)
6 gvNNf vNN I p .k p' k]—, , Wi v(k q)

(mN SVN )
(22)

Using the IMF kinematics (which are similar to those for the ~N system, except that m —+mv), together with the
Callan-Gross relation for the nucleon and vector meson, enables the contribution to F2N from vector mesons to be writ-
ten as a convolution of the vector-meson distribution function fVN(y) with the on-shell vector-meson structure function
F2V(x /y), as in Eq. (5), where now

CV oofvN(y)=, dkT gvNN16~'

m,'[k,'+ (2 y)'mN ]—

4(1 —y)mN
+fVNN

2

&vN(kT y)

y (1—y)(mN —
svN )

+ 3g vNN fvNN

[kz. +y mN+mv][k7. +y m N+(I —y) mv] k7+y mN+ —4mN
( 1 y)mv 1

[kT+y mN+mv][kT2+y mN+(1 y) mv]

2y (1—y)mN

kT2+y mN —(1—y)mv
1

—mv2

The VNN form factor is defined analogously to Eq. (17),

VvN(kT, y) =exp
2

mN ~VN

A
(24)

and the VN center-of-mass energy squared is

kT+mv kT+mN
~VN ~VN(kT y) +

1
(25)

Suppression of backward moving vector mesons is achieved in the IMF by the energy denominators, as for pions. The
vector-meson structure function F2v is not known experimentally, so in our numerical calculations we assume that its x
dependence resembles that of the m meson structure function, which has been determined experimentally [34].

For the vector-meson recoil process, Fig. 6(b), we evaluate the distribution function fNV(y ) using the full spinor
structure of Wg in Eq. (13):

3 p2
(NV) p & VNN fvNN

W1N(p q) =cv 3, p gVNN ~ p+ 2
~ p+gVNN 4

~ p(2~) (2po) (2ko) (4mN) 4mN

&Nv(kT»')
X go~(k, , k)eii(l, , k) 2

(2mNWo+2mNWi+2p' qW2),
(po —po —ko)'

(26)
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oof~v(y')=, dkT gvm16~'

mv[kT+(1+y') m~]
2

—mv
4y 'm&

[kT+(1—y') mz+mv][kT+(1 —y') m~+y' mv]

2y'(1 —y') m~

k T+(1—y') mz —y'mv

1 —y'

+fvox

&xv(kr» ')

y )(mt/ slav)
+ 3gvxxf vtv/v (27)

where the tensors A, B, and C are as in Eq. (19). Performing the contractions over the indices a,P leads to the convo-
lution integral of Eq. (6), with the nucleon distribution function with a vector-meson recoil given by

[kT+(1—y') m&+mv][kT+(1 —y') m&+y' mv] kT+(1 —y') m~ —4m
y'(1 —y') mv y

and where s/vv(kT y )=st(kT 1 y'). Again, we h»e
evaluated only the diagram with forward moving nu-
cleons which is nonzero in the IMF. It is clear therefore
from Eqs. (23) and (27) that the probability distributions
for the VX intermediate states are related by

f/vv(y )=fvtv(l y ).
Our numerical results, which are discussed below, rely

upon the physical vector-meson —nucleon coupling con-
stants whose values are taken at the poles, as
obtained from analyses of ~N scattering data:

gp/v/v l4vr=0. 55, fp/v~ jgp/v~=6. 1 [35], and g /v~l4rr
= 8. 1,f &/v /g &x =0 [36].

IV. RESULTS AND DISCUSSION

Figure 7 shows the meson distribution functions f ~,
f &, and f & (scaled by a factor —,

'
) for the same vertex

cutoff parameter A ( =1.4 GeV). The vector-meson com-
ponent will only be relevant when very hard form factors
are employed. To make this point more explicit, we plot
in Fig. 8 the average multiplicities (n ) vt/ and (n )„z as
a function of A. The dependence on A is much stronger
for the p than for rr mesons. For A ~ 1.4 GeV, (n ) ~ is
considerably smaller than (n ) &, and it is only with
much larger cutoffs (A ~ 1.8 GeV) that the p multiplicity
becomes comparable with that of the ~. Note that
A = (1000, 1400, 1800) MeV corresponds to a dipole
A &

—(650, 1020, 1410) MeV for the same ( n ) z.

One should observe that the trace factor inside the
braces in fv~(y) is divergent in the limit y~O, so that
use of a form factor ~exp[y(mz —sv~)], which corre-
sponds to a t-dependent covariant form factor
exp[t —mv], would make 5' 'I'2~(x) approach a finite
value as x ~0, much like for a perturbative sea distribu-
tion. However, there are several problems with accepting
such a result, the most obvious of which is that it would
violate charge and momentum conservation very badly,
since f&v(y')~0 for y'~1 and ~const as y'~0 for a
form factor ~exp[y'(m~ —s~v)], which in the covariant
formalism corresponds to exp[t' —m~]. Furthermore, it
would lead to a gross violation of the Adler sum rule,
which integrates the Aavor combination u —u —d+d,
and such a violation has not been observed in the range
1(Q (40 GeV [37]. This gives further evidence for
the preference of the IMF approach together with the
form factor in Eq. (24). Note, however, that because the
baryon recoil contributions to the quark and antiquark
distributions are related by

6' 'u (x)=5' 'd(x),
6' 'd(x) =5™u(x)

the divergent contributions would cancel for the
Gottfried (which depends on the combination
u + u —d —d ) and Gross —Llewellyn-Smith ( u —u
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~N / ~

pN
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FICx. 7. Meson distribution functions f~~(y), f ~(y), and

f ~(y), for 4 = 1.4 CieV. Note the pion distribution is scaled by
a factor of —,'.

FIG. 8. Average number densities for the ~, p, and m mesons
in a nucleon, as a function of the meson-nucleon form factor
cutoff.
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5' 'q(x) = J fM~(y)q~(x ly),
~ dy (29)

+d —d) sum rules.
In previous studies [9,10] restrictions have been ob-

tained on the magnitude of the form factor cutoffs by
comparing (y )Mz with the measured momentum frac-
tions carried by the antiquarks. Even more stringent
constraints can be achieved by also demanding that the
shape of the meson-exchange contributions to q(x),

q(x)=Zq „,(x)++[5' 'q(x)+5' 'q(x)] .
MB

(30)

Therefore 5q (x) and the convolution integrals in Eqs. (5),
(6), and (29) are expressed in terms of renormalized cou-
pling constants contained in the functions f (y). From
Eq. (30) we also determine the bare nucleon probability

the recoil particles' momenta these yield the inclusive
DIS cross sections, which are proportional to the total
quark (and antiquark) distributions

Z =1—g(n )M~ (31)

0.15
=4GeV

0.10

IM
+
IN
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0.00
0.0 0.2 0.4 0.6

FIG. 9. Proton SU(2) antiquark distributions, calculated with
~ and ~+p+co components in the nucleon. The lower (upper)
solid and dashed curves correspond to A=1.2 (1.4) GeV. The
data are from Ref. [38].

be consistent with the shape of the experimental anti-
quark distribution [10,16]. Figure 9 shows the calculated
antiquark distributions from the m component of the nu-
cleon alone and froxn the pion plus vector-meson struc-
ture of the nucleon, for A= 1.2 and 1.4 GeV. Clearly the
SU(2) q content of the nucleon (as parametrized by
Owens, Morfin and Tung, Eichten et al. , and Diemoz
et al. [38]) is saturated for A = 1.2 GeV in the
intermediate-x region. For the ~AN vertex this corre-
sponds to a dipole form factor cutoff' A„~=830 MeV—
considerably smaller than that used by many authors.
We can'conclude therefore that for the range of form fac-
tor cutoffs allowed by the data, vector mesons play only a
marginal role in the DIS process. The maximum value of
A would have to be even smaller with the inclusion of ~A
states in the nucleon, as it has been shown previously
[15—18] that these give non-negligible contributions to
the nucleon structure function. The m.b states would also
be of relevance to the calculated d —u difference (and to
the Gottfried sum rule) resulting from DIS from the AN
and pX components, which will be partly canceled by this
contribution.

At this point we would like to clarify an issue that has
been the cause of some confusion recently in the litera-
ture. The meson- and baryon-exchange diagrams in Fig.
1 describe physical processes (inclusive baryon and meson
leptoproduction) whose cross sections involve physical
(renormalized) coupling constants. When integrated over

by demanding that the valence number and momentum
sum rules are satisfied. We emphasize that all quantities
in Eqs. (30) and (31) are evaluated using renormalized
coupling constants.

We could, of course, choose to work at a given order in
the bare coupling constant, and explicitly verify that the
various sum rules are satisfied. For example, to lowest
order (go ) the total quark distributions would be [39]

q(x)=Z qb„,(x)++[5' 'q(o)(x)+5( )q(o)(x)]
MB

with

(order go) (32)

1+Q & n(o) )Ms
MB

(order go), (33)

where the subscript (0) indicates that the functions f (y)
here are evaluated using bare couplings. Equations (30)
and (31) are easily recovered since the bare couplings, to
this order, are defined by go =g„„/Z. It would, howev-
er, be inconsistent to use Eqs. (32) and (33) with renor-
malized coupling constants, especially with large form
factor cutoffs. As long as the form factors are soft, the
difference between the bare and renormalized couplings is
quite small. However, with large cutoff' masses the bare
couplings would need to be substantially bigger than the
physical ones. (In fact, the form factor cutoff dependence
of the bare ~N coupling constant in the cloudy bag model
[40] showed some 40%%uo diff'erence for very hard form
factors —or small bag radii, -0.6 fm. ) In addition, with
large values of A, the higher-order diagrams involving
more than one meson in the intermediate state would be-
come non-negligible, and the initial assumption that the
series in Eq. (1) can be truncated at the one-meson level
would be seriously in doubt. Fortunately, we need not
consider the multiple-meson contributions, since Fig. 9
clearly demonstrates the difficulty in reconciling the
empirical data with quark distributions calculated with
such large cutoffs.

Finally, we make some additional comments regarding
this justification of our calculation in terms of an in-
coherent summation of cross sections for the various
meson-exchange processes. Because of the pseudoscalar
(or pseudovector) nature of the nNN vertex, there is no
interference between ~ meson and vector-meson ex-
change. Furthermore, there will be no mixing between
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the co and p exchange configurations due to their different
isospins. In fact, all of the processes considered in this
analysis can be added incoherently. The question
remains, however, whether it will be possible to identify
an explicit vector-meson contribution to Fziv(x) in an
unambiguous way in deep-inelastic scattering experi-
ments. While it may be feasible to search for one-pion
exchange by observing the distribution of the produced
low-momentum baryon spectrum [41], because of the
smaller absolute vector-meson cross section it will be
difficult to separate this component from both the pertur-
bative background and from that due to other mesons.
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